256 research outputs found

    Cooperative multitarget tracking with efficient split and merge handling

    Get PDF
    Copyright © 2006 IEEEFor applications such as behavior recognition it is important to maintain the identity of multiple targets, while tracking them in the presence of splits and merges, or occlusion of the targets by background obstacles. Here we propose an algorithm to handle multiple splits and merges of objects based on dynamic programming and a new geometric shape matching measure. We then cooperatively combine Kalman filter-based motion and shape tracking with the efficient and novel geometric shape matching algorithm. The system is fully automatic and requires no manual input of any kind for initialization of tracking. The target track initialization problem is formulated as computation of shortest paths in a directed and attributed graph using Dijkstra's shortest path algorithm. This scheme correctly initializes multiple target tracks for tracking even in the presence of clutter and segmentation errors which may occur in detecting a target. We present results on a large number of real world image sequences, where upto 17 objects have been tracked simultaneously in real-time, despite clutter, splits, and merges in measurements of objects. The complete tracking system including segmentation of moving objects works at 25 Hz on 352times288 pixel color image sequences on a 2.8-GHz Pentium-4 workstationPankaj Kumar, Surendra Ranganath, Kuntal Sengupta, and Huang Weimi

    Extended Object Tracking: Introduction, Overview and Applications

    Full text link
    This article provides an elaborate overview of current research in extended object tracking. We provide a clear definition of the extended object tracking problem and discuss its delimitation to other types of object tracking. Next, different aspects of extended object modelling are extensively discussed. Subsequently, we give a tutorial introduction to two basic and well used extended object tracking approaches - the random matrix approach and the Kalman filter-based approach for star-convex shapes. The next part treats the tracking of multiple extended objects and elaborates how the large number of feasible association hypotheses can be tackled using both Random Finite Set (RFS) and Non-RFS multi-object trackers. The article concludes with a summary of current applications, where four example applications involving camera, X-band radar, light detection and ranging (lidar), red-green-blue-depth (RGB-D) sensors are highlighted.Comment: 30 pages, 19 figure

    Tracking by Prediction: A Deep Generative Model for Mutli-Person localisation and Tracking

    Full text link
    Current multi-person localisation and tracking systems have an over reliance on the use of appearance models for target re-identification and almost no approaches employ a complete deep learning solution for both objectives. We present a novel, complete deep learning framework for multi-person localisation and tracking. In this context we first introduce a light weight sequential Generative Adversarial Network architecture for person localisation, which overcomes issues related to occlusions and noisy detections, typically found in a multi person environment. In the proposed tracking framework we build upon recent advances in pedestrian trajectory prediction approaches and propose a novel data association scheme based on predicted trajectories. This removes the need for computationally expensive person re-identification systems based on appearance features and generates human like trajectories with minimal fragmentation. The proposed method is evaluated on multiple public benchmarks including both static and dynamic cameras and is capable of generating outstanding performance, especially among other recently proposed deep neural network based approaches.Comment: To appear in IEEE Winter Conference on Applications of Computer Vision (WACV), 201

    Fuzzy region assignment for visual tracking

    Get PDF
    In this work we propose a new approach based on fuzzy concepts and heuristic reasoning to deal with the visual data association problem in real time, considering the particular conditions of the visual data segmented from images, and the integration of higher-level information in the tracking process such as trajectory smoothness, consistency of information, and protection against predictable interactions such as overlap/occlusion, etc. The objects' features are estimated from the segmented images using a Bayesian formulation, and the regions assigned to update the tracks are computed through a fuzzy system to integrate all the information. The algorithm is scalable, requiring linear computing resources with respect to the complexity of scenarios, and shows competitive performance with respect to other classical methods in which the number of evaluated alternatives grows exponentially with the number of objects.Research supported by projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, SINPROB and CAM MADRINET S-0505/TIC/0255.publicad
    corecore