
This document is published in:

Soft Computing, (2011), 15 (9), 1845-1864.  
DOI: http://www.dx.doi.org/10.1007/s00500-011-0698-z

© 2011 Springer-Verlag

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29405739?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s00500-011-0698-z


Fuzzy region assignment for visual tracking

       

Jesus Garcia, Miguel A. Patricio, Antonio Berlanga, Jose M. Molina

Abstract In this work we propose a new approach based

on fuzzy concepts and heuristic reasoning to deal with the

visual data association problem in real time, considering

the particular conditions of the visual data segmented from

images, and the integration of higher-level information in

the tracking process such as trajectory smoothness, con-

sistency of information, and protection against predictable

interactions such as overlap/occlusion, etc. The objects’

features are estimated from the segmented images using a

Bayesian formulation, and the regions assigned to update

the tracks are computed through a fuzzy system to integrate

all the information. The algorithm is scalable, requiring

linear computing resources with respect to the complexity

of scenarios, and shows competitive performance with

respect to other classical methods in which the number of

evaluated alternatives grows exponentially with the num-

ber of objects.

Keywords: Machine vision; Video data association; 
Fuzzy system design

1 Introduction

The research on video processing algorithms to track and

analyze the objects moving in a scene is one of the most

demanding areas of computer vision, and has been receiving

intensive attention in the recent years. These algorithms

must solve the detection, recognition and tracking

ofinteresting objects in the video sequence with satisfactory  
performance, usually having available multiple cameras and 
computation resources networked to cover an extended 
area (Moeslund et al. 2006). 

Among the applications, the visual surveillance systems are

especially relevant nowadays, given the very demanding

requirements and expectations for monitoring safety

conditions in protected areas (Cucchiara et al. 2004; Javed

and Shah 2002; Medioni et al. 2001; Ferryman et al. 2000;

Leuven et al. 2001; Brodsky et al. 2001; Greenhill et al.

2002). Other relevant applications are advanced visual

interfaces for context-aware applications (Koller et al. 1997;

Krumm et al. 2000) and video mining systems to retrieve

and understand situations for statistical analysis of, for

example, sports, physical performance of players, semantic

analysis, etc. (Xu et al. 2004; Liu et al. 2009; Joo et al.

2007). A fundamental requirement for these systems is

detection, labeling and tracking of objects. Another

requirement is the capability to track and maintain identity

of all detected objects continuously over time.

Motion correspondence in video analysis basically

requires from robust data association methods, an area

which has started to receive attention also from the com-

puter vision community in recent years. The data associa-

tion problem (also named data correlation) consists in the

appropriate correspondence among observations extracted

from each frame to the objects extracted in the previous

ones, a necessary step before to the estimation of the

individual targets states. Objects should be tracked without

interruption even in the case where the low-level detection

algorithms fail to segment them in the images. This cor-

respondence among sequential observations is hard for

different reasons. The predictions are done accordingly to

previous estimations and must be corresponded to current

measurements. Ambiguity rises when predictions are not

supported by measurements, there are unexpected
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measurements or several observations may match with

some predictions. This problem occurs in a variety of

diverse domains in which observations arrive in time,

including computer vision, surveillance, air traffic control,

defense, robotics and target tracking, whose community

has coined the term ‘‘data association’’ in this specific

sense.

So, the problem of data association addressed in this 
work has a specific meaning in this context of processing a 
stream of sensor data. It differs from the general associa-

tion problem in data mining, which refers to the search of 
semantic linkages between attributes of data instances, 
such as the relations discovered in basket analysis. The 
a priori algorithm (Agrawal 1996) is one of the original 
association methods in data mining, from which many 
efforts have continued to develop association methods with 
capabilities to generalize with uncertainty conditions and 
integrate high-level knowledge (Novak et al. 2008).

A number of statistical and alternatives techniques have 
been developed for the sensor data association problem, 
where a typical step toward assignment of measurements is 
the computation of likelihood of measurements generated 
by different hypotheses of correspondences with predic-

tions. Different proposals range from simple and subopti-

mal, such as Nearest Neighbor (NN), to other more 
complex and close to optimal approaches, whose cost is 
usually excessive when the number of targets and mea-

surements increase, such as Multiple Hypotheses Tracking 
(MHT), and Joint Probabilistic Data Association Filter 
(JPDAF). Fuzzy systems have been traditionally applied to 
data association (Fuzzy Data Association, FDA) with 
sensor sources such as radar positioning, infrared and 
Doppler measurements, taking advantage of the flexibility 
of fuzzy logic to model uncertainty coming from hetero-

geneous sources and natural ability to handle different 
types of information (Chen 2000; Han et al. 2003; Ermin 
et al. 2000; Gad et al. 2002; Aziz et al. 1999, 2007). A 
more detailed analysis of approaches to data association 
based on this paradigm is presented in the next section. In 
the same way as this work, a research line in data mining 
extends the semantics of associations to deal with uncer-

tainty and imprecision, including knowledge representation 
with generalized concepts and linguistic expressions 
(Novak et al. 2008).

The application of a soft-computing paradigm to video 
tracking and motion correspondence is much scarcer, 
outstanding the previous work by the authors (Garcia 
2002; Garcia et al. 2005), and application to image seg-

mentation in order to approximate conditional probability 
densities at pixel level (Cho et al. 2007). In this paper we 
present a robust method for visual data association based 
on the integration of visual information at several levels 
of granularity: low-level image segmentation operations,

medium-level smoothness criteria on target features and 
high-level constraints on tracking continuity. It is based 
on a rule-based system with fuzzy sets to represent the 
concepts at different levels, employing heuristic and 
geometrical reasoning in the tracking process. The 
approach presented extends previous system (Garcia et al. 
2005) to provide a complete and modular solution of the 
video association problem, formulated as the decision of 
the foreground image regions to update each active track 
independently of the subsequent specific t racker applied. 
With a Bayesian foundation of a data association algo-

rithm to maximize likelihoods, the proposed method 
integrates concepts at several levels to take the decisions 
of assigning the image regions corresponding to each 
object. The fundamental goal is to find a n e fficient solu-

tion to the association problem in the presence of splits 
and merges, one with robustness to find g ood solutions 
and avoid system instabilities. It avoids the combinatorial 
analysis of region subsets; every blob is compared to 
every track only once to compose the assigned synthetic 
regions. This allows a strict linear complexity, differing 
from most conventional approaches requiring an expo-

nential number of operations. The main contributions are 
highlighted below:

• The concepts proposed for the fuzzy model are 
appropriate for reasoning on video tracking, extending 
previous approaches applied to other sensors based only 
on point tracking, and on innovation residuals analo-

gous to the Mahalanobis distance (Cox 1993). The 
concepts are specifically c onsidered t o s olve t he split/

merge problems (the current challenge of video tracker 
in hoard conditions) in the most efficient w ay. The 
concepts proposed use structural information with a 
geometrical analysis of shape and size.

• The usual one-to-one constraints of other applications

of JPDA, NN or MHT are relaxed to take into account

the merging/splitting effects which appear in realistic

situations. The problem is dealt with at the uncon-

strained level, as the correspondence of multiple blobs

to multiple tracks considers multiple fragmented or

merged blobs to update each track. Groups of blobs

(pseudo blobs) are created by aggregation of confident

blobs, and assigned to update tracks.

• The result of fuzzy evaluation (confidence between

each blob-track pair) is used to make a composition of

foreground image regions and generate the final

synthetic segmented image to update the track. This

approach weights the measurements but, instead of

deriving a centroid, as in the usual, earlier PDAF

approaches, the geometrical analysis allows reasoning

with shape parameters considered as intermediate

concepts. The confidence level is used to update the
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track attributes, since they depend on the final group to

be associated to the track.

The multitarget situation is explicitly considered

through a concept which assesses the degree of conflict.

A conservative approach is used to block degradation

due to merging of data coming from different targets

through geometrical analysis. Differently from other

applications of fuzzy logic, the exponential effect on

the number of rules is avoided by limiting the conflict

analysis to the worst case of the most overlapped track.

Furthermore, the situation of track coalescence with

merging and occlusion is handled by limiting the

deformation of tracks through limitations in the sets of

blobs. This is a limitation equivalent to that of

hypotheses implying simultaneous groups of conflicting

blobs shared by different tracks. In those cases, the

regions to update the tracks are conditioned by prior

track shapes in order to avoid severe deformations and

loss of previous estimation (Mori et al. 2005).

The rest of paper is organized in six sections. Section 2
reviews the sensor data association problem and the fam-

ilies of approaches to solve it, highlighting the most rele-

vant soft-computing approaches applied before, such as

FDA. Section 3 presents the video data association prob-

lem using Bayesian formalism, and the terminology used.

Section 4 details the proposed algorithm for video data

association based on fuzzy region assignment (FRA),

including geometrical heuristics to represent the tracking

situations, the creation of stable regions to update the

tracks, and an overview of the algorithm complexity with

respect to classical approaches and to FDA. Section 5
contains the results of the performance of the proposed

algorithm in relation to well-known visual tracking algo-

rithms, and the conclusions are summarized in Sect. 6.

2 Sensor data association and soft-computing

approaches

The inference of the real state at a certain environment,

based on the information coming as sensor observations, is

usually addressed as an estimation problem. It consists in

estimating the number of objects in a scene, together with

their dynamic state (location, speed, attitude, size, etc.),

based on the available observations.

The Kalman filter is the most popular estimation tech-

nique to estimate the track state vector at frame k, com-

bining the information in the current observation with the

prediction from previous frame at k-1 with equations for

obtaining the optimal solution under linear-Gaussian

assumptions. However, the Kalman filter provides the

solution for the particular problem of single state vector

updated with a single measurement at each frame; that is, it
assumes that there is a single object in the environment and

it is the source of all measurements. The problem is that the

correspondences among observations and objects are

unknown; they must be estimated from the observed data.

For that reason, tracking multiple objects is a much more

difficult p roblem, i t d eals w ith a n u nknown n umber of

active objects as sources of measurements, and the statis-

tical model requires both continuous variables to describe

each target state and discrete variables to describe the

correspondences between objects and observations. The

multitarget tracking problem is divided into two problems:

data association and state estimation. Data association

decides the correspondences to pair objects and observa-

tions. Then, once the association is decided, one applies

Kalman filter to estimate each target’s state conditioned to
this decision. Figure 1 illustrates an example in which there

are four objects whose trajectories get so close that the

noisy measurements are mixed.

The families of algorithms for data association are

usually classified in two groups, algorithmic, and non-

algorithmic (Singh et al. 1997). Algorithm (or classic)

methods are further subdivided in two approaches, com-

binatorial (or non-Bayesian), based on nearest neighbor

with single-hypothesis techniques, and Bayesian tech-

niques, such as multiple-hypothesis tracking and joint

probabilistic data association. Non-algorithmic (approxi-

mate) methods include knowledge-based systems, fuzzy

logic and neural networks.

As mentioned, a powerful and general method is the

joint probabilistic data association filter, also including the

phases of data association and state estimation. Data

association assigns measurement to targets to prepare the

sensor measurement 

sensor error 

target 1 

target 2 

target 3 

target 4 

Fig. 1 Sensor data association with four trajectories
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state estimation phase. The basic characteristic of JPDAF is

the estimation of association probabilities, from the joint

likelihood functions corresponding to hypotheses associ-

ating observations to objects. Then, the update of target

states is computed with the weighs corresponding to the

JPDAF probabilities.

Soft-computing approaches to data association are

inspired in the human ability to reason by simultaneously

integrating information at different levels of abstraction.

Thus, non-algorithmic approaches such as artificial neural

networks, fuzzy systems and genetic algorithms can be

applied to data association problems, isolated or in con-

junction with classical formulations. Methods based on

fuzzy systems and artificial n eural n etworks h ave been

used to compute the association probabilities in JPDAF, to
take the best decisions in the association process in dif-

ferent conditions, accordingly to the characteristics of

objects and available sensors (Turkmen et al. 2004;

Sengupta et al. 1989; Chen et al. 2001). Genetic Algo-

rithms, with a recognized capability to address hard search

problems, have been previously applied in the data asso-

ciation problem in radar data processing by Angus et al.

(1993) and by Hillis (1997) to deal with the mono and

multiscan data association problems, respectively. The

authors have also proposed the use of evolutionary com-

putation in visual data association (Patricio 2008).

Neural networks have been applied to estimate the

association probabilities in JPDA filters (Sengupta et al.

1989; Turkmen et al. 2004; Zhu et al. 1994; Shams 1996),

representing the measured residuals between observation

and tracks as inputs for the network. These approaches

have proved capable of handling complex scenes with

radar data, although the implementations require a large

number of neurons and the preparation of large training

data sets to have a reliable system. The usual attributes are

based on the way humans perform visual grouping, using

principles such as proximity, common paths or directions,

similarity of shape, color, size, closure of boundaries and

continuation of contours and edges that extend smoothly.

For instance, Bogner et al. (1998) evaluate the association

of radar plots with Over Horizon Radar, a typical problem

in which propagation through different ionospheric layers

produces up to four replicas of plots forming repeated

tracks for the same target.

Fuzzy systems are one of the most outstanding non-

algorithmic approaches used in the data association prob-

lem, a general strategy called FDA. They provide

approximate solutions which are simple, robust and effi-

cient, joining high-level reasoning with numerical com-

putation. They have been applied mostly with radar

positioning and doppler measurements and fusion of radar

with other sensors such as infrared cameras (Singh et al.

1997, Chen and Huang 2000, Han et al. 2003, Gad et al.

2002; Ermin et al. 2000). In practically all cases, targets

and measurements are presented as ‘‘point-type’’ detec-

tions, representing the statistical behavior with multidi-

mensional Gaussian distribution. The fuzzy membership

function is used to characterize the degree of belonging to
the linguistic concepts with respect to the degree of asso-

ciation between each observation and track. Basically the

input variables in all cases are the residuals between esti-

mated position and velocity of centroids with respect to

measurements extracted from processed data. The level of

detail is given by the number of fuzzy linguistic elements,

which are as many as the desired granularity. The usual

application of fuzzy logic to data association has four basic

elements: (1) fuzzifzy numeric inputs into fuzzy variables,

(2) express a knowledge base containing a set of ‘‘IF

THEN’’ rules, (3) fuzzy inference which emulates expert

decision processes to generate output, and (4) defuzzify

fuzzy output variables into numeric variables. For instance,

Han et al. (2003) propose a number of fuzzy rules for data

fusion and convert the data into fuzzy sets with the values

{NB, NS, ZO, PS, PB} (negative big, negative small, zero,

positive small, and positive big). The output variables in

FDA are usually the degree of correlation between obser-

vations and tracks, so that the maximum values are sear-

ched for as solutions to the association problem. As an

alternative to rule-based fuzzy systems, Aziz et al. (1999,

2007) propose the application of fuzzy clustering means

(FCM) algorithm. Their iterative algorithm applies FCM

over an active set of measurements and tracks, identifies

the pairs with highest membership and removes them to

reduce the size of the problem for the next iteration until all

measurements are assigned to a track. However, applica-

tion of FCM to data association supposes, from our point of

view, renouncing to the ability to inject expert knowledge

to solve the problem. This is especially important when the

attributes have different magnitudes and heterogeneous

semantic meaning, and in the domain considered here,

which is that of visual tracking of image attributes where

the relationships between attributes and the target variable,

the association matrix, cannot be clearly identified.

As far as we know there are no extensions of fuzzy data

association algorithms to the video tracking problem, apart

from the previous work by authors (Garcia et al. 2005), and

application to image segmentation in order to approximate

conditional probability densities at pixel level (Cho et al.

2007). The extension for data association in the video

domain must cover the modeling of image attributes so that

the information can be injected through the likelihood

definition, p(Z|X), going further than the approaches based

on ‘‘point’’ residuals, the formulation with multiblob-to-

multitrack assignments (covering merging and splitting

situations), and an efficient solution to multitrack situations

avoids increasing the input space (among previous works
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only in (Gad et al. 2002) is the practical problem of

developing rules with a high number of targets considered).

3 Visual-data-association problem statement

In the case of video data association, the objective is

mainly the same as other multitarget tracking systems:

objects should be robustly tracked in time, even though the

image processing algorithms fail in some intervals to seg-

ment them as single foreground regions (blobs). Problems

with object segmentation often occur (Genovesio 2004;

Kumar et al. 2006): when another region occludes the

object (a fixed object in the scene or other moving object),

when the object image is split into fragments during image

segmentation, or when the images from different objects

get merged because of their closed or overlapped projec-

tion on the camera plane. Besides, extraneous elements in
the scene such as waving trees, smoke, clouds, etc., may

originate false detected regions interacting with the real

objects of interest but they should not degrade their con-

tinuity. A frequent problem with merged regions is to

correctly recover the original trajectories when the objects

‘‘reappear’’ after the time interval of occlusion (Tao 2002;

Haritaoglu et al. 1998, 2000).

Classical data association techniques, previously

explored in other fields o f s ensors a nd t arget tracking,

have been recently adopted and extended by computer

vision researchers. The JPDA filter has been applied to

3-D vision reconstruction (Chang 1991; Kan et al. 1996).

Cox and Hingorani (1996) proposed the first adaptation

of Reid’s MHT (Reid 1979) to visual data association

problems, although objects are simplified t o points

without considering the split/merge problem. Medioni

et al. (2001) proposed an approach based on graph theory

for tracking multiple targets which was similar to Reid’s

MHT. Their algorithm considered splits only, and they

used gray level correlation between objects and seg-

mented blobs to detect and handle splits. Other methods

based on graphs for data association have been proposed

by Chen et al. (2001), but using a one-to-one assumption.

In recent approaches (Khan et al. 2005; Liu et al. 2009,

Cai et al. 2006), a Markov Chain Monte Carlo (MCMC)

strategy is applied to explore the data association space

in order to estimate the MAP joint distribution of

multiple targets by means of a MCMC method. Other

recent approaches (Fleuret 2008) are based on discretized

occupancy maps in the real world onto which the objects

are projected. The association and estimation are solved

through the computation probabilities of occupancies

for the sequence of discretized locations of objects in

the discrete space, making use of Hidden Markov

Models.

The visual tracking problem consists in the estimation of

the number of objects in a scene, together with their

instantaneous location, cinematic state and additional

attributes (size, shape, color, identification, etc.). In this

sense, environment E is defined for each time instant t[k] as

a set of N[k] objects, E[k] = {O1[k],…, ON[k][k]}, where

each object is defined by a set of characteristics in this

instant. The description of the objects is expressed in a

vector state space, �xi 2 <d For instance a common simpli-

fied representation of objects in a 2D camera plane contains

the position of a centroid object, together with bounds

(width and length) and their velocity and scale derivatives:

�xi ¼ ½ xi yi wxi wyi _xi _yi _wxi _wy i�
t ð1Þ

The image preprocessing step acquires characteristics of

the objects disturbed by the measurement process. In this

work we will consider the preprocessing phase to be the

background subtraction and thresholding to detect moving

objects in monocular images (Stauffer and Grimson 1999;

Fleuret 2008). After these processes we have a binary

image where a detected object is observed through a set of

compact regions (blobs), formed by adjacent binary

detected pixels in this instant:

Zi½k� ¼ fbi
1½k�; . . .; bi

Mi ½k�g ð2Þ

where Mi is the number of blobs that are due to the i-th

object. The problem is that both N[k] and superscript i are

hidden so they must be estimated from the observed data.

The only observable amount is the global set of blobs

appearing in the whole foreground image: Z[k] =

{b1[k],…bM[k][k]}. Thus, the basic problem in video data

association is the re-connection of blobs and assignments

to update the tracks, searching the subsets of blobs corre-

sponding to each track �xi½k�; Zi½k�:
A Bayesian framework to determine the best estimation,

X[k], inferred from available measurements, Z[k], is the one

targeted at obtaining the maximum a posteriori probability

of the estimated state, conditioned to the whole set of

observations:

X̂½k� ¼ arg max

X½k� PðX½k�jZ½k�;Z½k � 1�; . . .; Z½0�Þ ð3Þ

where X̂½k� denotes both the number of targets and their

state in the scene at time instant t[k], X̂½k� ¼ x̂1...Nk

½k� ¼ fx̂1½k�; . . .; x̂Nk
½k�g, where x̂i½k� 2 <d, in our case

d = 8 as indicated above.

The classical inference formulation applies Bayes’ the-

orem to rearrange the problem in a recursive formulation:

PðX½k�jZ½k�; Z½k � 1�; . . .; Z½0�Þ ¼
1

c
PðZ½k�jX½k�Þ

Z
PðX½k�jX½k � 1�Þ½

PðX½k � 1�jZ½k � 1�; . . .; Z½0�Þ�dX½k � 1�

ð4Þ
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where the integral in the joint problem would extend over

the whole space of the predicted state, P(X[k]|X[k - 1])

and c is the normalization constant to guarantee that the

result is a probability density. In this formulation, and

dropping the time index for simplicity, P(Z|X) is the like-

lihood function, i.e. the probability of observing a partic-

ular image Z given a certain current state X. As mentioned

above, in our case we particularize the observation process

to the analysis of the binarized image resulting from the

background subtraction and thresholding, Z[k] = {b1[k],…,

bMk[k]}.

The association problem can be considered as part of the

maximization of the a posteriori likelihood of observations,

considering the sequential series of data assignments:

PðZ½k�jX½k�Þ ¼ PðZ½k�jA½k�; Z½k� 1�;A½k � 1�; Z½k
� 2�; . . .;A½0�; Z½0�Þ ð5Þ

where the assignment matrix A½k� ¼ aij½k�
� �

is defined as

aij[k] = 1 if blob bi[k] is assigned to track x̂j½k�; and

aij[k] = 0 otherwise. In the k-th frame there are M[k] blobs

extracted to be assigned, b[k] = {b1[k],…, bMk[k]}, and the

objects tracked up to them (the last assignment of blobs

was at frame k - 1) are: X[k - 1] = {O1[k - 1],…,

ONk - 1[k - 1]}.

Classical combinatorial methods are characterized by

hard associations of measurements to tracks, based on a

certain cost criterion, and then tracking propagates the

decisions taken at every instant as if they were right:

maximize
A½k� f ðA½k�Þ ¼ PðZ½k�jA½k�; Z½k � 1�;A½k � 1�; Z½k

� 2�; . . .;A½0�; b½0�Þ
ð6Þ

So, the optimal estimation under this formulation is

equivalent to finding the sequence of association matrices

to correspond observations and tracks to apply estimation

algorithms. However, this joint optimization of the whole

sequence of association matrices is not possible, its

complexity increases at an exponential rate with time. A

practical approach (single-hypothesis optimization) is the

sequential optimization of association decisions, where

decision at frame k - 1 is propagated for time k, and the

search space reduces to the size of matrix A[k] for each

processed frame. The association decision at time k, A[k],

is computed to maximize the likelihood of current

detections, conditioned on the given chain of previous

assignments, A[k - 1], A[k - 2],…, A[0]. This likelihood

of current observations conditioned on all previous

assignments, A[m], m = 0,…, k - 1, can be recursively

defined with previous tracking states, x̂j½k � 1�; j ¼
1; . . .;N½k � 1�. Thus, the previous expression can be

approximated by:

maximize

A½k� f ðA½k�Þ � PðZ½k]jA½k�; x̂1;...;Nk�1 ½k � 1�Þ ð7Þ

with x̂1;...;N½k�1� ½k � 1� ¼ fx̂1½k � 1�; . . .; x̂N½k�1�½k � 1�g and

x̂i½k � 1� 2 <d. These vectors, containing state information

on objects, are recursively updated with the sequence of

assigned observations, using motion and observation

models, by means of a Kalman filter, and predicted to the

k-th frame of current observations.

In order to reduce the search space for the assignment

matrix A[k], a gating criterion is usually defined, discarding

in this way the farthest pairs of tracks and measurements:

X½k� ¼
x11½k� � � � x1n½k�

..

. . .
. ..

.

xm1½k� � � � xmn½k�

2
64

3
75, being xij½k� ¼ 1 if dis-

tance (att(bi[k]), x̂j½k�) \=Th.

Then, after the gating phase we can identify a set of

measurements compatible with each track, those which

could potentially be assigned to track x̂j under any

hypothesis: Wj ¼
S

i2f1;...;M½k�g
fbi½k�jxij½k� ¼ 1g

After this gating process, represented by matrix X, the

association problem could be defined as the search for the

optimal assignation of measurements to tracks, bounded by

these conditions. X can be considered as a set of constraints

over the hypotheses such that all hypotheses in the search

space must satisfy aij�xij: The set of blobs finally

assigned for each track x̂j½k� is defined as:

Zj ¼
[

i2f1;...;M½k�g
fbi½k�jaij½k� ¼ 1g ð8Þ

so that Zj � Wj. A general combinatorial algorithm for 
video data association and tracking can be formalized with 
the steps indicated in Fig. 2:

In classical data association problems, a typical con-

straint is the one-to-one assignment: each observation

comes from at least one object, and each object produces a

maximum of one observation:

XM½k�
i¼1

aij½k� � 1;
XN½k�
j¼1

aij½k� � 1 ð9Þ

This one-to-one correspondence between observations and 
objects is due to the conditions of traditional wide-area, low-

resolution sensors such as radar. This limitation was sys-

tematically assumed in the first applications to visual data 
association (Cox 1993; Cox et al. 1995), but it can be too 
restrictive for video processing under situations of occlu-

sions and image splitting. Recent approaches have identified 
the problem and proposed the extension of previous algo-

rithms to take into account the splitting/merging effects for 
visual data association (Kumar et al. 2006; Genovesio and 
Olivo-Marin 2004; Liu et al. 2009; Rasmussen et al. 2001;
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Sheikh et al. 2008). The detected blobs corresponding to 
each target must be re-connected before they are used to 
update each track (Genovesio 2004).

In any case, one of the keys for jointly tracking multiple

objects is forcing exclusion constraints to avoid several

tracks being coalesced into the same observations. In the

case of multiple objects which may overlap, the likelihood

of the image cannot be simply decomposed in the likeli-

hoods of each individual object; instead, a joint likelihood

of the whole image, given all objects, needs to be con-

structed. In this way, the JPDA enumerates the association

alternatives in order to first mark and remove those with

several tracks merged with common measurements. Then,

as a probabilistic solution, JPDA keeps the ‘‘average

hypothesis,’’ weighting all feasible hypotheses remaining

after the discarding process (this is the big difference with

respect to simple PDA which simply weights all hypothe-

ses). In a more complex parallel process, the MHT matches

a variable number of extracted points with tracks, allowing

for assignments, missed observations (not-updated tracks)

and false observations (discarded measurements), keeping

in memory alternative hypotheses, each one containing a

collection of tracks updated with mutually exclusive sets of

measurements.

The main problem with combinatorial association 
techniques, even with the most efficient ones such as MHT 
or JPDA, is the exponential increase in computation 
resources as the complexity of situation increases, even 
more if the one-to-one constraint is removed. Moreover, 
the constraints on assignment decisions are sometimes 
insufficient t o a void f ailures w ith p ersistent c omplex situ-

ations such as long occlusions, noise from active objects, 
large shadows, etc., and a higher-level reasoning dealing 
explicitly with occlusion or other contextualized events 
needs to be included to avoid tracking failures (Malik and 
Russell 1996; S ´a nchez et al. 2008). This is the main 
reason why the soft-computing techniques mentioned in 
Sect. 2 are appropriate for dealing with these types of 
problems

and compute the association likelihood avoiding combi-

natorial analysis. Another interesting aspect is the com-

putation of the likelihood function PðZ½k]jA½k�; x̂1;...;Nk�1

½k � 1�Þ. Most previous approaches have been based on

statistical distances between centroids of the region of

interest, but in the case of video a more complex analysis

could be carried out to integrate more available information

such as size, shape or orientation. In this work some heu-

ristics are defined to represent geometrical conditions of

data association and a fuzzy rule system is proposed to

represent the relationships within this heuristic using the

assignment matrix.

4 Proposed algorithm for video data

association: fuzzy region assignment

In this section we present our proposal for visual data

association. It is an extension of previous methodology

defined by FDA, considering the specific problems

appearing in video data, and the requirements to provide a

competitive alternative which is efficient and strictly linear

in resources in order to work in real time. The basic input

information are the detected regions (blobs in the binary

foreground image) so a geometric reasoning is used for

data association. The traditional one-to-one constraint is

removed, allowing multiple regions to be associated to

multiple tracks, with the ability to deal with the usual split

and merge situations in video scenarios, thus extending

conventional approaches based on simplified point or

centroid representation of targets.

The input variables are several attributes proposed to

define the rules for fuzzy assignment. They are heuristics

which allow the appropriate semantic granularity in the

reasoning process, using simultaneously low and high-level

information. Then, the output variable (confidence level) is

used to compose a synthesized measurement (pseudoblob)

which is finally assigned to the track. This composition

1. Gating phase. Compute matrix ]k[N,1j],k[M,1i]};k[{]k[ ij ==ω=Ω

1.1. 1]k[ij =ω  if Th])k[x̂],k[b(att(distance ji ≤ ) ; otherwise 0]k[ij =ω

2. Assignment phase. Search for the optimum subset of blobs to be assigned for each track
2.1. Search matrix A [k] to optimize maximize likelihood (for all N predicted tracks)

])1k[x̂],k[A|[k]Z(P

]k[A

axmarg]k[A 1kN,...,1 −= −

2.2. For each predicted track ]}k[N,1{j],1k|k[x̂ j ∈−

2.2.1. Group assigned blobs:  }1]k[a|]k[b{Z iji
]}k[M,,1{i

j ==
∈

2.2.2. Update ]1k|k[x̂ j −  with attributes extracted from jZ  to estimate ]k|k[x̂ j

2.2.3. Predict for next iteration: ]k|1k[x̂ j +

Fig. 2 General Data

Association and Tracking

Algorithm
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allows again the integration of low-level information

(detected regions) with high-level tracks in order to avoid

the instability or degradation of tracks through the com-

posed measurement. This is equivalent to the joint multi-

target analysis performed in classical combinatorial

systems, but also allows the definition of rules by analyzing

the causes of observations: dynamic and static occlusions,

presence of maneuvers, changes of shape/orientation, etc.

As mentioned before, even an exhaustive combinatorial

search may not be enough to guarantee that merging situ-

ations with conflicting tracks are dealt with appropriately,

since additional elements are needed: a higher-level rea-

soning process and use of additional information, not nat-

urally included in a pure Bayesian framework working

with observations, estimates, priors and likelihoods.

5 Video tracking based on segmented regions (blobs)

The detected regions are represented, as in other typical

approaches, with a rectangular box, b½k� ¼ x½k�; y½k�;½
wx½k�;wy½k��t, while the tracks contain this estimated

information and its time derivatives for the targets,

extrapolated from last update (T seconds) by means of a

first-order approximation:

x̂j½kjk � 1�
ŷj½kjk � 1�

ŵxj½kjk � 1�
ŵyj½kjk � 1�
_̂xj½kjk � 1�
_̂yj½kjk � 1�
_̂wxj½kjk � 1�
_̂wyj½kjk � 1�

2
66666666666664

3
77777777777775

¼

1 0 0 0 T 0 0 0

0 1 0 0 0 T 0 0

0 0 1 0 1 0 T 0

0 0 0 1 0 1 0 T

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

2
6666666666664

3
7777777777775

x̂j½k � 1jk � 1�
ŷj½k � 1jk � 1�

ŵxj½k � 1jk � 1�
ŵyj½k � 1jk � 1�
_̂xj½k � 1jk � 1�
_̂yj½k � 1jk � 1�
_̂wxj½k � 1jk � 1�
_̂wyj½k � 1jk � 1�

2
66666666666664

3
77777777777775

þ

0:5T2

0:5T2

0

0

T

T

0

0

2
6666666666664

3
7777777777775

nm½k� þ

0

0

0:5T2

0:5T2

0

0

T

T

2
6666666666664

3
7777777777775

ns½k�

ð10Þ

Notation ‘‘k|k - 1’’ represents prediction (estimation at

time k conditioned on observations up to time k-1), and

‘‘k|k’’ is filtering (estimation at time k conditioned on

observations up to time k). Variables nm[k] ns[k] are plant-

noise processes considered in the estimation algorithm,

such as a Kalman Filter. The observation model relating

measurements with vector states is xmj½k� ymj½k�½

wxmj½k�wymj½k��t ¼ hðx̂ j½k�Þ ¼ att Zj

� �
: These attributes are

computed from Zj, defined as the set of blobs associated to

j-th track, Zj ¼
S

i2f1;...;M½k�g
fbi½k�jaij½k� ¼ 1g. Thus, the

result of association is directly used in the measurement

process of the estimation algorithm to update the track

states corresponding to each object.

6 Input heuristics

The fuzzy system integrates different heuristics computed

from gated blobs and target tracks to compute ‘‘confidence

levels’’ that are used to weight each gated blob’s contri-

bution to update the target track and its rectangular

dimensions. The heuristics proposed to represent the situ-

ation for every blob are presented now, extracted from

geometric analysis of blobs and predicted tracks. All of

them consider the evaluation of a particular blob bi

potentially assigned to a particular track x̂j :

• Overlap: this heuristic evaluates the fact than the object

originating the detected region is the same as the one

represented by the (predicted) track x̂j. It is defined as:

Overlapðx̂j; biÞ ¼
Areaðx̂j \ biÞ

minfAreaðx̂jÞ;AreaðbiÞg
ð11Þ

Its geometrical meaning is illustrated in Fig. 3. It is

always in the interval [0,1]. The denominator to nor-

malize is the minimum of areas so that the maximum

value is obtained when same blob and tracks are the

same object, both in the situation of splitting,

AreaðbiÞ\Areaðx̂jÞ; where the blob is included in the

track, and the situation of merging, Areaðx̂jÞ\AreaðbiÞ;
where the track is contained within the blob.

• Deformation. This heuristic evaluates the deformation

of the track when updated by the blob, thus, it assesses

the possibility of the blob containing sources which are

extraneous to the real object. The assimilation of blob

to track would define a new area contained by the union

predicted track 

overlap 0% overlap 100% overlap 50% 

blobs 

Fig. 3 Overlapping degree heuristic
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of both boxes, and the deformation is the difference of

the new bound with respect to track bounds (see

Fig. 4). It is computed by adding the deformation in the

horizontal and vertical axis:

Deformðx̂j; biÞ ¼
Lengthðx̂j [ biÞ � Lengthðx̂iÞ

Lengthðx̂jÞ

þWidthðx̂j [ bjÞ �Widthðx̂jÞ
Widthðx̂jÞ

ð12Þ

Deformation is in the range ½0;1Þ: It is easy to check

that the deformation is zero if and only if the overlap is

maximum, 100%

• Density: this heuristic evaluates whether the area

defined b y t he u nion o f b lob a nd t rack c omprises a
motion area, through the ratio of detected regions to the

total area. Analogously to previous variables, it

assesses the presence of extraneous sources to the

track, but this time directly through the detected image.

Taking I(x,y) as the binary foreground image (see

Fig. 5), its value is computed as:

Densityðx̂j; biÞ ¼

P
x;y2ðx̂j[biÞ

Iðx; yÞ

Areaðx̂j [ biÞ
ð13Þ

• Conflict: this component evaluates the situation of the

blob being in conflict with other tracks (see Fig. 6). This

problem appears when target trajectories are so close

that track gates overlap and share the blob. The

evaluation of blob conflict degree is done through the

overlapping with the other existing tracks. In the case

that more than one track is in conflict, the maximum

overlapping degree is selected.

Conflictðx̂j;biÞ ¼ max

k 2 f1; . . .Ng;k 6¼ j
Ovðx̂k;biÞ ð14Þ

Thus, the number of evaluations is constant, proportional to

the product of tracks and blobs, since the conflict variable

is evaluated only once for each pair, independently of the

number of tracks involved in the conflict.

7 Synthesis of state-update regions

The heuristics presented above provide input information

to describe the situation and compute the correlation level

of the i-th blob with respect to the j-th track, ljðbiÞ. They

are computed for the set of blobs gated by the j-th track a

time k, Wj: Wj ¼
S

i2f1;...;M½k�g
fbi½k�jxij½k� ¼ 1g:

The FRA method analyzes the situation represented by

the four heuristics and computes the output to build a syn-

thetic region, the pseudoblob, which contains the union of

regions finally assigned to update each track, each one with

an impact according to its reliability. The resulting update is

not a direct weight of positions (centroids) like other pre-

vious approaches, because the structural information about

target size and shape would be missed, and the track sta-

bility must be kept in complex situations. The resulting

confidence output is used to define the group envelop, with a

soft gradation between ‘‘reliable’’ conditions and ‘‘non-

reliable’’ (due to conflict, noise, clutter, etc.), with special

emphasis in avoiding corruption by multitarget merging.

The criterion to use the confidence level of every blob to

update every track is: a blob with maximum confidence, 1,

will directly update the track, while a blob with minimum

confidence, 0, updates the track only with its intersection, if

the intersection is not null. In any other case of confidence

level, ljðbiÞ the area assigned to the track is an interme-

diate region between the two extreme cases. The advantage

of this fuzzy assignment scheme is twofold:

predicted track 

Vertical def: 
20%

Horizontal def: 50%

blob 

Union of 
blob and 
track areas

Fig. 4 Deformation degree heuristic

predicted track

Density (union): 8%  

Union of blob 
and track areas 

Original density: 20% 

blob 

Fig. 5 Group density after blob re-connection

Track 1

Track 2

blob in conflict

conflict-free
blobs

Fig. 6 Blob in assignment conflict with two tracks
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• All the interaction with the tracker is done at this level

so the assignment can be combined with any estimation

algorithm for tracking. For instance, in the case of zero-

confidence, the track is extrapolated, but updated only

with the overlapped area of detected regions.

• Each blob can be treated individually independently of

the rest, avoiding the combinatorial problem of ana-

lyzing sets of blobs. Finally, the union of all computed

regions is used to update the track.

Figure 7 illustrates the process with a single assigned

blob and different values of confidence level.

Only when the confidence is maximum (l = 1) is the

total area of the blob used to update the track. Otherwise,

the area is reduced to the minimum case, consisting in the

intersection between blob and track, x̂j \ bi: The expression

to indicate this operation is:

b
xj

i ½k� ¼ l bi½k� þ ð1� lÞ x̂j \ bi½k�
� �

ð15Þ

If the parameters to estimate shape are simply the

position and enclosing box (x, y, wx, wy), the previous

operation is applied to the four parameters to compute the

assigned region to update the track. In the case that the

overlap is null, no contribution at all is assigned and

the track is kept unassigned. Notice that this scheme

allows the spatial properties of objects to be maintained

while the conflict l asts, t he o verlap b etween t he merged

area and predicted track is kept, and there is no loss since

the assignments are kept within the area with overlap.

Our region assignment proposal avoids complex inter-

dependencies with the estimation phase, since it is only

concerned with solving the association, with the gradation

between track overlap (confidence z ero) a nd total

confidence, a nd t otal a ssignment. T hen, t he s et of

assigned blobs, with their corresponding confidences, is
joined to form the synthesized pseudoblob finally used to

update the track, as indicated in Fig. 8.

8 Algorithm overview and complexity analysis

Finally, the information variables expressed with the heu-

ristics extracted from image operations are combined to

define the appropriate actions, applying high- and low-level

knowledge. The aggregation allows a soft approximation to
the likelihood function which at the same time considers

intuitive closeness criteria and exclusion constraints,

equivalent to those defined with hard decisions, in order to
track continuity. The algorithm for fuzzy region assign-

ment is formalized in Fig. 9:

So, the input–output relationships are not computed with

analytical or statistical formula, but through a set of rules

used to synthesize the appropriate output for each situation.

The general idea is that the result of fuzzy assignment

contains the proper action to take under a set of particular

extreme conditions to guarantee track continuity. An

example is:

IF overlap IS <LOW> AND deformation IS

<MEDIUM> THEN confidence is <MEDIUM> IF

conflict IS NOT <LOW> THEN confidence IS

<ZERO>

The system has been built based on the analyzed behavior

of the tracking system observing the defined input and

output variables, using human expertise and adjustments

done by direct inspection and available input–output data.

The heuristics proposed present the input variables with

linguistic labels (small, medium, big), identifying the

regions in which the universe of discourse is partitioned to

build the approximated relationship among the variables.

predicted track 

blob 

Assigned 
Region:

Fig. 7 Calculus of assigned region (single blob)

predicted track 

μ=0.8

μ=1

μ=1

μ=0

μ=1

μ=0.9

Tracks and  
Blob confidences

μ=0.8

Assigned 
Regions:

μ=1

μ=1

μ=0

μ=1

μ=0.9

Fig. 8 Calculus of assigned regions (multiple blobs)
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The starting point was the set of heuristic rules applied in

order to allow a general-purpose tracker to work with

visual data.

The modeling of knowledge may be done in different

ways depending on the type of information available. There

are systems that have available plenty of both data input

and outputs, as there is a historical data scenario. In this

situation, using automatic learning techniques, the system

can be modeled and adjusted, in a similar way as the works

based on neural networks (Zhu 1994) or neurofuzzy sys-

tems (Turkmen et al. 2004) to approximate the assignment

probabilities. There are other situations in which these data

are not available or are very partial. For example, cases

involving big risks are very rare (such as nuclear accidents,

air crashes,…). In this situation, the application of auto-

matic learning techniques fail because it is difficult to
establish patterns or correlations that model the abnormal

regime, and the system must be modeled only with the

relationship that experts of the problem can establish.

The determination of the fuzzy membership function is

crucial when applying a fuzzy system to a certain problem.

There is not a general method available to take this deci-

sion, but membership functions are determined in many

cases manually. The grade of membership of the linguistic

variables is the key element in reasoning, and they are

developed following diverse criteria depending on the

application (heuristic determination, theoretical analysis,

model of human concepts, etc.). In the case of sensor-based

multitarget tracking, these techniques usually apply statis-

tical inputs so that the membership function estimation can

be based on statistical analysis such as the possibility/

probability principle developed by Singh et al. for optimal

membership generation in sensor data processing (Singh

et al. 1997). Other authors, such as (Aziz et al. 1999)

propose the use of fuzzy clustering methods to avoid the

development of rules, although from our point of view this

means disregarding useful knowledge to solve the problem.

Besides the process of fuzzy partitioning of input heu-

ristic and building the rules with expert knowledge, the

authors have also extended the methodology to include

optimization of rules and sets with NEFCLASS (Garcia

et al. 2005). Usually the transformation of human knowl-

edge into the fuzzy system is a first approximation whose

parameters can be determined optimally with a learning

process. However, results in (Garcia et al. 2005) showed

the advantage was moderate in comparison with the per-

formance observed with the initial system.

The fuzzy inference system is sketched in Fig. 10, and

analyzed with the MATLAB fuzzy logic toolbox. In

Fig. 11 we can see the membership functions for the input

and output variables. The four input variables have three

linguistic labels, whose fuzzy sets are specified a s usual

with trapezoidal membership functions. The case of the

output variable, confidence, i s m ore p eculiar. T he partic-

ular case of confidence NULL is considered, with singleton

for this subset, in order to avoid sudden degradation of

tracks at the moment when two tracks are mixed, since

even a small contamination of a track with regions from

another one ends in the merging effect.

With respect to algorithm complexity, we can compare

the cost of a general data association algorithm (pseudo-

code in Fig. 2) based on hypotheses enumeration with the

proposed FRA algorithm. In the general association pro-

cess, considering a situation at time k in which we have M

1. Gating phase. Compute matrix ]k[N,1j],k[M,1i]};k[{]k[ ij ==ω=Ω

1.1. 1]k[ij =ω  if Th])k[x̂],k[b(att(distance ji ≤ ) ; otherwise 0]k[ij =ω

2. Assignment phase. Compute the assigned region for each track
2.1. For each predicted track ]}k[N,1{j],1k|k[x̂ j ∈−

2.1.1. ∅=updateb

2.1.2. For each overlapped blob ]k[bi in }bx̂1]k[|]k[b{W~ ijijij ∅≠∩∧=ω=
2.1.2.1. )b,x̂(OverlapOv ij=
2.1.2.2. )b,x̂(DeformationDf ij=

2.1.2.3. )b,x̂(DensityDe ij=

2.1.2.4. )b,x̂(ConflictCf ij=

2.1.2.5. )Cf,De,Df,Ov(FIS)b( ij =μ

2.1.2.6. ( )]k[bx̂))b(1(]k[b)b(]k[b ijijiij
x
i

j ∩μ−+μ=

2.1.2.7. ]k[bbb jx
iupdateupdate ∪=

2.1.3. Update ]1k|k[x̂ j −  with updateb  to estimate ]k|k[x̂ j

2.1.4. Predict for next iteration: ]k|1k[x̂ j +

Fig. 9 Fuzzy Region

Assignment Algorithm
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blobs to be assigned to N tracks in the assignment matrix

aij [k], we would have to enumerate all hypotheses in this

search space of binary variables.

With the constraints of one-to-one assignment (Eq. 9),

each observation comes, at least from one object, and each

object produces, at maximum one observation), the number

of possible assignments of M measurements to N tracks is
given by:

None�to�one
H ¼ maxðN þ 1;MÞ!

N þ 1�Mj j! ð16Þ

where 1 is added to N[k] because of the possibility of

labeling each blob as not belong to any track, ‘‘null track,’’

x̂0. However, in video applications this condition is not

realistic, it seems much more reasonable to drop the first

constraint and allow that multiple blobs can be assigned to

the same track (split effect of bad segmentation). In this

case, and keeping the first constraint that every blob only

can be assigned to one track (considering the null track for

extraneous sources), the size of search space is increased

to:

Nmany�to�one
H ¼ ð1þ NÞM ð17Þ

Finally, in the case that occlusions and overlap appear

and are considered in association, the merging effect could

result in the same blob being assigned to more than one

tracks (opening the problem of dividing it). In this case, the

more general, the assignment matrix has not any constraint

and the size of search space is the total number of

combinations form binary matrix A (extended again with

the null track):

N
many�to�many
H ¼ 2ð1þNÞM ð18Þ

This last is the most general case, it means a total search

of potential combinations of values in the binary matrix A.

The graphical representation of the search is in Fig. 12, i t

would directly consider the assignment matrix, containing

N(1 ? M) bits:

Classical algorithms which enumerate hypotheses to

compute the optimum, such as MHT of JPDA, suffer from

this exponential complexity on the number of objects,

although it is usually bounded by a maximum number of

hypotheses searched. The use of evolutionary algorithms in
association (Angus et al. 1993) (Patricio 2008) allows a

more efficient s earch i n t he a ssignment s pace, a nd i t is
usual also the definition o f a  m aximum n umber o f evalu-

ations. Finally, suboptimal approaches which assign indi-

vidually the closest observation to each track, such as

Nearest Neighbor, or group first the image regions with a

connected components analysis (Silva 2005) allow a linear

dependence on the problem but are more vulnerable to

failures under complex situations.

If we turn to the general FDA algorithm, with respect to

the number of evaluated rules in a general case, if there are

L input attributes, n1; . . .; nL, for each k-th attribute with

fuzzy domain of labels fL1; . . .; LNk
g, the total number of

rules is:

NRules ¼
YL

k¼1

Nk ð19Þ

In the example of (Singh et al. 1997) to correlate

observations to objects in a situation of available data for

position and speed, the input attributes for the fuzzy data

association are Position Error (PE) and Speed Error (SE),

defined as residuals between the measured values in radar

plots and the estimated attributes of targets. They compare

two examples: first, a  s ingle m aneuvering t arget; and

second, a situation of two targets crossing themselves at a
short distance.

In the first case, there are two input variables, PE and

SE, taking values on five linguistic labels (Negative big,

Negative small, Zero, Positive small, Positive big), and one

output variable, correlation, with three linguistic variables

(Low, Medium, High). Examples of rules are:

IF PE IS <NB> AND SE IS <PS> THEN

Correlation is <MED>

where labels NB, PS and MED are linguistic labels with

associated fuzzy sets which are previously defined. The

total number of rules in this case is 5 9 5 = 25, corre-

sponding to all combinations of input attributes, and the

authors implement a system with the 25 rules. However,

the second example, with only two targets and two

observations, implies a much more complex situation. In

this case, we have four independent measurements for the

Fig. 10 Structure of the fuzzy inference system

1856 J. Garcia et al.
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two target positions and speeds, resulting in eight evaluated

errors forming the association cost matrices: {PE11, PE12,

PE21, PE22}, {SE11, SE12, SE21, SE22}. In this case, we

have a fuzzy inference system with eight input attributes

and four output variables: {Corr11, Corr12, Corr21, Corr22} 
where Corrij is the degree of matching between the i-th 
observation to the j-th track. Authors of (Singh et al. 1997)

explain that although it seems the number of rules also

increases exponentially with the size of problem, as in

classic combinatorial techniques, fuzzy techniques are very

flexible w hen i t c omes t o c reating r ules, w ith o ptions to
reduce the rule base or include fewer terms where

imprecision can be tolerated.

On the other hand, FRA complexity shows a strict linear

dependence on the problem size (number of blobs and

tracks), with a constant number of evaluations per pair. It

computes the input heuristics for all pairs in the assignment

matrix, M 9 N, and uses them to determine the update

confidence through the fuzzy system. This linear

Fig. 11 Membership functions

for input and output variables

b1

b2

b3

b4

bM

T0     T1     T2    T3 TN

tracks 

blobs 

Combinations: M(1+N) bits 

Fig. 12 Direct search space for data association matrix A
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dependence allows scalability to track a large number of

objects in real time, no combinatorial analysis is done to

build the sets of blobs with respect to set of tracks. Even for

a conflict situation, where more than one track is in conflict

with a set of blobs, the maximum operator is used to

compute the conflict heuristic (Eq. 14), and it is not

required the evaluation of different combinations of tracks

and blobs (equivalent in complexity to enumerate alterna-

tive association hypotheses). The conflict d egree is
obtained from the overlap heuristic computed for every

pair.

In the specific c ase d eveloped, t here a re f our input

variables with three linguistic values, so the number of

rules is 34 = 81 rules, which are evaluated for the 
N 9 M blob-track pairs. This overcomes the typical limi-

tation of FDA pointed out by other authors (Aziz et al.

2007; Singh et al. 1997) given by the exponential increase

in the number of rules generated to cover a dense target

environment. FRA uses the typical input space partitioning

by antecedents of rules. But the strict limitation to

N 9 M evaluations is another clear advantage with respect

to other FDA approaches generating rules for all combi-

nations of all blobs and track attributes in the association

matrix.

9 Experimental results

In this section, we present a performance analysis and a

comparison of the proposed fuzzy region assignment

algorithm (FRA) described in previous sections with

respect to other well-known real-time tracking multiple

video targets, among them:

Particle Filtering algorithm (PF) is one of the most

powerful algorithms in visual tracking (Isard 1998;

Arulampalam et al. 2002; Ristic et al. 2004; P ´e rez et

al. 2004; Xu and Li 2005; Loza et al. 2008) and relies

on sample-based reconstruction of probability

density functions of tracks.

A combinatorial data association method (Patricio

2008), which can be characterized as a ‘‘hard’’ asso-

ciation of the sequence of measurements to all tracks,

based on certain cost criterion, processing the update

stage. In our case, we have implemented an algorithm

from the Estimation Distribution Algorithms (EDAs)

family, specifically the Univariate Marginal Distribu-

tion Algorithm (UMDA) (Mu¨hlenbein 1997).

A Connected Components (CC) tracking algorithm

(Silva 2005), which uses a nearest neighbor strategy to
determine the blob-to-track assignment.

The system described in this work has been imple-

mented in Microsoft Visual C??, based on the ‘‘visual

surveillance’’ algorithms incorporated in the Open Source

Computer Vision Library (OpenCV). The system was tes-

ted on a DELL PE1950 Quad-Core Xeon E5310 1.6 GHz/

2 9 4 MB 1066FSB.

The OpenCV ‘‘visual surveillance’’ algorithms use the

pipeline structure depicted in Fig. 13. The input data for

the pipeline is the image of current frame and the output

data is the information on track position and size. The ‘‘FG/

BG Detection’’ module performs foreground/background

segmentation for each pixel; the ‘‘Blob Entering Detec-

tion’’ module uses the result of the ‘‘FG/BG Detection’’

module to detect new blob objects which entered the scene

in each frame; and the ‘‘Blob Tracking’’ module is ini-

tialized by the ‘‘Blob Entering Detection’’ results and it

tracks each newly entered blob. This pipeline structure

allows us to exchange easily the four different algorithms

described above for the ‘‘Blob Tracking’’ module, and to

maintain the same execution conditions, i.e. using the same

‘‘FG/BG Detection’’ and ‘‘Blob Entering Detection’’

modules. All the tracking methods are initialised by the

automatically detected blobs, however, some crucial

parameters, such as a number of particles (N = 100) and

the covariance of the random walk model for the PF, had to
be predetermined manually for a wide range of video

sequences. We have fixed t he s ame ‘‘FG/BG Detection’’

module for every test that we have carried out. The selected

module was the OpenCV implementation of the adaptive

background mixture models for real-time tracking (Stauffer

1999).

The performance of the four algorithms was evaluated

with two well-known datasets:

1. The Performance Evaluation of Tracking and Surveil-

lance (PETS) dataset (PETS 2002). Among numerous

scenarios available through PETS, we have chosen a

minute-long sequence from the PETS2002 workshop,

where the underlying task was to track pedestrians in

indoor video sequences of a shopping mall. The

sequence contains multiple closely-spaced objects

Fig. 13 The OpenCV ‘visual surveillance’ algorithms

Table 1 Quality measures of the algorithms applied to PETS2002

mean TPF std TPF LTP FPS

FRA 1.7505 0.8804 0.0019 10.39

PF 1.8626 1.1681 0.0037 2.58

UMDA 1.5981 0.8642 0.0093 6.56

CC 1.4916 0.7839 0.0131 9.39
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(pedestrians), similar in shape and color to each other

and to some elements present in the background. The

challenges specific to the PETS2002 dataset result

from the pedestrians appearing at a wide range of

distances and angles with respect to the camera, thus

introducing shape scaling and distortions. Moreover,

the scene is recorded from behind a shop-window,

which partially reflects the objects of interest.

2. The Computer Vision Based Analysis in Sport Envi-

ronments (CVBASE) dataset. The CVBASE 2006

dataset (Machine Vision Group 2001) was filmed

during a tournament of recreational players. The

videos were recorded in S-VHS video-recorder, using

a bird’s eye view with wide-angle lens. The videos

were digitized to digital video format with 25 fps, with

a resolution of 384 9 576 and M-JPEG compression.

The selected video is a zenithal record of two players

playing squash (SQUASH). They are in close prox-

imity to each other, they are dressed similarly and are

Fig. 14 Performance of our

proposed FRA tracker in a

complex dataset from

PETS2002

Table 2 Quality measures of the algorithms applied to SQUASH

mean TPF

(ideal = 2)

std TPF LTP FPS

FRA 2,0050 0.2926 0.0009 11.67

UMDA 1.8258 0.3490 0.0016 12.40

CC 2.1688 0.6251 0.0027 10.80

PF 2,3559 0.7585 0.0032 2.74
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moving quickly, and there are constant crossings

between players, which make for a challenging

sequence.

10 Evaluation metrics

Tracking methods can be evaluated on the basis of whether

they generate correct mobile object trajectories. A quali-

tative comparison of tracking algorithms can be based on

the ability to maintain the number of targets during the

sequence video and to provide an optimal solution to the

cost function minimization problem used for establishing

correspondence [Yilmaz et al. 2006]. Therefore, the met-

rics that allow us to provide formal comparisons among the

algorithms tested are:

Tracks per Frame (TPF, std TPF): evaluates the

continuity of the tracks. An optimal tracker results in

the TPF referred to as an ‘‘ideal’’ and a low standard

deviation. The TPF below the ‘‘ideal’’ indicates that the

tracker lost the continuity of the tracks (merge effect)

and, conversely, higher than ‘‘ideal’’ TPF indicates that

the tracker had an excess of tracks (split effect). In

datasets where the number of tracks is known and fixed

in time (for instance, SQUASH), this metric should

approach its known ideal value (two players in

SQUASH). This metric is the summary of the tracking

algorithm performance over a representative number of

frames. Thus, an algorithm performs better the process

of tracking the more closely to its ideal value and a

standard deviation lower.

Lost Track Probability (LTP): determines the proba-

bility of losing a track in a given frame. Note that this

measure has also been used in (Kan et al. 1996), among

others).

Frames per Second (FPS): the rate of processed images

by the tracking algorithms; high values imply that an

algorithm is less computationally demanding.

11 Results and discussion

In the following tables the quality measurements of the CC

(Connected Components), UMDA (Univariate Marginal

Distribution Algorithm), PF (Particle Filtering) and our

proposed FRA (Fuzzy Region Assignment) algorithm

Fig. 15 Different tracking

results for frames 318, 325, 339

and 344. First row depicts the

blobs detected for each frame.

They are the input for the four

tracking methods. The tracking

results are shown along the last

four rows using CC, UMDA, PF

and FRA algorithms,

respectively
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applied to the PETS2002 and SQUASH sequences are

presented. Additionally, some videos showing the perfor-

mance of these algorithms can be downloaded from our

website (http://ww.giaa.inf.uc3m.es/softcomputing-2008).

11.1 PETS2002

The results of the numerical tracking evaluation for

PETS2002 are summarized in Table 1.

The tracking methods in the table are score-sorted

according to greater similarity to mean TPF. It has been

determined a priori that the average ‘‘ideal’’ TPF in the

sequence used is 1.79. According to the TPF, all methods

perform comparably, with our proposed FRA algorithm

being the most accurate. Note that since TPF is a ‘‘blind’’

measure, i.e. it does not validate the tracks, the TPF scores

should be taken into account along with their standard

deviation, std TPF, and the LTP measure. The LTP metrics

result in the same ranking as TPF: in order of decreasing

quality: FRA, PF, UMDA, CC; LTP for CC being almost

seven times higher than LTP for FRA. It should be noted,

however, that the three best methods, FRA, PF and UMDA,

have larger std TPF than poorly performing CC.

An important metric in real-time video tracking is the

speed at which the images are processed by the algorithms,

measured by the FPS metrics. According to the FPS results

shown in Table 1, the PF tracker entails more computation

load, which in turn reduces its processing capacity. To

further illustrate this, the processing time needed for one

track has been measured. In our simulations, the average of

386.916 and 2.003 ms was obtained for the PF and the

FRA algorithms, respectively.

Thus, it can be concluded that our proposed FRA tracker

is more precise than the powerful PF algorithm and has a

greater capacity to process large amount of tracks in the

multitarget scenario. This is because the PETS2002 pre-

sents a complex scenario analysis. A complex scenario is

that in which at least one of the following situations occur:

dynamic background, several objects, objects enter and/or

leave the scene, objects interact with each other producing

occlusions, cross, merge and split effects, etc. An instance

of the performance of our proposed FRA algorithm in a

complex scenario is depicted in Fig. 14, where four people

are tracked from frame 676 to frame 1251. In this

sequence, tracks with id-2 (red ellipse) and id-3 (blue

ellipse) enter the scene and stop together in the middle of

Fig. 16 Different tracking

results for frames 1065, 1073,

1087 and 1100. First row

depicts the blobs detected for

each frame. They are the input

for the four tracking methods.

The tracking results are shown

along the last four rows using

CC, UMDA, PF and FRA

algorithms, respectively
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the window (frame 935). In frame 974, the track with id-4

(green ellipse) enters the scene and goes from right to left

(frame 1039). Track with id-2 (red ellipse) starts to walk to

the left side (frame 1082) meanwhile track with id-5

(yellow ellipse) comes into the scene and goes from left to

right (frames 1011, 1144, 1169 and 1195). Finally, track

with id-3 (blue ellipse) keeps still in the scene (frame

1251). We can observe that there have been several inter-

actions among people (grouping and crossing events) and

none have lost their identity.

11.2 SQUASH dataset

In the following test video, SQUASH, given the normal

dynamics of game, there are many situations in which the

players move very close to each other, making abrupt

movements. This makes the tracking problem harder. The

results of the quality measures are shown in Table 2.

We can see that we obtain results similar to those in the

PETS2002 dataset. The most appreciable difference is the

poor precision measures (TPF and LTP) of the PF algo-

rithm. This is mainly due to two factors. First, the

SQUASH dataset presents a challenging scenario where the

players are very close and are moving quite quickly and

constantly switching places. These continuous changes of

movement and accelerations cause PF to fail in the esti-

mation of the tracks. On the other hand, when the PF

algorithm loses a track, these track turns into a ‘‘ghost

track’’ (see Fig. 16 frames 1073, 1087 and 1100, and

Fig. 17 all frames for the performance of PF algorithm).

Some heuristic should be included in the PF algorithm

described in (Loza 2008) to erase ‘‘ghost tracks’’ and to

avoid this malfunction. These are the reasons why PF

receives the highest value for TPF and std TPF.

In most of the situations, algorithms perform acceptably

and provide similar results, with our proposed Fuzzy data

Association algorithm being the most precise (TPF of

2.0050 and std TPF of 0.2926). Regarding the capacity of

process, PF means greater computational requirements

(2.74 frames per second). The main differences appear

when players are close together making quick movements.

In order to illustrate the performance of the four algorithms

behind this condition, we show the behavior of the tracking

algorithms with three sequences of the SQUASH dataset

Fig. 17 Different tracking

results for frames 1636, 1646,

1660 and 1673. First row

depicts the blobs detected for

each frame. They are the input

for the four tracking methods.

The tracking results are shown

along the last four rows using

CC, UMDA, PF and FRA

algorithms, respectively
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(see Figs. 15, 16, 17). First row shows the output of the

detection algorithm for each frame. The following four

rows are the tracking result of the CC, UMDA, PF, and

FRA algorithms, respectively. In first s equence (Fig. 15),

we can observe how the PF and FRA algorithms track both

players well while CC and UMDA algorithms fail in the

tracking process. In the next two sequences, our proposed

Fuzzy data Association (FRA) is the only algorithm that is
able to track both players without any problem.

12 Conclusions

The proposed visual tracker based on fuzzy region

assignment extends previous approaches of fuzzy data

association to the problematic area of video data, using a

representation which allows manipulation of concepts at

different levels and a geometrical reasoning based on

expert experience. The main contribution consists in the

representation of variables with an important semantic

effect to represent the visual data association process and

drive the tracker with the appropriate decisions.

The system allows improving the ratio performance/

resources with respect to representative visual tracking

systems, and a significant reduction in the number of rules

with respect to previous approaches by making use of

fuzzy systems for data association with other sensor

tracking applications. It has shown competitive results and

efficiency when working in real conditions after detailed

evaluation in representative situations.
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