887 research outputs found

    Data-driven satisficing measure and ranking

    Full text link
    We propose an computational framework for real-time risk assessment and prioritizing for random outcomes without prior information on probability distributions. The basic model is built based on satisficing measure (SM) which yields a single index for risk comparison. Since SM is a dual representation for a family of risk measures, we consider problems constrained by general convex risk measures and specifically by Conditional value-at-risk. Starting from offline optimization, we apply sample average approximation technique and argue the convergence rate and validation of optimal solutions. In online stochastic optimization case, we develop primal-dual stochastic approximation algorithms respectively for general risk constrained problems, and derive their regret bounds. For both offline and online cases, we illustrate the relationship between risk ranking accuracy with sample size (or iterations).Comment: 26 Pages, 6 Figure

    TANDI: Threat Assessment of Network Data and Information

    Get PDF
    Current practice for combating cyber attacks typically use Intrusion Detection Sensors (IDSs) to passively detect and block multi-stage attacks. This work leverages Level-2 fusion that correlates IDS alerts belonging to the same attacker, and proposes a threat assessment algorithm to predict potential future attacker actions. The algorithm, TANDI, reduces the problem complexity by separating the models of the attacker\u27s capability and opportunity, and fuse the two to determine the attacker\u27s intent. Unlike traditional Bayesian-based approaches, which require assigning a large number of edge probabilities, the proposed Level-3 fusion procedure uses only 4 parameters. TANDI has been implemented and tested with randomly created attack sequences. The results demonstrate that TANDI predicts future attack actions accurately as long as the attack is not part of a coordinated attack and contains no insider threats. In the presence of abnormal attack events, TANDI will alarm the network analyst for further analysis. The attempt to evaluate a threat assessment algorithm via simulation is the first in the literature, and shall open up a new avenue in the area of high level fusion

    Chapter Machine Learning in Volcanology: A Review

    Get PDF
    A volcano is a complex system, and the characterization of its state at any given time is not an easy task. Monitoring data can be used to estimate the probability of an unrest and/or an eruption episode. These can include seismic, magnetic, electromagnetic, deformation, infrasonic, thermal, geochemical data or, in an ideal situation, a combination of them. Merging data of different origins is a non-trivial task, and often even extracting few relevant and information-rich parameters from a homogeneous time series is already challenging. The key to the characterization of volcanic regimes is in fact a process of data reduction that should produce a relatively small vector of features. The next step is the interpretation of the resulting features, through the recognition of similar vectors and for example, their association to a given state of the volcano. This can lead in turn to highlight possible precursors of unrests and eruptions. This final step can benefit from the application of machine learning techniques, that are able to process big data in an efficient way. Other applications of machine learning in volcanology include the analysis and classification of geological, geochemical and petrological “static” data to infer for example, the possible source and mechanism of observed deposits, the analysis of satellite imagery to quickly classify vast regions difficult to investigate on the ground or, again, to detect changes that could indicate an unrest. Moreover, the use of machine learning is gaining importance in other areas of volcanology, not only for monitoring purposes but for differentiating particular geochemical patterns, stratigraphic issues, differentiating morphological patterns of volcanic edifices, or to assess spatial distribution of volcanoes. Machine learning is helpful in the discrimination of magmatic complexes, in distinguishing tectonic settings of volcanic rocks, in the evaluation of correlations of volcanic units, being particularly helpful in tephrochronology, etc. In this chapter we will review the relevant methods and results published in the last decades using machine learning in volcanology, both with respect to the choice of the optimal feature vectors and to their subsequent classification, taking into account both the unsupervised and the supervised approaches

    Dynamic risk assessment in IT environments: a decision guide

    Get PDF
    Security and reliability of information technologies have emerged as major concerns nowadays. Risk assessment, an estimation of negative impacts that might be imposed to a network by a series of potential sources, is one of the main tasks to ensure the security and is performed either statically or dynamically. Static risk assessment cannot satisfy the requirements of real-time and ubiquitous computing networks as it is pre-planned and does not consider upcoming changes such as the creation of new attack strategies. However, dynamic risk assessment (DRA) considers real-time evidences, being capable of diagnosing abnormal events in changing environments. Several DRA approaches have been proposed recently, but it is unclear which technique fits best into IT scenarios with different requirements. Thus, this chapter introduces recent trends in DRA, by analyzing 27 works and proposes a decision guide to help IT managers in choosing the most suitable DRA technique considering three illustrative scenarios – regular computer networks, internet of things, and industrial control systems

    DevOps for Trustworthy Smart IoT Systems

    Get PDF
    ENACT is a research project funded by the European Commission under its H2020 program. The project consortium consists of twelve industry and research member organisations spread across the whole EU. The overall goal of the ENACT project was to provide a novel set of solutions to enable DevOps in the realm of trustworthy Smart IoT Systems. Smart IoT Systems (SIS) are complex systems involving not only sensors but also actuators with control loops distributed all across the IoT, Edge and Cloud infrastructure. Since smart IoT systems typically operate in a changing and often unpredictable environment, the ability of these systems to continuously evolve and adapt to their new environment is decisive to ensure and increase their trustworthiness, quality and user experience. DevOps has established itself as a software development life-cycle model that encourages developers to continuously bring new features to the system under operation without sacrificing quality. This book reports on the ENACT work to empower the development and operation as well as the continuous and agile evolution of SIS, which is necessary to adapt the system to changes in its environment, such as newly appearing trustworthiness threats

    A risk index model for security incident prioritisation

    Get PDF
    With thousands of incidents identified by security appliances every day, the process of distinguishing which incidents are important and which are trivial is complicated. This paper proposes an incident prioritisation model, the Risk Index Model (RIM), which is based on risk assessment and the Analytic Hierarchy Process (AHP). The model uses indicators, such as criticality, maintainability, replaceability, and dependability as decision factors to calculate incidents’ risk index. The RIM was validated using the MIT DARPA LLDOS 1.0 dataset, and the results were compared against the combined priorities of the Common Vulnerability Scoring System (CVSS) v2 and Snort Priority. The experimental results have shown that 100% of incidents could be rated with RIM, compared to only 17.23% with CVSS. In addition, this study also improves the limitation of group priority in the Snort Priority (e.g. high, medium and low priority) by quantitatively ranking, sorting and listing incidents according to their risk index. The proposed study has also investigated the effect of applying weighted indicators at the calculation of the risk index, as well as the effect of calculating them dynamically. The experiments have shown significant changes in the resultant risk index as well as some of the top priority rankings

    DevOps for Trustworthy Smart IoT Systems

    Get PDF
    ENACT is a research project funded by the European Commission under its H2020 program. The project consortium consists of twelve industry and research member organisations spread across the whole EU. The overall goal of the ENACT project was to provide a novel set of solutions to enable DevOps in the realm of trustworthy Smart IoT Systems. Smart IoT Systems (SIS) are complex systems involving not only sensors but also actuators with control loops distributed all across the IoT, Edge and Cloud infrastructure. Since smart IoT systems typically operate in a changing and often unpredictable environment, the ability of these systems to continuously evolve and adapt to their new environment is decisive to ensure and increase their trustworthiness, quality and user experience. DevOps has established itself as a software development life-cycle model that encourages developers to continuously bring new features to the system under operation without sacrificing quality. This book reports on the ENACT work to empower the development and operation as well as the continuous and agile evolution of SIS, which is necessary to adapt the system to changes in its environment, such as newly appearing trustworthiness threats
    corecore