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Abstract

Often, tasks are collected for multi-task learning (MTL) because they share

similar feature structures. Based on this observation, in this paper, we present

novel algorithm-dependent generalization bounds for MTL by exploiting the no-

tion of algorithmic stability. We focus on the performance of one particular task

and the average performance over multiple tasks by analyzing the generalization
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ability of a common parameter that is shared in MTL. When focusing on one

particular task, with the help of a mild assumption on the feature structures, we

interpret the function of the other tasks as a regularizer that produces a specific

inductive bias. The algorithm for learning the common parameter, as well as the

predictor, is thereby uniformly stable with respect to the domain of the particular

task and has a generalization bound with a fast convergence rate of order O(1/n),

where n is the sample size of the particular task. When focusing on the average

performance over multiple tasks, we prove that a similar inductive bias exists un-

der certain conditions on the feature structures. Thus, the corresponding algorithm

for learning the common parameter is also uniformly stable with respect to the do-

mains of the multiple tasks, and its generalization bound is of the order O(1/T ),

where T is the number of tasks. These theoretical analyses naturally show that

the similarity of feature structures in MTL will lead to specific regularizations for

predicting, which enables the learning algorithms to generalize fast and correctly

from a few examples.

1 Introduction

Multi-task learning (MTL) has been proposed by Caruna (Caruna, 1993) to more effi-

ciently learn several related tasks simultaneously by using the domain information of the

related tasks as an inductive bias; therefore, it is superior to the traditional single-task

learning because it more efficiently learns the shared information among the multiple

tasks. Multi-task learning has achieved great success in machine learning for its appeal-

ing performances on a broad spectrum of applications (Wang et al., 2009; Y. Zhang &
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Yeung, 2010; T. Zhang et al., 2012; Pillonetto et al., 2010; Collobert & Weston, 2008;

Argyriou et al., 2008; Gong et al., 2014; X.-L. Zhang, 2015; Chen et al., 2013).

There have been some notable theoretical justifications (Baxter, 2000; Ben-David

& Schuller, 2003; Ando & Zhang, 2005; Maurer, 2006, 2009; Maurer et al., 2013; Mic-

chelli & Pontil, 2004) for the success of MTL. All of the theoretical justifications are

focused on the average performance over all of the multiple tasks and are independent

of the algorithms. However, as stated by Ando and Zhang (Ando & Zhang, 2005), in

practice, we are often very interested in the performance of some particular task in an

MTL problem. Comparing the performance of one particular task in the MTL setting

with that of the traditional single-task learning is both necessary and highly important.

However, such a comparison has remained elusive. In this paper, by providing novel

algorithm-dependent generalization bounds, we analyze the performance of one partic-

ular task as well as the average performance over all of the multiple tasks for the MTL

algorithms, which employ learning parameters to model the shared information among

tasks.

Although some of the previous results state that the tasks in MTL that are learned

jointly are “algorithmically related” because the tasks share a common optimal hypoth-

esis class (see, for examples, (Baxter, 2000; Ben-David & Schuller, 2003)), most of the

existing proof methods have been based on some measurements of the complexities of

the whole hypothesis class and are independent of any of the algorithms. Such measure-

ments include the VC-dimension (Shawe-Taylor et al., 1998; Vapnik, 2000), covering

number (P. Bartlett et al., 1997; T. Zhang, 2002; D.-X. Zhou, 2003; Guo et al., 2002)

and Rademacher complexity (Koltchinskii, 2001; P. L. Bartlett & Mendelson, 2003).
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When the complexity measures of the VC-dimension or covering number were used,

as discussed in (Baxter, 2000; Ben-David & Schuller, 2003; Ando & Zhang, 2005), the

convergence rate obtained for the generalization bounds is of the order O(
√

log n/n)

with respect to n, which is the training sample size, and of the order O(
√

log T/T )

with respect to T , which is the number of related tasks. If the Rademacher complexity

was used to measure the hypothesis class (see, for examples, (Maurer, 2006; Maurer

et al., 2013; Maurer, 2009)), the obtained convergence rate is of order O(
√

1/n) with

respect to n and of order O(
√

1/T ) with respect to T . These convergence rates are

slow because they are derived in such a way as to be dependent on the complexities

of the whole set of the predefined hypothesis classes and independent of any of the

algorithms. However, in this paper, we investigate the advantages of MTL by exploiting

the notion of algorithmic stability, and we take a step forward from previous studies,

where theoretical analyses are algorithm-independent, to derive algorithm-dependent

generalization bounds that have fast convergence rates of order O(1/n) with respect to

n, and of order O(1/T ) with respect to T .

We show that stability analysis (Bousquet & Elisseeff, 2002) is more suitable for an-

alyzing MTL. It can be used to illustrate that tasks in MTL can produce regularization.

Based on the observation that tasks in MTL are usually chosen because the correspond-

ing feature structures are similar, we prove that the algorithms of either one particular

task or the overall multiple tasks for learning a common parameter that is shared in

MTL are uniformly stable under certain conditions. Specifically, if a mild assumption

is made on the structure of the data matrix and if the loss function ` is strongly convex,

the common parameter that is shared by the related tasks will be learned with a fast
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convergence rate.

When we focus on the performance of one particular task instead of the average

performance over all of the tasks, the other tasks can act as a regularizer. Specifically,

if any feature vector of the focused task can be (approximately) reconstructed by the

observations of the other tasks, the algorithm for learning the common parameter, as

well as the predictor, will be uniformly stable with respect to the domain of the particu-

lar task and have an algorithm-dependent generalization bound with a fast convergence

rate with respect to the sample size of the particular task. When we focus on the aver-

age performance over multiple tasks, the multiple tasks can also generate an inductive

bias that will not vanish as the number of tasks goes to infinity. Such an inductive bias

will act as a regularizer for the optimization procedure. The algorithm for learning the

common parameter for multiple tasks is thereby uniformly stable with respect to the

domains of the multiple tasks, and the corresponding generalization bound has a fast

convergence rate with respect to the number of tasks. These analyses naturally show

that if the related tasks are chosen carefully, the tasks in MTL will produce biased regu-

larizers that are based on feature structures. MTL is therefore superior to the traditional

single-task learning.

We illustrate the uniform stability property for MTL algorithms by exploiting their

feature structures, which also provides a new insight into deriving the stability property

for learning algorithms. Previous methods have shown that many learning algorithms

exhibit a uniform stability relying on L2 regularization (Y. Zhang, 2015; Audiffren &

Kadri, 2013). However, our approach relies on more meaningful regularization, which

can be reformulated to have a specific regularization matrix. Such a meaningful regu-
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larization matrix is based on feature structures and is conveyed from carefully collected

tasks. Consequently, the analysis is easy to extend to many existing learning algorithms,

such as the learning to learn (LTL) algorithms (Baxter, 2000; Maurer, 2009; Maurer et

al., 2013). We provide the extension in the supplementary material.

By interpreting the function of some tasks in MTL as biased regularizers and by

proving that the learning algorithm is thereby uniformly stable, this work also attempts

to address an open question that was asked by Elisseeff and Pontil (Elisseeff & Pontil,

2003): “Is there a way to incorporate prior knowledge via stability?” Kuzborskij and

Orabona (Kuzborskij & Orabona, 2013) tried to address this open question by posing

a connection between hypothesis stability and hypothesis transfer learning, but they

failed to improve the convergence rate by exploiting the uniform stability. In this paper,

we illustrate that MTL has successfully incorporated prior knowledge into learning al-

gorithms and that the learning algorithms are therefore uniformly stable. Moreover, the

learning algorithms have fast convergence rates for generalization.

1.1 Related Work

There have been many results on MTL. We briefly summarize the related theoretical

studies. Baxter (Baxter, 2000) proposed the model of inductive bias learning and ex-

tended it to MTL problems. He provided generalization bounds by analyzing the VC-

dimension and covering number of the hypothesis class. MTL will benefit if the tasks

share a common optimal hypothesis class. To define a common optimal hypothesis

class produces an inductive bias. Many theoretical justifications for MTL have then

been followed by exploiting specific inductive biases.
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Ben-David and Schuller (Ben-David & Schuller, 2003) offered a data generating

mechanism through which the relationships between the tasks are measured. Based on

the notion of task-relatedness, they provided a tighter generalization bound than that

provided in (Baxter, 2000) for MTL by also analyzing the VC-dimension. Ando and

Zhang (Ando & Zhang, 2005) assumed that there was a common structure parameter

that is shared by all of the tasks. They then proved that the shared parameter can be re-

liably estimated when the task number T is large by using a covering number definition

different from that in (Baxter, 2000). The analysis is closely related to that of Baxter

(Baxter, 2000).

Maurer (Maurer, 2006) studied the linear MTL problem where a common linear op-

erator is chosen to preprocess the data matrices before learning multiple related tasks.

He provided a generalization bound by exploiting the Rademacher complexity and illus-

trated the advantages of MTL by employing a proper common linear operator. Maurer

et al. (Maurer et al., 2013) investigated the use of sparse coding and dictionary learning

in the context of MTL. They assumed that the task parameters are well approximated

by sparse linear combinations of the atoms in a dictionary and provided a generalization

bound by exploiting the Rademacher complexity to measure the hypothesis complexity.

Micchelli and Pontil (Micchelli & Pontil, 2004) provided a framework of vector-

valued functions and discussed their use in MTL. This approach can be theoretically

justified using the notion of task-relatedness discussed in (Ben-David & Schuller, 2003).

Recently, trace norm regularization has been proposed and has become popular for MTL

(Argyriou et al., 2007; Pong et al., 2010). Maurer and Pontil (Pontil & Maurer, 2013)

exploited the Rademacher complexity method to provide excess risk bounds for MTL
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problems that were regularized by the trace norm. Lounici (Lounici et al., 2009) con-

sidered the group lasso regularization for MTL and showed that under certain restricted

eigenvalue conditions, the effect of the number of predictor variables in the upper bound

of sparsity oracle inequalities could be negligible with respect to the number of tasks.

1.2 Main Contributions

The main results and contributions of this paper are summarized below:

1. We prove that the sample average stability is upper bounded by the Rademacher

complexity. Previous results have shown that the Rademacher complexity is up-

per bounded by functions of the VC-dimension or covering number. Thus, algo-

rithmic stability can be used to derive tighter upper generalization bounds than

the VC-dimension, covering number and Rademacher complexity.

2. To the best of our knowledge, we are the first to analyze the performance of indi-

vidual tasks in MTL. We thereby illustrate the superiority of MTL to traditional

single-task learning.

3. We prove that the algorithm of MTL is uniformly stable under mild conditions

and thereby provide algorithm-dependent generalization bounds. The generaliza-

tion bound of the algorithm for learning one particular task (or the focused task)

has a fast convergence rate of orderO(1/n), where n is the sample size of the par-

ticular task. In addition, the generalization bound of MTL has a fast convergence

rate of order O(1/T ), where T is the number of the overall multiple tasks.

This paper is organized as follows. In Section II, we describe MTL, introduce the

algorithm stability and upper bound the sample average stability using the Rademacher
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complexity. In Section III, we present algorithm-dependent generalization bounds for

MTL. The proofs of our results are presented in Section IV. Finally, Section V concludes

the paper.

2 Preliminaries

In this section, we first set up an MTL problem in which the different tasks share a

common parameter, which can be viewed as an inductive bias. Then, we present the

notion of algorithm stability and show that, for the MTL problem, the stability is more

suitable for deriving generalization bounds than the complexity measures of the VC-

dimension, covering number and Rademacher complexity.

Let H denote a finite or infinite dimensional separable real Hilbert space with the

inner product 〈·, ·〉 and norm ‖ · ‖, let R be the Euclidean space and let z = (x, y) ∈

H×{−1,+1} be a training example, where x denotes a feature vector (or observation)

and y represents the corresponding real-valued label. We denote S = {z1, . . . , zn} =

{(x1, y1), . . . , (xn, yn)} ∈ (H× {−1,+1})n as a training sample.

Let St = {zt,1, . . . , zt,nt} = {(xt,1, yt,1), . . . , (xt,nt , yt,nt)} denote the training sam-

ple for the t-th task, and let `(y, h(x)) measure the loss that is incurred by predicting

h(x) when the true label is y, where h ∈ H and H is a linear function class1 (also

called hypothesis class). We analyze the following setting for MTL:

min
w1,...,wT ,θ

1

T

T∑
t=1

1

nt

nt∑
i=1

` (yt,i, 〈wt + θ, xt,i〉) . (1)

where θ ∈ H is a common parameter that is shared by all of the tasks in MTL, with

1In this paper, H can also be a reproducing kernel Hilbert space.
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which the tasks are related, and wt ∈ H, t = 1, . . . , T, are the predictors which are

specific for different tasks. Note that the predictor for the t-th task is ht = wt + θ ∈ H

and that some constraints should be further placed on wt, or θ, or both, to make the

MTL in (1) well-posed because there is a trade-off between wt and θ. Many different

constraints based on the inherent properties of MTL or the prior knowledge about its

specific applications have been therefore proposed. For example, the regularized MTL

(Evgeniou & Pontil, 2004) models
∑T

t=1 ‖wt‖2 to be small and θ to be smooth; the trace

norm regularized MTL (Pong et al., 2010) also essentially forces wt to be small; the

multi-task feature learning algorithm (Argyriou et al., 2008) employs a group sparse

constraint on wt. However, in this paper, we do not consider explicit constraints and

simply assume that wt and θ in (1) can be learned. The obtained results apply to all

the constrained MTL problems because the employed constraints will only shrink the

search space of the parameters to be learned2.

There are many interesting MTL problems that can be treated directly within our

setting (see, for examples, (Ando & Zhang, 2005; Evgeniou & Pontil, 2004; Chen et

al., 2009; Rai & Daume, 2010; J. Zhou et al., 2011; Kumar & Daume, 2012; Lin et al.,

2012)). Not surprisingly, some potential MTL scenarios are outside of our setting, such

as (Liu et al., 2009). However, our analyses can be easily extended to justify a much

more general form of problem (1), where some but not all of the tasks share common

parameters. Then, we can discuss the models involving outlier tasks. And many other

2Note that for case where the constraints on wt, t = 1, . . . , T , and θ are positive and convex, due to

the additive and non-negative properties of Bregman divergence as shown in Lemma 1, the proof methods

provided in this paper can be easily extended to the constrained MTL problems to imporve the results.
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MTL scenarios are within the scope of our discussion. One example is MTL based on

coding schemes (Maurer et al., 2013).

Existing generalization bounds for MTL have relied on complexity measures such as

the VC-dimension, covering number and Rademacher complexity. The obtained bounds

are therefore dependent on the complexities of the predefined hypothesis classes and are

independent of the learning algorithms. However, in this paper, we will use the notion

of algorithmic stability other than the notions of VC-dimension, covering number and

Rademacher complexity to derive algorithm-dependent generalization bounds for MTL.

In particular, stability is a property of an learning algorithm, i.e., if two training sam-

ples are close to each other, a stable algorithm will output close predictors. There are

many versions of stability, such as the hypothesis stability (Kearns & Ron, 1999), sam-

ple average stability (Shalev-Shwartz et al., 2010) and uniform stability (Bousquet &

Elisseeff, 2002). We will focus on the uniform stability, to which the other types of

stability are closely related.

Definition 1 (Uniform stability) An algorithm is uniformly stable (or β uniformly sta-

ble) with respect to the loss function ` and a specific domain Z ⊂ H× {−1,+1} if the

following holds:

∀S ∈ Zn, ∀i ∈ {1, ..., n},∀z = (x, y), z′i ∈ Z,

|`(y, hS(x))− `(y, hSi(x))| ≤ β,

where hS is the hypothesis function that is returned by the learning algorithm when the

input training sample is S, and Si denotes the training sample S with the i-th example

zi replaced by an independent and identically distributed example z′i.
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Note that, in this paper, we say an algorithm is uniform stable if the minimum value

of β converges to zero as the training sample size increases without limit.

To illustrate that stability is a more subtle notion than the VC-dimension, cover-

ing number and Rademacher complexity for deriving upper generalization bounds, we

will employ the sample average stability defined in (Shalev-Shwartz et al., 2010) and

show that it is upper bounded by the VC-dimension, covering number and Rademacher

complexity.

Definition 2 (Sample average stability) An algorithm is sample average stable (or γ

sample average stable) with respect to the loss function ` and a specific domain Z ⊂

H× {−1,+1} if the following inequality holds:∣∣∣∣∣ 1n
n∑
i=1

ES∼Dn,{z′1=(x′1,y
′
1),...,z

′
n=(x′n,y

′
n)}∼Dn [`(y′i, hSi(x′i))− `(y′i, hS(x′i))]

∣∣∣∣∣ ≤ γ,

whereD denotes the distribution over the domainZ for generating the training example

z.

Remark 1 For any S, S ′ = {z′1, . . . , z′n} ∈ Zn, the relationship between the uniform

stability and sample average stability is shown by the following inequality:∣∣∣∣∣ 1n
n∑
i=1

ES∼Dn,{z′1,...,z′n}∼Dn [`(y′i, hSi(x′i))− `(y′i, hS(x′i))]

∣∣∣∣∣
≤ max

z=(x,y)∈Z,i∈{1,...,n}
|`(y, hS(x))− `(y, hSi(x))| ≤ β.

Previous results show that the Rademacher complexity could be upper bounded

with respect to the VC-dimension and covering number, respectively. For example,

by combining Massart’s Lemma (Massart, 2000) and Sauer’s Lemma (Sauer, 1972),

it can be proven that the Rademacher complexity is upper bounded by a function of
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the VC-dimension; Dudley (Dudley, 1967) showed that the Rademacher complexity is

upper bounded by a function of the covering number. Thus, the Rademacher complexity

method has the potential to derive tighter upper generalization bounds than approaches

based on the VC-dimension and covering number, and therefore, it has been widely

used to analyze generalization bounds.

We show that the sample average stability is upper bounded by the Rademacher

complexity, as follows.

Theorem 1 The sample average stability is upper bounded by Rademacher complexity∣∣∣∣∣ 1n
n∑
i=1

ES∼Dn,{z′1,...,z′n}∼Dn [`(y′i, hSi(x′i))− `(y′i, hS(x′i))]

∣∣∣∣∣ ≤ 2R(` ◦H).

The Rademacher complexity R(` ◦H) is defined by

R(` ◦H) = ES,σ sup
hs∈H

1

n

∣∣∣∣∣
n∑
i=1

σi`(yi, hs(xi))

∣∣∣∣∣ ,
where H is the predefined linear hypothesis class, `◦H denotes the set of compositions

of functions ` and h ∈ H , and σ1, . . . , σn are the independent Rademacher variables

that are uniformly distributed on {−1, 1}.

See the proof in Section 4.2.

Theorem 1 shows that the algorithm stability has the potential for deriving tighter

generalization bounds than the VC-dimension, covering number and Rademacher com-

plexity.

In contrast to the previous theoretical analyses of uniform stability derived from L2

regularization, we propose a new method for proving uniform stability based on the

feature structures. We show that the learning algorithms for MTL are uniformly stable.

Details are presented in the next section.
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3 Main Results

In this section, we provide algorithm-dependent generalization bounds for MTL. These

results are based on the idea that when related tasks are learned at the same time, tasks

can function as regularizers for predicting.

Note that the related tasks for MTL are usually chosen because of the similarity in

their feature structures. We formulate the prior as the following assumption:

Assumption 1 If we focus on the j-th task, j ∈ {1, . . . , T}, there exists a subset B =

{b1, . . . , bN} ⊂ {x1,1, . . . , xT,nT
} − {xj,1, . . . , xj,nj

} such that for any feature vector x

distributed from the j-th task, x can be reconstructed by B with a small reconstruction

error, i.e., x =
∑N

j=1 αjbj + η, where αj ∈ R, ‖α‖ ≤ r, and η is a small error that

satisfies ‖η‖ ≤ ε. If we focus on the whole multiple tasks, for any task t, t = 1, . . . , T ,

there also exists a subset Bt = {bt,1, . . . , bt,Nt} ⊂ {xt,1, . . . , xt,nt} such that for any

feature vector x distributed from any task, x can be reconstructed by B with a small

reconstruction error.

We note that Assumption 1 is very mild. If the feature space is of low-rank or the

data lies on a manifold, the assumption can be easily satisfied even for the traditional

single task learning problem. If the feature vectors are randomized, the assumption will

also hold if the sample size reaches the dimension of the feature vector.

Before presenting our main results, we introduce strongly convex loss functions:

Definition 3 (Strongly convex) A differentiable loss function `(y, h(x)) is c-strongly

convex if the following inequality holds for any two hypotheses h, h′ ∈ H:

(∇`(y, h(x))−∇`(y, h′(x)))
T

(h(x)− h′(x)) ≥ c‖h(x)− h′(x)‖2,
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where c ∈ R+ and∇`(y, h(x)) denotes the gradient of the loss function `(y, h(x)) with

respect to h(x).

Remark 2 The quadratic loss function `(y, h(x)) = (y − h(x))2 is 2-strongly convex

and has been widely used in many scientific fields. Many other frequently used loss

functions, such as hinge loss and logistic loss, are only convex but not strongly con-

vex. However, in statistical learning theory, we often assume that h(x) is bounded, e.g.,

h(x) ∈ [−U,U ], where U is a positive constant. In this case, the loss functions may

be strongly convex. For example, the logistic loss `(y, h(x)) = log(1 + exp(−yh(x)))

is exp(−U)/4-strongly convex when h(x) is restricted to the interval [−U,U ], because

d2`(y, h(x))/d2h(x) = exp(yh(x)) /(exp(yh(x)) + 1)2 ≥ exp(−U)/4. Note that

the strong convexity (Hazan & Kale, 2011) and strong smoothness are dual proper-

ties, strongly convex programming algorithms have many benign properties both on the

speed of optimization and the quality of generalization; see, for examples, (Hazan &

Kale, 2011; Rakhlin et al., 2012; Tsianos & Rabbat, 2012; Kakade & Tewari, 2009).

3.1 Algorithm-Dependent Generalization Bounds

Instead of providing the most general analysis with the tightest possible generalization

bounds for the task predictors in MTL, we present the tightest possible generalization

bounds for learning the shared parameter θ in (1). Our purpose is to illustrate the main

benefit of MTL, which is that the shared parameter can be more accurately estimated.

Moreover, we focus on both the performance of one particular task and the average

performance over all of the multiple tasks.
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For the first time in the literature, we provide algorithm-dependent theoretical anal-

ysis for MTL by showing the property of uniform stability, which is upper bounded by

O(1/n) or O(1/T ), for the learning algorithms of MTL. To upper bound the uniform

stability, we assume that the loss function ` satisfies the following Lipschitz-like con-

dition, which has been widely used (see, for examples, (Bousquet & Elisseeff, 2002;

Mohri et al., 2012)):

Definition 4 A loss function ` is σ-admissible with respect to the hypothesis class H

if there exists σ ∈ R+ such that for any two hypotheses h, h′ ∈ H and any example

z ∈ H × {−1,+1}, the following inequality holds:

|`(y, h(x))− `(y, h′(x))| ≤ σ|h(x)− h′(x)|.

Proposition 1 Let focus on the j-th task in the multi-task learning problem (1). Let

Assumption 1 hold that there exists a subset B ⊆ {x1,1, . . . , xT,nT
} − {xj,1, . . . , xj,nt}

such that for any feature vector x distributed from the j-th task, it holds that x =∑N
j=1 αjbj + η, where αj ∈ R, ‖α‖ ≤ r, and η is a small error that satisfies ‖η‖ ≤ ε.

Let the loss function ` be c-strongly convex and σ-admissible. Then, the algorithm for

learning θ is uniformly stable with respect to the domain of the j-th task. That is, for

any zj = (xj, yj) distributed from the j-th task, any θSi
j

and θSj
learned by algorithm

(1), given wj , the following inequality holds:∣∣∣`(yj,〈wj + θSi
j
, xj

〉)
− `
(
yj,
〈
wj + θSj

, xj
〉)∣∣∣ ≤ max

zj=(xj ,yj)∈Zj

σ
∣∣∣〈θSi

j
− θSj

, xj

〉∣∣∣
≤ σrmax{nt : t 6= j}

2c

√(2σr

nj

)2

+
4cO(ε)

nj max{nt : t 6= j}
+

2σr

nj

 ,

where Sj is the training sample for the j-th task, Sij is the training sample of the j-th

task with the i-th example zi, i ∈ {1, . . . , nj}, replaced by another independent and
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identically distributed example z′i, θSj
denotes the shared parameter θ learned by algo-

rithm (1) when the j-th task has the training sample Sj , Zj denotes the domain of the

j-th task, and nj represents the training sample size of the j-th task.

For simplicity, let ε = 0, and we have

∣∣∣`(yj,〈wj + θSi
j
, xj

〉)
− `
(
yj,
〈
wj + θSj

, xj
〉)∣∣∣

≤ max
zj=(xj ,yj)∈Zj

σ
∣∣∣〈θSi

1
− θS1 , xj

〉∣∣∣
≤ 2σ2r2 max{nt : t 6= j}

njc
.

See the proof in Section 4.3.

Note that nj denotes the training sample size of the j-th task. When we focus on the

j-th tasks, the sample sizes of the other tasks, which are {nt : t 6= j}, should be fixed,

then the upper bounds in Proposition 1 will decrease quickly as the training sample size

of the j-th task is increased.

Remark 3 For simplicity, we will consider η = 0 (or ε = 0) in the remainder of the

paper. However, our results could be easily extended to the case of η 6= 0, as in the case

shown in Proposition 1. We note that the upper bounds are independent of the number

N of representative observations B. Thus, we could increase N to obtain a small ‖η‖.

Remark 4 According to the proof method of Proposition 1, when we focus on one par-

ticular task, we interpret the function of the other tasks as regularizers. The proof of

Proposition 1 can be interpreted to rely on regularization λ‖Γθ‖22, where λ is a regu-

larization parameter that is dependent on the training samples of the unfocused tasks,

and Γ, which is dependent on the representative observations B (defined in Assumption

1), is referred to as the regularization matrix. More details are illustrated in the proof
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of Proposition 1 and Remark 16. The superiority of MTL could therefore be explained

by the fact that a proper inductive bias, the regularization λ‖Γθ‖22, has been carefully

collected for the focused task. The algorithm for learning the parameter θ is therefore

uniformly stable with respect to the domain of the focused task. As shown in Proposi-

tion 1, when we increase the training sample size nj of the j-th task, the upper bound

will decease fast with order O(1/nj).

Remark 5 Our analyses are different from the idea of regularizing a projected version

of the shared parameter in a new space, because the regularization matrix Γ, which

is constructed from the representative observations B is not necessarily a projection

matrix. Moreover, the regularization matrix Γ (or the representative observations B)

could be over-complete, for the construction of the observations x ∈ H.

A generalization bound for learning θ can be easily derived using the upper bound

of uniform stability presented in Proposition 1.

Proposition 2 Let focus on the j-th task in the MTL problem (1). Let Assumption 1

hold and η = 0. Let the loss function ` be c-strongly convex, σ-admissible and upper

bounded by M . Let µ1, . . . , µT be probability measures on the domains of T different

tasks. Let the set {nt : t 6= j} be fixed. For any learned θ and any δ > 0, given wj , with

probability at least 1− δ, the following inequality holds:

Ezj=(xj ,yj)∼µj` (yj, 〈wj + θ, xj〉)−
1

nj

nj∑
i=1

` (yj,i, 〈wj + θ, xj,i〉)

≤ 2σ2r2 max{nt : t 6= j}
njc

+

(
4σ2r2 max{nt : t 6= j}

c
+M

)√
log 1/δ

2nj
.
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See the proof in Section 4.3.

Remark 6 Using the Rademacher complexity method, we can prove that the algorithm

for learning the shared parameter θ has a generalization bound of orderO
(√

1/
∑T

t=1 nt

)
,

which could be tighter than the order3 O(1/nj) presented in Proposition 2 when n1 =

. . . = nT = n and T > n. However, such a generalization bound is of orderO(
√

1/nj)

with respect to the sample size nj of the j-the task and decreases far more slowly than

our bound presented in Proposition 2 when increasing the sample size nj .

Remark 7 Bousquet and Elisseeff (Bousquet & Elisseeff, 2002) and Shalev-Shwartz

(Shalev-Shwartz et al., 2010) have proven that the generalization bound for learning

the predictor of a single task can be of order O(1/n), where n is the sample size of the

task. Their results apply to the focused task in MTL. However, their bounds strictly rely

on L2 regularization on the predictor, or θ, while our bound does not and thus is more

general.

Remark 8 The generalization bound shown in Proposition 2 is algorithm-dependent,

because it has been derived by interpreting some of the tasks in the MTL problem (1)

as regularizers, which greatly shrinks the search space of the parameters to be learned.

Since there is an trade-off between wj and θ, our results in Propositions 1 and 2 can

be easily extended to learn the predictor of the focused task by simply setting wj = 0

in the proof. Using the same proof method, we have the following theorem.

3It is accepted in the machine learning community that the convergence rate of a generalization bound

is calculated according to the terms related to the hypothesis complexity, but not according to the terms

involving the confidence interval parameter δ introduced by employing concentration ineqaulities. This

is why we claim that the convergence rate in Proposition 2 is of order O(1/nj).
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Theorem 2 (Main result one) Under the conditions of Propositions 1 and 2, for any

zj = (xj, yj) distributed from the j-th task, any predictor hj,Sj
and hj,Si

j
learned by

algorithm (1) for the j-th task, the following inequality holds:

|`(yj, hj,Si
j
(xj))− `(yj, hj,Sj

(xj))| ≤ maxzj=(xj ,yj)∈Zj
σ
∣∣∣〈hj,Si

j
− hj,Sj

, xj

〉∣∣∣
≤ σrmax{nt:t6=j}

2c

(√(
2σr
nj

)2
+ 4cO(ε)

nj max{nt:t6=j} + 2σr
nj

)
.

Let ε = 0, and we have

|`(yj, hj,Sj
(xj))− `(yj, hj,Si

j
(xj))|

≤ max
(xj ,yj)∈Zj

σ
∣∣∣〈hj,Si

j
− hj,Sj

, xj

〉∣∣∣
≤ 2σ2r2 max{nt : t 6= j}

njc
.

Moreover, for any predictor hj learned for the j-th task and any δ > 0, with probability

at least 1− δ, the following inequality holds:

Ezj=(xj ,yj)∼µj`(yj, hj(xj))−
1

nj

nj∑
i=1

`(yj,i, hj(xj,i))

≤ 2σ2r2 max{nt : t 6= j}
njc

+

(
4σ2r2 max{nt : t 6= j}

c
+M

)√
log 1/δ

2nj
.

Remark 9 When focused on a specific task, we are interested in the problem of how

increasing its sample size affects its learning performance. Since the existing general-

ization bound of the empirical risk minimization (ERM) algorithm for single-task learn-

ing has the fastest convergence rate of order O(
√

1/n), Theorem 2 shows the benefit

of MTL over the traditional single-task learning by illustrating that the generalization

bound for learning the focused task in MTL is of orderO(1/n) with respect to its sample

size n.
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Remark 10 The obtained generalization bounds in Proposition 2 and Theorem 2 have

fast convergence rates with respect to the sample size of the focused task. To derive

the fast convergence rates, we have concentrated on feature structures and ignored the

labeling information of the unfocused tasks, so no benefit is shown for any increase

in the other training sample sizes nt, t 6= j. However, in practice, large nt, t 6= j,

will provide more labeling information that is useful to the focused task. We refer the

readers to the related work for more details.

When learning the shared parameter θ, we have shown that the algorithm can be

uniformly stable with respect to the domain of one particular task in MTL and that the

convergence rate with respect to the corresponding training sample size is fast. We now

show that the shared parameter θ can be estimated with a fast convergence rate with

respect to the number of the multiple tasks.

Theorem 3 (Main result two) Let S = {S1, . . . , ST} denote the training sample set

for MTL. Let Assumption 1 hold that for any task t, t = 1, . . . , T , there exists Bt =

{bt,1, . . . , bt,Nt } ⊂ {x1,1, . . . , xT,nT
}−{xt,1, . . . , xt,nt} such that for any feature vector

x distributed from any task, x can be reconstructed by B with a small reconstruction

error, i.e., x =
∑Nt

j=1 αjbt,j + η, ‖α‖ ≤ r, and η is a small error that satisfies ‖η‖ ≤

ε. Let also assume that η = 0. Let the loss function ` be c-strongly convex and σ-

admissible, and let n1 = n2 = . . . = nT = n, where n ≥ 2. Then, the algorithm for

learning θ by multi-task learning is uniformly stable with respect to the domains of all

the multiple tasks. Thus, we have

max
z=(x,y)∈{Z1∪...∪ZT }

|〈θS − θSi , x〉| ≤ 2σr2

cT
,

21



where θS denotes the θ that is learned using sample S, Si represents the training sample

S with the i-th training example zi, i = 1, . . . , Tn, replaced by an independent and

identically distributed one z′i, and {Z1 ∪ ... ∪ ZT} denotes the joint domains of all the

multiple tasks.

See the proof in Section 4.4.

Remark 11 Theorem 3 is based on the idea that multiple tasks can provide an inductive

bias that does not vanish when T goes to infinity. The inductive bias makes the learning

algorithm uniformly stable with respect to the domains of all the multiple tasks.

When focusing on the average performance over all of the multiple tasks, we show

that the generalization bound decreases fast as the number of tasks increases.

Proposition 3 When focusing on all of the multiple tasks, let Assumption 1 hold and

let η therein be 0. Let the loss function ` be c-strongly convex and σ-admissible, let

µ1, . . . , µT be probability measures on the domains of the multiple tasks and let n1 =

n2 = . . . = nT = n be fixed. Then, for any θ that is learned using (1) for MTL, and any

δ > 0, given wt, t = 1, . . . , T , with probability at least 1− 2δ, the following inequality

holds:

1

T

T∑
t=1

Ezt=(xt,yt)∼µt` (yt, 〈wt + θ, xt〉)

≤ 1

T

T∑
t=1

1

n

n∑
j=1

` (yt,j, 〈wt + θ, xt,j〉) +
2σ2r2

cT

√
2 ln(2/δ) +M

√
2 ln (1/δ)

T
.

See the proof in Section 4.4.
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Remark 12 The predictor ht = wt + θ, t = 1, . . . , T, has a two-part structure: one

part corresponds to the specific task in the set of multiple tasks, and the other part is

for the shared parameter θ. When focused on the multiple tasks, our statements (i.e.,

Propositions 2 and 3) concern the shared parameter θ but not the parameters that are

specific for different tasks. This strategy is natural because MTL has not shown any

benefit for learning knowledge that is specific to one particular task and is irrelevant

to the other tasks. The fast convergence rate for learning the shared parameter θ is

a strong theoretical justification for the good performance of MTL, even though the

generalization ability of the overall predictor ht, t = 1, . . . , T, has not been exploited

explicitly.

Remark 13 When focusing on the performance of one particular task, we have derived

an algorithm-dependent generalization bound with a fast covergence rate with respect

to the predictor hj = wj + θ. When focusing on the average performance over multiple

tasks, we have only dervied an algorithm-dependent generalization bound with a fast

covergece rate with respect to the common parameter θ. This is because it is unreason-

able to claim that the MTL algorithm for learning wj, j = 1, . . . , T is uniformly stable

with respect to the domains of all the multiple tasks.

Remark 14 Increasing the number of tasks can be helpful for multi-task learning. To

obtain an intuitive understanding, consider an extreme case in which all of the tasks are

related and each task has an independently drawn sample of size one. Increasing the

number of related tasks is equal to increasing the number of the independently drawn

examples and will definitely help learn the related information. Proposition 3 provides

a theoretical guarantee for this intuition with a fast convergence rate of order O(1/T ).
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Remark 15 To model the relationship between tasks, we have used a parameter θ that

is shared by all of the tasks, as shown in (1). However, based on the proof methods, our

analyses could be easily extended to a more general setting where only a few tasks share

some common parameters. For example, Maurer et al. (Maurer et al., 2013) proposed

a coding schemes model for MTL, where the task parameters are linear combinations

of the atoms in a dictionary (also called an implementation in coding schemes). In this

model, multi-task learning benefits when at least one atom is shared by some of the task

parameters. Our analyses show that the shared atom can be efficiently learned with a

fast convergence rate with respect to the training sample size or the number of tasks

that share the atom.

Different from previous results showing that most learning algorithms exhibit a uni-

form stability relying on L2 regularization, we have illustrated the uniformly stable

property for MTL algorithms by exploiting feature structures. In our analyses, care-

fully collected tasks could provide biased regularization. Consequently, our approach

is easy to extend to many existing learning algorithms. We present the extensions to

learning to learn (LTL), as an example, in the supplementary material.

4 Proof

In this section, we present detailed proofs of the assertions that were made in previ-

ous sections. We begin by introducing the concentration inequalities, which play an

important role in proving generalization bounds.

24



4.1 Used Tools

McDiarmid’s inequality (McDiarmid, 1998), which is known as the bounded difference

inequality, is widely used for deriving generalization bounds.

Theorem 4 (McDiarmid’s inequality) Let X = (x1, . . . , xn) be a sample set of inde-

pendent random variables and let X i be a new sample set with the i-th example xi in X

replaced by a new one x′i. If there exists c1, . . . , cn > 0 such that f : X n → R satisfies

the following conditions:

|f(X)− f(X i)| ≤ ci,

for all i ∈ {1, . . . , n} and any points x1, . . . , xn, x′i ∈ X . Then for any X ∈ X n and

ε > 0, the following inequality holds:

Pr{Ef(X)− f(X) ≥ ε} ≤ exp

(
−2ε2∑n
i=1 c

2
i

)
,

where Pr{A} denotes the probability that event A occurs.

Note that McDiarmid’s inequality holds for independent random variables, which

are not required to be identically distributed. Combined with McDiarmid’s inequality,

the uniform stability of learning algorithms is used to develop generalization bounds

with fast convergence rates. The generalization bound derived using uniform stability

is as follows (Mohri et al., 2012):

Theorem 5 Assume that the loss function ` is bounded by M . Let A be a β-stable

learning algorithm, S be a sample set with n i.i.d. random variables, and hS be the

hypothesized function that is output by the learning algorithmA when the input training
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sample is S. Then, for any δ > 0, with probability at least 1− δ, the following holds:

Ez=(x,y)`(y, hS(x))− 1

n

n∑
i=1

`(yi, hS(xi))

≤ β + (2nβ +M)

√
log 1/δ

2n
.

Proof sketch of Theorem 5: Let

Φ(S) = E(x,y)`(y, hS(x))− 1

n

n∑
i=1

`(yi, hS(xi)).

It can be proven that |Φ(S) − Φ(Si)| ≤ 2β + M/n and that ESΦ(S) ≤ β. Then,

Theorem 5 can be obtained using McDiarmid’s inequality.

To upper bound the uniform stability, we need to introduce the notion of Bregman

divergence (Mohri et al., 2012).

Definition 5 (Bregman divergence) Let F : H → R be a convex function. For all

f, g ∈ H, we have

BF (f‖g) = F (f)− F (g)− 〈f − g, δF (g)〉 ,

where δF (g) denotes the subgradient of F at g.

Detailed discussions about Bregman divergence can be found in (Mohri et al., 2012).

Lemma 1 Bregman divergence is additive and non-negative. If F = F1 + F2 and both

F1 and F2 are convex, for any f, g ∈ H, we have

BF (f‖g) = BF1(f‖g) +BF2(f‖g)

and

BF (f‖g) ≥ 0.

26



To prove that the learning algorithm of MTL has a fast generalization rate of order

O(1/T ), we will use Hoeffding’s inequality (Hoeffding, 1963).

Theorem 6 (Hoeffding’s inequality) Let x1, . . . , xn be independent random variables

with xi taking values in [ai, bi] for all i ∈ {1, . . . , n}. Then for any ε > 0, the following

inequality holds:

Pr

{
E

n∑
i=1

xi −
n∑
i=1

xi ≥ ε

}
≤ exp

(
−2ε2∑n

i=1(bi − ai)2

)
.

4.2 Proof of Theorem 1

We show that the Rademacher complexity and algorithmic stability are closely related

by proving that the sample average stability is upper bounded by the Rademacher com-

plexity.
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Proof of Theorem 1. We have∣∣∣∣∣ 1n
n∑
i=1

ES∼Dn,S′∼Dn [`(y′i, hSi(x′i))− `(y′i, hS(x′i))]

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

ES∼Dn,{z′1,...,z′n}∼Dn`(y′i, hSi(x′i))

− 1

n

n∑
i=1

ES∼Dn,{z′1,...,z′n}∼Dn`(y′i, hS(x′i))

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

ES∼Dn,z′i∼D`(y
′
i, hSi(x′i))

− 1

n

n∑
i=1

ES∼Dn,z′i∼D`(y
′
i, hS(x′i))

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

ES∼Dn`(yi, hS(xi))− ES∼Dn,z∼D`(y, hS(x))

∣∣∣∣∣
=

∣∣∣∣∣ES∼Dn

1

n

n∑
i=1

`(yi, hS(xi))− ES∼Dn,z∼D`(y, hS(x))

∣∣∣∣∣
=

∣∣∣∣∣ES∼Dn

(
1

n

n∑
i=1

`(yi, hS(xi))− Ez∼D`(y, hS(x))

)∣∣∣∣∣
≤ ES

∣∣∣∣∣ 1n
n∑
i=1

`(yi, hS(xi))− Ez∼D`(y, hS(x))

∣∣∣∣∣
≤ ES sup

h∈H

∣∣∣∣∣ 1n
n∑
i=1

`(yi, h(xi))− Ez∼D`(y, h(x))

∣∣∣∣∣
≤ ES sup

h∈H

∣∣∣∣∣ 1n
n∑
i=1

`(yi, h(xi))− ES′∼Dn

1

n

n∑
i=1

`(y′i, h(x′i))

∣∣∣∣∣
≤ ES sup

h∈H
ES′

∣∣∣∣∣ 1n
n∑
i=1

`(yi, h(xi))−
1

n

n∑
i=1

`(y′i, h(x′i))

∣∣∣∣∣
≤ ES,S′ sup

h∈H

∣∣∣∣∣ 1n
n∑
i=1

`(yi, h(xi))−
1

n

n∑
i=1

`(y′i, h(x′i))

∣∣∣∣∣
= ES,S′,σ1,...,σn sup

h∈H

∣∣∣∣∣ 1n
n∑
i=1

σi[`(yi, h(xi))− `(y′i, h(x′i))]

∣∣∣∣∣
≤ 2ES,σ1,...,σn sup

h∈H

∣∣∣∣∣ 1n
n∑
i=1

σi`(yi, h(xi))

∣∣∣∣∣
= 2R(` ◦H),
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where S ′ = {z′1, . . . , z′n} ∼ Dn. This completes the proof of Theorem 1. �

4.3 Proofs of Propositions 1 and 2

We first prove that when the loss function ` is c-strongly convex, the corresponding

ERM algorithm (1) for MTL will be uniformly stable with respect to the domain of a

particular task if a mild assumption on the data structure holds. Note that in the proof,

we will interpret the functions of some of the tasks as regularizers.

Proof Proposition 1. We prove that the algorithm for learning θ is uniformly stable

with respect to the domain of the first task. For the other tasks, the same proof strategy

applies.

Let S1 = (z1,1, . . . , z1,n1) be the i.i.d. training sample for the first task. For any

given w1 and any z1 = (x1, y1) distributed from the first task, the following inequalities

hold:

∣∣∣`(y1, 〈w1 + θS1,...,ST
, x1〉)− `

(
y1,
〈
w1 + θSi

1,S2,...,ST
, x1

〉)∣∣∣
≤ max

z1=(x1,y1)∈Z1

∣∣∣`(y1, 〈w1 + θS1,...,ST
, x1〉)− `

(
y1,
〈
w1 + θSi

1,S2,...,ST
, x1

〉)∣∣∣
≤ max

(x1,y1)∈Z1

σ
∣∣∣〈θS1,...,ST

− θSi
1,S2,...,ST

, x1

〉∣∣∣ , (2)

where θS1,...,ST
represents the parameter that corresponds to the related information

among the tasks and is learned when the training samples are S1, . . . , ST .

We will use the notion of Bregman divergence to derive an upper bound for

max
z1=(x1,y1)∈Z1

|〈θS1,...,ST
−θSi

1,S2,...,ST
, x1

〉∣∣∣ .
Let B = (b1, . . . , bN) ∈ {x1,1, . . . , xT,nT

} − {x1,1, . . . , x1,n1} be the representative

observations defined in Assumption 1 such that for any feature vector x distributed from
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the first task, x can be reconstructed by B with a small reconstruction error. Let

N(θ) =
1

T

N∑
j=1

1

ntj
`
(
ybj ,

〈
wtj + θ, bj

〉)
,

where ntj is the size of the training sample Stj , tj ∈ {1, . . . , T}, to which the example

(bj, ybj) belongs. Let

F (θ) =
1

T

T∑
t=1

1

nt

nt∑
i=1

` (yt,i, 〈wt + θ, xt,i〉) . (3)

Define V (θ) by

V (θ) = F (θ)−N(θ).

Then, V (θ) is non-negative and convex, because {(b1, yb1), . . . , (bN , ybN )} ⊆ {z1,1, . . . , zT,nT
}

and ` is convex.

Using the non-negative and additive properties of Bregman divergence, for any z′i

distributed from the domain of the first task, the following inequality holds:

BFS1,...,ST
(θSi

1,S2,...,ST
‖θS1,...,ST

) +BF
Si
1,S2,...,ST

(θS1,...,ST
‖θSi

1,S2,...,ST
)

≥ BN(θSi
1,S2,...,ST

‖θS1,...,ST
) +BN(θS1,...,ST

‖θSi
1,S2,...,ST

), (4)

where FS1,...,ST
denotes F (θ) in (3) computed using the training samples S1, . . . , ST .

To lower bound the right-hand side of inequality (4), we consider two different

forms of loss function: (i) `(y, h(x)) = `(y − h(x)) and (ii) `(y, h(x)) = `(yh(x)),

separately.
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When the loss function is of form (i), the following inequalities hold:

BN(θSi
1,S2,...,ST

‖θS1,...,ST
) +BN(θS1,...,ST

‖θSi
1,S2,...,ST

)

= −

〈
θSi

1,S2,...,ST
− θS1,...,ST

,
1

T

N∑
j=1

1

ntj
δ`
(
ybj −

〈
wtj + θS1,...,ST

, bj
〉)
bj

〉

−

〈
θS1,...,ST

− θSi
1,S2,...,ST

,
1

T

N∑
j=1

1

ntj
δ`
(
ybj −

〈
wtj + θSi

1,S2,...,ST
, bj

〉)
bj

〉

=
1

T

N∑
j=1

1

ntj

〈
θS1,...,ST

− θSi
1,S2,...,ST

, δ`
(
ybj −

〈
wtj + θS1,...,ST

, bj
〉)
bj

〉
− 1

T

N∑
j=1

1

ntj

〈
θS1,...,ST

− θSi
1,S2,...,ST

, δ`
(
ybj −

〈
wtj + θSi

1,S2,...,ST
, bj

〉)
bj

〉
=

1

T

N∑
j=1

1

ntj

〈
θS1,...,ST

− θSi
1,S2,...,ST

, δ`
(
ybj

−
〈
wtj + θS1,...,ST

, bj
〉)
bj − δ`

(
ybj −

〈
wtj + θSi

1,S2,...,ST
, bj

〉)
bj

〉
≥ 1

T

N∑
j=1

c

ntj

〈
θSi

1,S2,...,ST
− θS1,...,ST

, bj

〉2
≥ c

max{nt : t 6= 1}T

N∑
j=1

〈
θSi

1,S2,...,ST
− θS1,...,ST

, bj

〉2
, (5)

where the first inequality holds because the loss function ` is c-strongly convex.

31



When the loss function is of form (ii), similar to (5), the following inequalities hold:

BN(θSi
1,S2,...,ST

‖θS1,...,ST
) +BN(θS1,...,ST

‖θSi
1,S2,...,ST

)

= −

〈
θSi

1,S2,...,ST
− θS1,...,ST

,
1

T

N∑
j=1

1

ntj
δ`
(
ybj
〈
wtj + θS1,...,ST

, bj
〉)
bj

〉
ybj

−

〈
θS1,...,ST

− θSi
1,S2,...,ST

,
1

T

N∑
j=1

1

ntj
δ`
(
ybj

〈
wtj + θSi

1,S2,...,ST
, bj

〉)
bj

〉
ybj

=
1

T

N∑
j=1

ybj
ntj

〈
θS1,...,ST

− θSi
1,S2,...,ST

, δ`
(
ybj
〈
wtj + θS1,...,ST

, bj
〉)
bj

〉
− 1

T

N∑
j=1

ybj
ntj

〈
θS1,...,ST

− θSi
1,S2,...,ST

, δ`
(
ybj

〈
wtj + θSi

1,S2...,ST
, bj

〉)
bj

〉
=

1

T

N∑
j=1

1

ntj

〈
θS1,...,ST

− θSi
1,S2,...,ST

, δ`
(
ybj
〈
wtj + θS1,...,ST

, bj
〉)
bjybj

−δ`
(
ybj

〈
wtj + θSi

1,S2,...,ST
, bj

〉)
bjybj

〉
≥ 1

T

N∑
j=1

c

ntj

〈
θSi

1,S2,...,ST
− θS1,...,ST

, bjybj

〉2
≥ c

max{nt : t 6= 1}T

N∑
j=1

〈
θSi

1,S2,...,ST
− θS1,...,ST

, bj

〉2
y2bj

=
c

max{nt : t 6= 1}T

N∑
j=1

〈
θSi

1,S2,...,ST
− θS1,...,ST

, bj

〉2
. (6)

Note that for any z′1,i, i = 1, . . . , n1, distributed from the first task, using (4), (5) and

(6), we have the following inequalities:

c

max{nt : t 6= 1}T

N∑
j=1

〈
θSi

1,S2,...,ST
− θS1,...,ST

, bj

〉2
≤ BFS1,...,ST

(θSi
1,S2,...,ST

‖θS1,...,ST
) +BF

Si
1,S2,...,ST

(θS1,...,ST
‖θSi

1,S2,...,ST
)

(∵ δFS1,...,ST
(θS1,...,ST

) = 0 and δFSi
1,S2,...,ST

(θSi
1,S2,...,ST

) = 0)

=
1

n1T

{
`
(
y1,i,

〈
w1 + θSi

1,S2,...,ST
, x1,i

〉)
− ` (y1,i, 〈w1 + θS1,...,ST

, x1,i〉)

+`
(
y′1,i,

〈
w1 + θS1,...,ST

, x′1,i
〉)
− `
(
y′1,i,

〈
w1 + θSi

1,S2,...,ST
, x′1,i

〉)}
≤ σ

n1T

(∣∣∣〈θSi
1,S2,...,ST

− θS1,...,ST
, x1,i

〉∣∣∣+
∣∣∣〈θS1,...,ST

− θSi
1,S2,...,ST

, x′1,i

〉∣∣∣) .(7)
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By Assumption 1, for any x1, we have x1 =
∑N

j=1 αjbj + η, where αj ∈ R, j =

1, . . . , N, ‖α‖ ≤ r and ‖η‖ ≤ ε. Thus,

〈
θS1,...,ST

− θSi
1,S2,...,ST

, x1

〉
=

N∑
j=1

αj

〈
θS1,...,ST

− θSi
1,S2,...,ST

, bj

〉
+
〈
θS1,...,ST

− θSi
1,S2,...,ST

, η
〉

(Using Cauchy-Schwarz inequality)

≤

√√√√ N∑
j=1

α2
j

√√√√ N∑
j=1

〈
θS1,...,ST

− θSi
1,S2,...,ST

, bj

〉2
+O(ε)

≤ r

√√√√ N∑
j=1

〈
θS1,...,ST

− θSi
1,S2,...,ST

, bj

〉2
+O(ε). (8)

Combining (7) and (8), we have

c

max{nt : t 6= 1}T

N∑
j=1

〈
θS1,...,ST

− θSi
1,S2,...,ST

, bj

〉2

≤ 2σr

n1T

√√√√ N∑
j=1

〈
θS1,...,ST

− θSi
1,S2,...,ST

, bj

〉2
+
O(ε)

n1T
.

This gives

√∑N
j=1

〈
θS1,...,ST

− θSi
1,S2,...,ST

, bj

〉2
≤ max{nt:t6=1}

2c

(√(
2σr
n1

)2
+ 4cO(ε)

n1 max{nt:t6=1} + 2σr
n1

)
.
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We are now ready to upper bound maxz1=(x1,y1)∈Z1

∣∣∣〈θS1,...,ST
− θSi

1,S2,...,ST
, x1

〉∣∣∣:
max(x1,y1)∈Z1

∣∣∣〈θS1,...,ST
− θSi

1,S2,...,ST
, x1

〉∣∣∣
= maxα

∣∣∣∑N
j=1 αj

〈
θS1,...,ST

− θSi
1,S2,...,ST

bj

〉∣∣∣
(Using Cauchy-Schwarz inequality)

≤ r

√∑N
j=1

〈
θS1,...,ST

− θSi
1,S2,...,ST

, bj

〉2
≤ rmax{nt:t6=1}

2c

(√(
2σr
n1

)2
+ 4cO(ε)

n1 max{nt:t6=1} + 2σr
n1

)
.

Thus, the inequalities hold:

max
z1=(x1,y1)∈Z

∣∣∣` (y1, 〈w1 + θS1,...,ST
, x1〉)− `

(
y1,
〈
w1 + θSi

1,S2,...,ST
, x1

〉)∣∣∣
≤ max

z1=(x1,y1)∈Z
σ
∣∣∣〈θS1,...,ST

− θSi
1,S2,...,ST

, x1

〉∣∣∣
≤ σrmax{nt : t 6= 1}

2c

√(2σr

n1

)2

+
4cO(ε)

n1 max{nt : t 6= 1}
+

2σr

n1

 .

This statement concludes the proof of Proposition 1. �

Remark 16 Comparing the proof method of Proposition 11.1 in (Mohri et al., 2012)

with our above proof method of Proposition 1, the term N(θ) in the above proof intrin-

sically functions as a regularizer for optimizing F (θ). When we focus on the first task,

F (θ) in the above proof can be rewritten as

F (θ) =
1

n1T

n1∑
i=1

` (y1,i, 〈w1 + θ, x1,i〉) +R1(θ) +R2(θ),

where

R1(θ) = N(θ) =
1

T

N∑
j=1

1

ntj
`
(
ybj ,

〈
wtj + θ, bj

〉)
,

R2 = V (θ)− 1

n1T

n1∑
i=1

` (y1,i, 〈w1 + θ, x1,i〉)
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and both of them are positive and convex. Thus, we can interpret the function of the

unfocused tasks as regularizers. In the proof of Proposition 1, we used R1(θ) = N(θ)

as regularization to obtain the upper bound of uniform stability. If we replace R1(θ) by

1
T

∑N
j=1

1
ntj
〈θ, bj〉2, the proof procedure and result of Proposition 1 remain the same,

which means that we have not used the labeling information of the unfocused tasks

in the proof (as discussed in Remark 10) and that Proposition 1 relies on the simple

form regularizer 1
T

∑N
j=1

1
ntj
〈θ, bj〉2. Note that we have written 1

T

∑N
j=1

1
ntj
〈θ, bj〉2 =

λ‖Γθ‖22 in Remark 4.

Proof of Proposition 2. According to Proposition 1, we have proven that the algo-

rithm for learning θ is uniformly stable with respect to the domain of the first task and

that

β ≤ 2σ2r2 max{nt : t 6= j}
njc

.

Thus, Proposition 2 is proven by combining Proposition 1 and Theorem 5. �

4.4 Proofs of Theorem 3 and Proposition 3

The proof method of Theorem 3 is similar to that of Proposition 1. The key idea is that

every training sample St, t = 1, . . . , T , independently contributes to an inductive bias.

Proof of Theorem 3. Similar to (2), for any t ∈ {1, . . . , T} and any z = (x, y)

distributed from any of the multiple tasks, we have

|` (y, 〈wt, θS, x〉)− ` (y, 〈wt + θSi , x〉) |

≤ max
z=(x,y)∈{Z1∪...∪ZT }

σ |〈θSi − θS, x〉| ,

where θS represents the parameter that is corresponding to the related information

among tasks and is learned for MTL using the training sample set S = {S1, . . . , ST},
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and Si represents the training sample S with the i-th training example zi, i = 1, . . . , Tn,

replaced by an independent and identically distributed one z′i.

Let Bt = (bt,1, . . . , bt,Nt) ∈ {xt,1, . . . , xt,n}, t = 1, . . . , T , be the representative

observations for the t-th task defined in Assumption 1 such that for any feature vector

x distributed from any task, x can be reconstructed by Bt with a small reconstruction

error. Let

NT (θ) =
1

T

T∑
t=1

1

n

Nt∑
j=1

`
(
ybt,j , 〈wt + θ, bt,j〉

)
,

where ybt,j denotes the label for the observation bt,j . Let

F (θ) =
1

T

T∑
t=1

1

n

n∑
i=1

` (yt,i, 〈wt + θ, xt,i〉) .

Then, we have

F (θ) = NT (θ) + VT (θ),

where VT (θ) is the sum of some prediction losses of examples and therefore is non-

negative and convex. Using the non-negative and additive properties of Bregman diver-

gence again, for any z′t,i distributed from any of the multiple tasks, we have

BFS
(θSi‖θS) +BFSi

(θS1‖θSi
1
)

≥ BNT
(θSi‖θS) +BNT

(θS‖θSi). (9)
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Similar to the proof in (5) and (6), we have the following inequalities

BNT
(θSi‖θS) +BNT

(θS‖θSi)

= −

〈
θSi − θS,

1

T

T∑
t=1

1

n

Nt∑
j=1

δ`
(
ybt,j , 〈wt + θS, bt,j〉

)
bt,j

〉

−

〈
θS − θSi ,

1

T

T∑
t=1

1

n

Nt∑
j=1

δ`
(
ybt,j , 〈wt + θSi , bt,j〉

)
bt,j

〉

=
1

T

T∑
t=1

1

n

Nt∑
j=1

〈
θS − θSi , δ`

(
ybt,j , 〈wt + θS, bt,j〉

)
bt,j − δ`

(
ybt,j , 〈wt + θSi , bt,j〉

)
bt,j
〉

≥ 1

T

T∑
t=1

c

n

Nt∑
j=1

〈θSi − θS, bt,j〉2 . (10)

Note that for any z′t,i, t ∈ {1, . . . , T}, i ∈ {1, . . . , n}, distributed form the t-th task,

according to (9) and (10), we have

1

T

T∑
t=1

c

n

Nt∑
j=1

〈θSi − θS, bt,j〉2

≤ BFS
(θSi‖θS) +BFSi

(θS1‖θSi
1
)

( ∵ δFS(θS) = 0 and δFSi(θSi) = 0)

=
1

nT
{` (yt,i, 〈wt + θSi , xt,i〉)− ` (yt,i, 〈wt + θS, xt,i〉)

+`
(
y′t,i,

〈
wt + θS, x

′
t,i

〉)
− `
(
y′t,i,

〈
wt + θSi , x′t,i

〉)}
≤ σ

nT
(| 〈θSi − θS, xt,i〉 |+ | 〈θS − θSi , x′t,i〉 |) .

Then, we have

c

T∑
t=1

Nt∑
j=1

〈θSi − θS, bt,j〉2

≤ σ (| 〈θSi − θS, xt,i〉 |+ | 〈θS − θSi , x′t,i〉 |) .

According to Assumption 1 and the assumption that η = 0, for any x distributed

from any of the multiple tasks, we have x =
∑Nt

j=1 αt,jbt,j, t = 1, . . . , T , where αt,j ∈
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R, j = 1, . . . , Nt, ‖αt‖ =
√∑Nt

j=1 α
2
t,j ≤ r. Thus, it holds that

〈θSi − θS, x〉 =
1

T

T∑
t=1

〈θSi − θS, x〉

=
1

T

T∑
t=1

Nt∑
j=1

αt,j 〈θSi − θS, bt,j〉

(Using Cauchy-Schwarz inequality)

≤ 1

T

√√√√ T∑
t=1

Nt∑
j=1

α2
t,j

√√√√ T∑
t=1

Nt∑
j=1

〈θSi − θS, bt,j〉2

≤ r√
T

√√√√ T∑
t=1

Nt∑
j=1

〈θSi − θS, bt,j〉2.

Therefore, we have

c
T∑
t=1

Nt∑
j=1

〈θSi − θS, bt,j〉2 ≤
2σr√
T

√√√√ T∑
t=1

Nt∑
j=1

〈θSi − θS, bt,j〉2.

Thus, √√√√ T∑
t=1

Nt∑
j=1

〈θSi − θS, bt,j〉2 ≤
2σr

c
√
T
.

Now, we are ready to upper bound maxz=(x,y)∈{Z1∪...∪ZT } |〈θS − θSi , x〉|:

max
z=(x,y)∈{Z1∪...∪ZT }

|〈θS − θSi , x〉|

= max
z1=(x1,y1)∈Z1,...,zT=(xT ,yT )∈ZT

∣∣∣∣∣ 1

T

T∑
t=1

〈θS − θSi , xt〉

∣∣∣∣∣
= max

α1,...,αT

∣∣∣∣∣ 1

T

T∑
t=1

Nt∑
j=1

αt,j 〈θS − θSi , bt,j〉

∣∣∣∣∣
≤ r√

T

√√√√ T∑
t=1

Nt∑
j=1

〈θS − θSi , bt,j〉2

≤ r√
T
× 2σr

c
√
T

=
2σr2

cT
.

This concludes the proof of Theorem 3. �
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Remark 17 The term NT (θ), which is defined according to the feature structures of

T tasks, in the above proof intrinsically functions as a regularizer. Note that our proof

method of Theorem 3 can be easily extended to the case where some but not all the tasks

contribute to producing the regularizer (or the case where some but not all the tasks

share common parameters). For example, let the reconstruction property described in

Assumption 1 hold when focusing on T ′ tasks, let denote their indices by T and let

NT ′(θ) =
1

T ′

∑
t∈T

1

n

Nt∑
j=1

`
(
ybt,j , 〈wt + θ, bt,j〉

)
.

Then, we can prove that

max
z=(x,y),z′t,i=(x′t,i,y

′
t,i)∈∪s∈T Zs,t∈T ,i∈{1,...,n}

|〈θS − θSi , x〉| 2σr
2

cT ′
.

Proof of Prposition 3. The proof method is similar to that of Proposition 2. How-

ever, there are some differences, e.g., the sample in Proposition 2 are i.i.d.; while the

samples for multiple tasks are not i.i.d.. Note that the examples of one particular task

are i.i.d..

Let

Φ(S) = sup
θ∈H′

(
1

T

T∑
t=1

Ezt=(xt,yt)∼µt` (yt, 〈wt + θ, xt〉)

− 1

T

T∑
t=1

1

n

n∑
j=1

` (yt,j, 〈wt + θ, xt,j〉)

)
, (11)

where H ′ denotes the active hypothesis class of the learning algorithm, which is the set

of all the possible outputs of the shared parameter θ, and

Xt(St) = sup
θ∈H′

(
Ezt=(xt,yt)∼µt` (yt, 〈wt + θ, xt〉) .

− 1

n

n∑
j=1

` (yt,j, 〈wt + θ, xt,j〉)

)
.
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Then, X1(S1), . . . , XT (ST ) are independent random variables, and

Φ(S) ≤ 1

T

T∑
t=1

Xt(St).

We have that

|Xt(St)| ≤ sup
θ
Ezt=(xt,yt)∼µt

1

n

n∑
j=1

|` (yt, 〈wt + θ, xt〉)− ` (yt,j, 〈wt + θ, xt,j〉)| ≤M.

Using Hoeffding’s inequality, we have

Pr

{
1

T

T∑
t=1

Xt(St)− ES
1

T

T∑
t=1

Xt(St) ≥ ε

}

≤ exp

(
−2ε2∑T
i=1

4M2

T 2

)
.

Let exp
(
−Tε2
2M2

)
= δ, where δ > 0. Then, we have

ε =

√
2M2 ln (1/δ)

T
. (12)

Thus, with probability at least 1− δ, the following holds

Φ(S) ≤ 1

T

T∑
t=1

Xt(St) ≤ ES
1

T

T∑
t=1

Xt(St) + ε

= ES
1

T

T∑
t=1

Xt(St) +

√
2M2 ln (1/δ)

T
.

According to (Pinelis, 1994), with probability at least 1−δ, we have ‖θ−EStθSt‖ ≤

2σr
cT

√
2n ln(2/δ). We now upper bound ES

1
T

∑T
t=1Xt(St). With probability at least
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1− δ, we have

ES
1

T

T∑
t=1

Xt(St)

= ES
1

T

T∑
t=1

sup
θ∈H′

(Ezt∼µt` (yt, 〈wt + θ, xt〉)

− 1

n

n∑
j=1

` (yt,j, 〈wt + θ, xt,j〉)

)

≤ 1

T

T∑
t=1

ESt,σ sup
θ∈H′

1

n

n∑
j=1

σj` (yt,j, 〈wt + θ, xt,j〉)

=
σ

T

T∑
t=1

ESt,σ sup
θ∈H′

1

n

n∑
j=1

σj 〈θ, xt,j〉

=
σ

T

T∑
t=1

ESt,σ sup
θ∈H′

1

n

n∑
j=1

σj 〈θ − EStθSt , xt,j〉

≤ σ

T

T∑
t=1

ESt,σ sup
θ∈H′

1

n
‖θ − EStθSt‖

∥∥∥∥∥
n∑
j=1

σjxt,j

∥∥∥∥∥
≤ σ

T

T∑
t=1

2σr

cT

√
2n ln(2/δ)

√
nr

≤ 2σ2r2

cT

√
2 ln(2/δ). (13)

Combining (11), (12) and (13), we can conclude that Proposition 3 holds. �

5 Conclusions

In this paper, we utilized two inductive biases for MTL to derive algorithm-dependent

generalization bounds from a uniform stability point of view. One inductive bias is

that the tasks share common parameters. The other one is that the feature structures

of all tasks are similar. Our analyses justify the claim that the common parameter

can be learned with a fast convergence rate. When focusing on one particular task in

MTL, the algorithm for learning the shared parameter has a generalization bound with
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a fast convergence rate of order O(1/n), where n is the sample size of the particular

task. When focusing on the average performance over multiple tasks, the corresponding

algorithm has a generalization bound of orderO(1/T ), where T is the number of tasks.

Moreover, our analyses offer an insight into the advantages of MTL over the traditional

single-task learning by showing that tasks could function as regularization, which is a

carefully chosen inductive bias and enables MTL to generalize efficiently from a few

examples.

We conclude with an open question. It would be valuable to investigate the fast con-

vergence rate of orderO(1/nT ) for learning the common parameter θ in MTL problem

(1).
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