312 research outputs found

    Desertification in Europe: mitigation strategies, land use planning: Proceedings of the advanced study course held in Alghero, Sardinia, Italy from 31 May to 10 June 1999

    Get PDF
    The present volume is based on lectures given at the course held in Alghero, Sardinia, Italy, from 31 May to 10 June 1999 on ‘Desertification in Europe: Mitigation Strategies, Land Use Planning’. It also contains presentations, given by the participating students, on their own research activities and interests. With the adoption of the International Convention to Combat Desertification, which represents a follow up of the Rio recommendations, this publication is timely. It highlights the specific situation of the Southern European regions and provides a comprehensive and state-of-the-art review of this complex issue

    Analysis of the Effect of Soil Erosion in Abandoned Agricultural Areas: The Case of NE Area of Basilicata Region (Southern Italy)

    Get PDF
    Land abandonment is among the most complex la nd use change processes driven by a multiplicity of anthropogenic and natural factors, such as agricultural over-exploitation, implementation of agricultural policies, socio-economic and climatic aspects. Therefore, it is necessary to deepen the effects of land abandonment based on methodologies that are as multidisciplinary as possible. Environmental and social problems related to abandonment include soil erosion and environmental degradation. Approaches combining GIS (Geographic Information System), remote sensing, and image analysis techniques allow for assessments and predictions based on integrating theoretical models with advanced geospatial and geostatistical models. One of the most widely used models for soil erosion estimation is the Revised Universal Soil Loss Equation (RUSLE). The present work developed a model using remote sensing and GIS tools to investigate some factors of the RUSLE equation to evaluate the adverse effects of soil erosion in areas covered by arable crops and subsequently abandoned. To identify potentially degraded areas, two factors of the RUSLE were related: the C Factor describing the vegetation cover of the soil and the A Factor representing the amount of potential soil erosion. Through statistical correlation analysis with the RUSLE factors, based on the deviations from the average erosion values and mapping of the areas of vegetation degradation relating to arable land, the areas identified and mapped are susceptible to soil degradation

    Detecting soil erosion in semi-arid Mediterranean environments using simulated EnMAP data

    Get PDF
    Soil is an essential nature resource. Management of this resource is vital for sustainability and the continued functioning of earths atmospheric, hydrospheric and lithospheric functioning. The assessment and continued monitoring of surface soil state provides the information required to effectively manage this resource. This research used a simulated Environmental Mapping and Analysis Program (EnMAP) hyperspectral image cube of an agricultural region in semi- arid Mediterranean Spain to classify soil erosion states. Multiple Endmember Spectral Mixture Analysis (MESMA) was used to derive within pixel fractions of eroded and accumulated soils. A Classification of the soil erosion states using the scene fraction outputs and digital terrain information. The information products generated in this research provided an optimistic outlook for the applicability of the future EnMAP sensor for soil erosion investigations in semi-arid Mediterranean environments. Additionally, this research verifies that the launch of the EnMAP satellite sensor in 2018 will provide the opportunity to further improve the monitoring of earth finite soil resources.NSERC create AMETHYST , Alberta Terrestrial Imaging Centre

    Earth resources: A continuing bibliography with indexes (issue 60)

    Get PDF
    This bibliography lists 485 reports, articles, and other documents introduced into the NASA scientific and technical information system between October 1 and December 31, 1988. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing and distribution systems, and instrumentation and sensors

    Earth resources: A continuing bibliography with indexes (issue 52)

    Get PDF
    This bibliography lists 454 reports, articles, and other documents introduced into the NASA scientific and technical information system between October 1 and December 31, 1986. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Earth resources: A continuing bibliography with indexes, issue 50

    Get PDF
    This bibliography lists 523 reports, articles and other documents introduced into the NASA scientific and technical information system between April 1 and June 30, 1986. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Mapping Soil Salinity and Its Impact on Agricultural Production in Al Hassa Oasis in Saudi Arabia

    Get PDF
    Soil salinity is considered as one of the major environmental issues globally that restricts agricultural growth and productivity, especially in arid and semi-arid regions. One such region is Al Hassa Oasis in the eastern province of Saudi Arabia, which is one of the most productive date palm (Phoenix dactylifera L.) farming regions in Saudi Arabia and is seriously threatened by soil salinity. Development of remote sensing techniques and modelling approaches that can assess and map soil salinity and the associated agricultural impacts accurately and its likely future distribution should be useful in formulating more effective, long-term management plans. The main objective of this study was to detect, assess and map soil salinity and and its impact on agricultural production in the Al Hassa Oasis. The presented research first started by reviewing the related literature that have utilized the use of remote sensing data and techniques to map and monitor soil salinity. This review started by discussing soil salinity indicators that are commonly used to detect soil salinity. Soil salinity can be detected either directly from the spectral reflectance patterns of salt features visible at the soil surface, or indirectly using the vegetation reflectance since it impacts vegetation. Also, it investigated the most commonly used remote sensors and techniques for monitoring and mapping soil salinity in previous studies. Both spectral vegetation and salinity indices that have been developed and proposed for soil salinity detection and mapping have been reviewed. Finally, issues limiting the use of remote sensing for soil salinity mapping, particularly in arid and semi-arid regions have been highlighted. In the second study, broadband vegetation and soil salinity indices derived from IKONOS images along with ground data in the form of soil samples from three sites across the Al Hassa Oasis were used to assess soil salinity in the Al-Hassa Oasis. The effectiveness of these indices to assess soil salinity over a dominant date palm region was examined statistically. The results showed that very strongly saline soils with different salinity level ranges are spread across the three sites in the study area. Among the investigated indices, the Soil Adjusted Vegetation Index (SAVI), Normalized Differential Salinity Index (NDSI) and Salinity Index (SI-T) yielded the best results for assessing the soil salinity in densely vegetated area, while NDSI and SI-T revealed the highest significant correlation with salinity for less densely vegetated lands and bare soils. In the third study, combined spectral-based statistical regression models were developed using IKONOS images to model and map the spatial variation of the soil salinity in the Al Hassa Oasis. Statistical correlation between Electrical Conductivity (EC), spectral indices and IKONOS original bands showed that the Salinity Index (SI) and red band (band 3) had the highest correlation with EC. Integrating SI and band 3 into one model produced the best fit with R2 = 0.65. The high performance of this combined model is attributed to: (i) the spatial resolution of the images; (ii) the great potential of SI in enhancing and delineating the spatial variation of soil salinity; and (iii) the superiority of band 3 in retrieving soil salinity features and patterns. Soil salinity maps generated using the selected model showed that strongly saline soils (>16 dS/m) with variable spatial distribution were the dominant class over the study area. The spatial variability of this class over the investigated areas was attributed to a variety factors, including soil factors, management related factors and climate factors.16 dS/m) with variable spatial distribution were the dominant class over the study area. The spatial variability of this class over the investigated areas was attributed to a variety factors, including soil factors, management related factors and climate factors. In the fourth study, Landsat time series data of years 1985, 2000 and 2013 were used to detect the temporal change in soil salinity and vegetation cover in the Al Hassa Oasis and investigate whether there is any linkage of vegetation cover change to the change in soil salinity over a 28-year period. Normalized Difference Vegetation Index (NDVI) and Soil Salinity Index (SI) differencing images were used to identify vegetation and salinity change/no-change for the two periods. The results revealed that soil salinity during 2000-2013 exhibited much higher increase compared to 1985-2000, while the vegetation cover declined for the same period. Highly significant (p In the fifth study, the effects of physical and proximity factors, including elevation, slope, soil salinity, distance to water, distance to built-up areas, distance to roads, distance to drainage and distance to irrigation factors on agricultural expansion in the Al Hassa Oasis were investigated. A logistic regression model was used for two time periods of agricultural change in 1985 and 2015. The probable agricultural expansion maps based on agricultural changes in 1985 was used to test the performance of the model to predict the probable agricultural expansion after 2015. This was achieved by comparing the probable maps of 1985 and the actual agricultural land of 2015 model. The Relative Operating Characteristic (ROC) method was also used and together these two methods were used to validate the developed model. The results showed that the prediction model of 2015 provides a reliable and consistent prediction based on the performance of 1985. The logistic regression results revealed that among the investigated factors, distance to water, distance to built-up areas and soil salinity were the major factors having a significant influence on agricultural expansion. In the last study, the potential distribution of date palm was assessed under current and future climate scenarios of 2050 and 2100. Here, CLIMEX (an ecological niche model) and two different Global Climate Models (GCMs), CSIRO-Mk3.0 (CS) and MIROC-H (MR), were employed with the A2 emission scenario to model the potential date palm distribution under current and future climates in Saudi Arabia. A sensitivity analysis was conducted to identify the CLIMEX model parameters that had the most influence on date palm distribution. The model was also run with the incorporation of six non-climatic parameters, which are soil taxonomy, soil texture, soil salinity, land use, landform and slopes, to further refine the distributions. The results from both GCMs showed a significant reduction in climatic suitability for date palm cultivation in Saudi Arabia by 2100 due to increment of heat stress. The lower optimal soil moisture, cold stress temperature threshold and wet stress threshold parameters had the greatest impact on sensitivity, while other parameters were moderately sensitive or insensitive to change. A more restricted distribution was projected with the inclusion of non-climatic parameters. Overall, the research demonstrated the potential of remote sensing and modeling techniques for assessing and mapping soil salinity and providing the essential information of its impacts on date palm plantation. The findings provide useful information for land managers, environmental decision makers and governments, which may help them in implementing more suitable adaptation measures, such as the use of new technologies, management practices and new varieties, to overcome the issue of soil salinity and its impact on this important economic crop so that long-term sustainable production of date palm in this region can be achieved. Additionally, the information derived from this research could be considered as a useful starting point for public policy to promote the resilience of agricultural systems, especially for smallholder farmers who might face more challenges, if not total loss, not only due to soil salinity but also due to climate change

    QUANTIFYING GRASSLAND NON-PHOTOSYNTHETIC VEGETATION BIOMASS USING REMOTE SENSING DATA

    Get PDF
    Non-photosynthetic vegetation (NPV) refers to vegetation that cannot perform a photosynthetic function. NPV, including standing dead vegetation and surface plant litter, plays a vital role in maintaining ecosystem function through controlling carbon, water and nutrient uptake as well as natural fire frequency and intensity in diverse ecosystems such as forest, savannah, wetland, cropland, and grassland. Due to its ecological importance, NPV has been selected as an indicator of grassland ecosystem health by the Alberta Public Lands Administration in Canada. The ecological importance of NPV has driven considerable research on quantifying NPV biomass with remote sensing approaches in various ecosystems. Although remote images, especially hyperspectral images, have demonstrated potential for use in NPV estimation, there has not been a way to quantify NPV biomass in semiarid grasslands where NPV biomass is affected by green vegetation (PV), bare soil and biological soil crust (BSC). The purpose of this research is to find a solution to quantitatively estimate NPV biomass with remote sensing approaches in semiarid mixed grasslands. Research was conducted in Grasslands National Park (GNP), a parcel of semiarid mixed prairie grassland in southern Saskatchewan, Canada. Multispectral images, including newly operational Landsat 8 Operational Land Imager (OLI) and Sentinel-2A Multi-spectral Instrument (MSIs) images and fine Quad-pol Radarsat-2 images were used for estimating NPV biomass in early, middle, and peak growing seasons via a simple linear regression approach. The results indicate that multispectral Landsat 8 OLI and Sentinel-2A MSIs have potential to quantify NPV biomass in peak and early senescence growing seasons. Radarsat-2 can also provide a solution for NPV biomass estimation. However, the performance of Radarsat-2 images is greatly affected by incidence angle of the image acquisition. This research filled a critical gap in applying remote sensing approaches to quantify NPV biomass in grassland ecosystems. NPV biomass estimates and approaches for estimating NPV biomass will contribute to grassland ecosystem health assessment (EHA) and natural resource (i.e. land, soil, water, plant, and animal) management
    corecore