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Abstract 
With thousands of incidents identified by security appliances every day, the process of distinguishing which 
incidents are important and which are trivial is complicated. This paper proposes an incident prioritisation 
model, the Risk Index Model (RIM), which is based on risk assessment and the Analytic Hierarchy Process 
(AHP). The model uses indicators, such as criticality, maintainability, replaceability, and dependability as 
decision factors to calculate incidents’ risk index. The RIM was validated using the MIT DARPA LLDOS 1.0 
dataset, and the results were compared against the combined priorities of the Common Vulnerability Scoring 
System (CVSS) v2 and Snort Priority. The experimental results have shown that 100% of incidents could be rated 
with RIM, compared to only 17.23% with CVSS. In addition, this study also improves the limitation of group 
priority in the Snort Priority (e.g. high, medium and low priority) by quantitatively ranking, sorting and listing 
incidents according to their risk index. The proposed study has also investigated the effect of applying weighted 
indicators at the calculation of the risk index, as well as the effect of calculating them dynamically. The 
experiments have shown significant changes in the resultant risk index as well as some of the top priority 
rankings.  

Keywords 
Incident prioritisation, risk assessment, Analytic Hierarchy Process, Risk Index Model 

INTRODUCTION 

The landscape of security threats continues to evolve and attacks are becoming more sophisticated (Symantec, 
2011). The number of vulnerabilities is also rising. Based upon daily statistics published by the National 
Vulnerability Database, by the third quarter of 2011, the number of registered vulnerabilities is approximately 
50,000. In 2010, Symantec (2011) encountered more than 286 million variants of malware; giving further 
evidence that the numbers are rising. Threats are evolving and numbers are rising, which means better ways are 
needed to manage them. 

With security appliances identifying thousands of incidents every day, relying upon manual processes to 
determine their importance and urgency is difficult, error-prone and time-consuming. Therefore, an automated 
operation is needed. This paper proposes a new Risk Index Model (RIM) as a method of rating, ranking and 
prioritising incidents, and validates it via comparison to existing approaches, such as the Common Vulnerability 
Scoring System (CVSS) (NIST, 2011) and Snort Priority (Caswell and Roesch, 1998). 

This paper is divided into three main parts: the first part discusses the background and related work in incident 
prioritisation; the second part presents the proposed Risk Index Model and the indicators that are used to support 
it; the third part presents the methodology and experimental results in validating the proposed approach, and 
then discusses the significance of the results. 

BACKGROUND 

Common approaches in prioritising incidents include static prioritisation, vulnerability pre-prioritisation and 
post-incident prioritisation. The static prioritisation approach tags and tunes signatures and prioritises known 
vulnerabilities based on the current characteristics of the vulnerabilities and experts’ experience. Snort 2.1, for 
example, provides the Severity Identifier Option and this can be used to set a priority tag for some rules 
(Caswell and Beale, 2004). The vulnerability pre-prioritisation offers a similar approach to the static 
prioritisation but uses additional systematic methods like risk assessments and expert systems on analysing 
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potential incidents. In the vulnerability pre-prioritisation, a potential risk for potential vulnerabilities is estimated 
before any real incidents are detected. Dondo (2008) applied a fuzzy system approach in accessing relative 
potential risks by associating potential vulnerabilities with computer network assets. Post-incident prioritisation 
inherits advantages similar to the previous approaches but extends the usage of risk assessment and cost-
sensitive analysis. Lee and Qin (2003) estimated risks by associating three criteria: computer network assets, 
attacks and vulnerabilities. The M-Correlator proposed by Porras et al. (2002) is an alert ranking system based 
on the likelihood of attacks to succeed, the importance of targeted assets and the amount of interest in the type 
of attack. Alsubhi et al. (2008) proposed a fuzzy system based on metrics such as the importance of victims and 
the relationship between alerts.  

The aforementioned approaches all have the ability to prioritise incidents, but they also have limitations. The 
use of Snort Priority groups similar critical incidents into similar groups of priorities (e.g. high, medium and low 
priority), with the consequence that security analysts face a challenge in analysing and differentiating which 
incidents are urgent and important. In addition, the use of CVSS in the vulnerability pre-prioritisation does not 
provide a full coverage of new incidents and limits itself to incidents with CVE-ID; this consequently produces 
incomplete results that security analysts have little confidence in. Furthermore, other studies such as Alsubhi et 
al. (2008) and Porras et. al (2002), have other limitations, particularly in the technical aspects of the methods 
adopted in their proposal. For example, although existing approaches consider multiple decision factors, they do 
not consider different weightings based upon the importance of different decision factors. The use of different 
weightings could provide more flexibility and allow the incident prioritisation process to reflect different 
organisational policies.  

A popular prioritisation method is the Analytic Hierarchy Process (AHP), which is a theory of measurement 
through pair wise comparisons and relies upon the judgement of experts to derive priority scales, and which has 
already been successfully applied in several non-security contexts (Zahedi, 1986; Saaty, 2008a). This method is 
a systematic approach to making decisions and the use of the method in general can help to identify which 
incidents are important and which are trivial. To the best of the authors’ knowledge, this study is the first 
attempt to evaluate the feasibility of adopting AHP in the incident prioritisation process. 

RISK INDEX MODEL (RIM)  

The proposed model estimates the risk index for every single incident based upon indicators and input obtained 
from asset environments and attributes within the incidents themselves. The Risk Index Model is a post-incident 
prioritisation, and the model rates each of the incidents to produce a risk index value. Based on the value, 
incidents are ranked quantitatively from the highest to the lowest index. 

The model uses a combination of two decision factors: impact on asset and likelihood of threat and 
vulnerability. In addition, the aforementioned factors use several other indicators such as criticality, 
maintainability, replaceability, etc., as listed in   
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Table 4 and Table 5. These indicators were determined by reviewing existing literature. In order to reduce the 
uncertainty within the factors, the model uses a decomposition approach which has been applied in other 
security metrics studies (Wang and Wulf, 1997; Heyman et al., 2008) and has proven useful in identifying basic 
components from higher level requirements (Savola and Abie, 2009). For instance, the basic components in the 
model refer to the elements that contribute input into the decision factors, also called an indicator, such as the 
type of incidents, time of incidents, cost of maintenance, replacement, and other related data.  

The lists in the tables also specify the most significant references, on which each indicator is based. There are 
two main categories in differentiating the indicators: essential and desirable. An essential indicator (labelled as 
‘E’ in the tables) is a main indicator and it has been applied in many previous frameworks and actively flagged 
by more recent studies. Desirable indicators (labelled as ‘D’ in the tables) are categorised as a secondary 
indicator, previously used by fewer studies. In order to reflect this difference, essential indicators are given a 
higher weight in the estimation of the risk index, whereas desirable indicators receive a lower weight. 
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Table 4: Indicators for impact on asset  
Indicator Type Description References 
Criticality E Criticality estimates the importance and value of the 

asset. Criticality is based on three main and common 
attributes in security such as confidentiality, integrity 
and availability. Criticality also uses an asset value in 
estimating the final rating. Generally, the higher the 
criticality, the higher the impact on the asset.  

Lee et al. (2002) 
Porras  et al. (2002) 
Gregg and Kim (2005) 
Rogers et al. (2005) 
Davis et al. (2007)  
Zhang et al. (2007) 
Dondo (2008) 
Fenz and Neubauer (2009) 
Mu et al. (2008) 
Zhang et al. (2009) 
 

Maintainability D Maintainability measures the cost of maintaining 
assets and is based on monetary value. Maintainability 
is similar to operational costs where it used in 
maintaining the operation of the asset. The cost of 
maintenance is measured by calculating the average 
cost in maintaining an asset annually. Generally, the 
higher the maintainability, the higher the impact on 
the asset. 
 

Lee et al. (2002) 
Munteanu (2006) 
Zhang et al. (2009) 
Strasburg et al. (2009) 
 

Replaceability D Replaceability refers to the ability to replace an asset 
in terms of cost and time. There is a trade-off between 
replaceability and asset criticality. Unlike the asset 
criticality, the higher the asset replaceability, the 
lower the impact on the asset. The sooner the 
replacement is placed, the less impact on the asset.  
 

Lee et al. (2002) 
Munteanu (2006) 
Haslum et al. (2007) 
Pak and Cannady (2009) 
Zhang et al. (2009) 
Strasburg et al. (2009) 

 
 

Dependability D Dependability determines whether the asset is 
operated alone or if it depends on other assets or 
applications. The more connections an asset has with 
other assets, the higher its dependability is. In other 
words, the more connections between assets and 
applications, the higher the impact on the asset. 
 

Porras et al. (2002) 
Toth and Kruegel (2002) 
Lee and Qin (2003) 
Nicole et al. (2004) 
Kheir et al. (2010) 
 

Control D This measures the control factors that are 
implemented by an asset or application. Controls are 
used to mitigate potential vulnerability and threats. 
Generally, the higher rating of asset control, the lower 
the impact on the asset. 

Lee et al. (2002) 
Lee and Qin (2003) 
Dondo (2008) 
Ekelhart et al. (2009) 
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Table 5: Indicators for the likelihood of threats and vulnerability 
Indicator Type Description References 
Severity E Severity refers to the severity of the potential 

incidents and the estimation of it may relate to 
the extent of vulnerability. As such, the extent of 
vulnerability can be obtained from other sources 
such as the Common Vulnerability Scoring 
System (CVSS). Generally, the higher the likely 
incident severity, the higher the potential risk. 
 
 

Abedin et al. (2006)  
Lai and Hsia (2007) 
Alsubhi et al. (2008) 
Ahmed et al. (2008) 
Ausibal and Gallon (2008) 
Lin et al. (2008) 
Dondo (2008) 
Mu et al. (2008) 
Houmb and  Franqueira (2009) 
Subramanian et al. (2009) 
Zhang et al. (2009) 
Fenz and Neubauer (2009) 
 

Exploitability D Exploitability measures the general level of 
exploitability of incidents at a specific time. It 
shows the current state of the related 
vulnerability and verifies the impact to a specific 
asset at any specific time. Generally, the higher 
the status of the incident exploitability, the 
higher the risk. 
 
 

Mell et al. (2006) 
Dondo (2008) 
Houmb and  Franqueira (2009) 
Hausrath (2011) 
Clark and Stavrou (2011) 
 
 

Sensitivity D Sensitivity measures the initial priority of 
incidents. The sensitivity shows the seriousness 
of the incident which is detected by certain 
detectors or appliances. Generally, the higher the 
rating of the incident sensitivity, the higher the 
risk. 
 

Årnes et al. (2005) 
Årnes et al. (2006) 
Haslum and Årnes (2007) 
Alsubhi et al. (2008) 
Noel and Jajodia (2008) 
Zhang et al. (2009) 

Similarity D Similarity represents the similarity between 
incidents’ attributes within a particular period of 
time.  The attributes are obtained from the detail 
between attacker and victim and they are the IP 
address, protocol, services and time of 
occurrence. The similarity between incidents’ 
attributes can be used to estimate the seriousness 
of the incident. Generally, the higher the 
incident similarity, the higher the risk. 
 

Valdes and Skinner (2001) 
Xu and Ning  (2005) 
Alsubhi et al. (2008) 
Xiao et al. (2008)  
Yu and Rubo (2008) 
 

Frequency D Frequency represents the frequency of the 
similar incidents that occurred within a 
particular period of time. Unlike similarity, the 
frequency identifies the similarity between 
vulnerabilities in terms of the number of 
occurrences within a particular period of time. 
Generally, the higher the incident frequency, the 
higher the risk. 
 

Ning et al. (2004) 
Haslum and Årnes (2007) 
Alsubhi et al. (2008) 
Yu and Rubo (2008) 
Houmb et al. (2009) 
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Figure 1 depicts a block diagram with the indicators that are used to estimate the risk index, and the three level 
decision hierarchies involved:  

1. Level 1 is the goal of the model. In this particular context, the model aims to rate, quantify and estimate 
the risk index for incidents. The model uses the risk index result produced with the aid of AHP as a 
value to rank and prioritise incidents. 

2. Level 2 is the decision attributes of the model. These are the factors that influence the goal (e.g. the 
consequence, in terms of the impact on the asset, and likelihood of the event, based in turn upon the 
likelihood of associated threats and vulnerabilities).  

3. Level 3 details the decision attributes defined in level 2. Five indicators influence the impact on asset 
and a further five inform the likelihood of threat and vulnerability. Each indicator uses quantitative 
values obtained from information metrics (e.g. incident information, criticality, incident severity and 
sensor sensitivity). 

 

RISK ASSESSMENT

Combination between

Likelihood of Event

Uncertain Indicators

Severity

Sensitivity

Frequency

Similarity

Exploitability

Influenced by

Likelihood of Threat and
Vulnerability
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Impact on Asset

Uncertain Indicators

Estimated used

Criticality

Maintainability

Replaceability

Dependability

Control

LEVEL 1

LEVEL 2

LEVEL 3

QUANTIFIABLE POTENTIAL
RISK

 
Figure 1: Decision hierarchy for the Risk Index Model 
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EXPERIMENTAL EVALUATION 

Two experiments were used to validate the use of the Risk Index Model and AHP. Using the RIM, the 
experiment rates as well as ranks incidents. The experiments were conducted using one of the MIT 2000 
DARPA (i.e LLDOS 1.0) data sets (DARPA, 2011), with some modifications. Specifically, given the lack of 
specific information on assets, some assumptions had to be made on the values of assets that related to the 
incident scenario in the dataset. The rationale behind the selection of the specific dataset is due to the multi-
stage attacks it contains. This is important as it allows the model to evaluate and analyse the effectiveness of 
ranking and prioritising incidents over different phases.  

EXPERIMENTS 

The first set of experiments aimed to investigate the effect different weights for indicators can have on the 
calculation of the risk index. Initially an equal weight was used, whereas the next stage used different weights. 
Both experiments rate incidents only one time when the incidents are detected. Essentially, the rating for the risk 
index for each incident is unchanged and remains static until the end. Theoretically, the changes of the risk 
index periodically could give another implication such as it would affect the performance of the estimation 
process but perhaps it gives more accurate risk indexes. It is suggested that the estimation process must be done 
periodically (Lee et al., 2002). However, the first set of experiments does not consider the changes of the risk 
index over time.  

The second set of experiments aims to overcome this limitation by considering a risk index that is calculated 
dynamically. In order to achieve this, the following conditions were applied:  

 

(a) The incident risk index is updated each time when a new alert is detected. 

(b) The position of incidents is ranked again after a change to a risk index.  

In order to compare the results, and validate the RIM, the experiment was based on some assumptions. In 
particular, with the DARPA 2000 LLDOS 1.0 dataset, there are different attacks in different stages of attacks, as 
shown in Table 6. To analyse the dataset, this paper made assumptions as follows: 
 

(a) A true incident in every stage is assumed as a critical incident in that particular stage. 

(b) Due to the multi-staged attack in the dataset, true incidents in the latest stage are assumed as more critical 

incidents compared to incidents in other previous stages.  

Table 6: Attack phases 

 

 

Furthermore, in order to show the result of the weight for each indicator, this paper adopts the AHP approach 
using the rating mode in order to rate incidents. The different weights for the indicators used in Experiment 2 
were obtained using estimation in three judgement matrices: the judgement matrix of the influence factor, the 
judgement matrix of the main indicator for the consequence of an event (i.e. impact on asset), and the judgement 
matrix of the main indicator for the likelihood of an event (i.e. the likelihood of threats and vulnerability). The 
judgement matrices were used to evaluate the different results of the risk index. In this particular experiment, the 
judgement matrices were just an assumption made to manually fit with the model. Generally, they can be altered 
and the assumption in this particular experiment is not definitive and subject to reassessment. Table 7, Table 8 
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and Table 9 show the judgement matrices for the decision factors and indicators used in the RIM. Since there 
are two types of indicators, this study controls the essential indicators by giving a slightly higher value 
compared to the desirable indicator values. The valuation of the indicator is easy because the essential indicator 
for both decision factors always becomes a higher priority.  

Although the judgement matrices were manually assigned, they need to be tested in order to maintain their 
consistency. Thus, they are tested using the random index (RI), consistency index (CI) and consistency ratio 
(CR) formulas (Saaty, 2008b). On the bottom of the tables there are three variables: λmax, consistency index and 
consistency ratio. According to some studies (Zahedi, 1986; Saaty, 2008b), if the consistency ratio value is less 
than 10%, then the value can be considered as a reasonable and acceptable judgement or otherwise the 
judgement matrix is not consistent.   
 

Table 7: Judgement matrix of the influence factor 

 

 

Table 8: Judgement matrix of the main indicator for the consequence of an event (impact on asset) 

 
 

Table 9: Judgement matrix of the main indicator for the likelihood of an event (likelihood of threats and 

vulnerability) 

 

RESULTS 

There were 1,068 incidents detected and the critical incidents are highlighted in bold. Table 10 and Table 11 
show the incidents and tabulated them into several phases: group, number of incidents, time, risk index and 
priority of the incident ranked at the specific time. In order to analyse the results, the table summarises the time 
detected and risk index into two different values (high/max and low/min). The ranking process was ranked at 12 
different periods starting from 09:51:35 and ending at 12:35:48. To give a simple view, the incidents are 
grouped into a similar type of signature and ranked based on the highest and lowest risk indexes. 
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As can be seen in both tables, most true and critical incidents, except in the last phase, were ranked at the top 
priority ranking. In addition, this trend is consistent with the assumption made earlier, whereby a new critical 
incident in a new phase is considered more critical to the incident in the previous phases. To look at them closer, 
incidents detected in the 3rd phase were ranked at the top priority until the end of the scenario. Although there 
were new critical incidents (i.e. Bad Traffic Loopback IP) detected in the 5th phase, it was ranked lower than the 
critical incident in the 3rd phase because it was considered not critical enough in comparison. In this particular 
scenario, the result is consistent with the dataset because the incidents were considered failed (DARPA, 2011). 

Furthermore, Table 11 shows the partial results of Experiment 2 and it shows some significant changes 
compared to the result of Experiment 1. The results are slightly different because the experiment was performed 
with different weights of indicators. In general, Experiment 2 has shown some significant changes to the risk 
index value as well as the top priority ranking.  

Table 10: Partial result of risk index and ranking for Experiment 1 

 

Table 11: Partial result of risk index and ranking for Experiment 2 
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To look closer, Table 12 summarises the comparison between them. The table summarises the incidents by 
grouping them into similar types of signatures with the number of incidents, the time when the incident was 
detected (i.e. min and max), the risk indexes and ranking of the related incidents. For the risk index and ranking, 
the table only shows the lowest and highest values for both experiments: E1 represents Experiment 1 and E2 
represents Experiment 2. As mentioned earlier, there were some significant changes to the risk index value as 
well as some of the top priority rankings. For example, the top priority incidents for both experiments were still 
in the same position. This scenario can be seen in the “RPC portmap Solaris sadmin port query udp request” 
and the “RPC portmap Solaris sadmin port query udp portmapper sadmin port query attempt” incidents. 
 

Table 12: Risk index and ranking comparison 

 

To extend the evaluation, the next set of experiments considers the changes to the risk index over time. Using 
E2 as the result for the comparison study,  

Table 13 compares the rank position for selected incidents. The new position for each incident was ranked with 
the second set of experiments, where the incident risk indexes were updated dynamically. The old position for 
each incident was extracted from Table 10 and Table 11. When comparing the position of the incidents, the 
majority of them were influenced. For example, the position of the CID 4 incident changed from the old position 
of 183rd to the new position of 158th due to the changes of the risk index (i.e. 0.3135 to 0.3139); this trend is 
consistent with the other incidents. 

 

Table 13: Position for critical incidents between two different studies 
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Table 14: Snort Priority, CVSS v2 Base Score, Exploitability Subscore and Risk Index 

 

The experimental results are encouraging as the majority of true and critical incidents received a high ranking. 
The proposed method was further validated by comparing the experimental results with the Snort Priority and 
the CVSS v2 Base Score, as tabulated in  

 

 
 

 

Table 14. The first column in the table is the type of incident, which is followed by the Snort Priority, as 
obtained directly by Snort IDS. The next three columns are the CVE-ID, CVSS v2 Base Score and exploitability 
sub score which were taken directly from the National Vulnerability Database (NIST, 2011). The last four 
columns are the experimental results that were directly taken from Table 12. 

The experimental results show that the approach in this study is better than the Snort Priority and CVSS v2 Base 
Score in terms of its results. All incidents were 100% successfully rated in this study and produced risk indexes 
between 0 and 1. In comparison, it seems that the result have shown a significant improvement because the 
CVSS v2 Base Score can rate only 17.23% or 184 out of 1068 incidents.  

Furthermore, the ranking approach performed in this study is better than the Snort Priority because the latter 
prioritises incidents only into several groups, specifically three. To look at them closer, Figure 2 plots the 
distribution of incidents. For example, there were 72 incidents for the “ICMP Echo reply” and the Snort Priority 
labelled all of them as a low priority or three within the same groups. However, in Experiment 1, the risk 
indexes given were between 0.0939 and 0.3542. The different risk indexes between the incidents allow security 
analysts to rank and prioritise incidents more effectively. This limitation of the group priority can also be seen 
with the CVSS and can be seen clearly between Table 12 and  

 

 
 

 

Table 14. 

Furthermore, the result in this study has shown some improvement. In particular, the incident in the 5th phase is 
rated with a low rating and the same time ranked it at a suitable position and placed it better compared to the 
results by Alsubhi et al. (2008). In contrast, their model gave a very high score for the incidents, although they 
were considered as failed incidents.  
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Figure 2: Experiment 1, Experiment 2 and Snort Priority 

CONCLUSION AND FUTURE WORK  

The study highlighted some significant findings in incident prioritisation. The experiments identified different 
risk indexes using similar and different weights of indicators. The different weights used by the indicator 
showed some significant changes in risk indexes as well as the position of incidents. In addition, comparison 
studies have been made to compare Snort Priority and CVSS in order to investigate the model improvement. 
The result has shown an improvement upon the comparison. Furthermore, the study also highlighted the effect 
of the changes of risk indexes over time and the incidents’ position, where the majority of them were influenced.  

In conducting the experiments, this study found some limitations. The experiment used assumptions to derive 
the values in estimating the risk index, particularly in rating the value of assets. Future work should focus on 
strengthening the estimation process for rating every indicator which is involved in the model. It is suggested to 
extend the indicator by giving a precise and detailed metric for measuring incidents, especially in reducing 
uncertainty amongst indicators. Furthermore, this study did not discuss the performance of the process, as the 
prioritisation process may induce an overhead in estimating the risk index. However, based on the preliminary 
results which can be simulated within a few seconds, it is estimated that the effect will be less. The result has 
provided a clear distinction between the ways in which incidents are rated and ranked. However, the 
experiments do not consider any countermeasures or responses to control the critical incident. With the 
promising results, we intend to investigate a response strategy that can work with the RIM in selecting 
appropriate responses for incidents with different ranks and priorities. 

ACKNOWLEDGEMENT 

The authors are thankful to the Ministry of Higher Education in Malaysia and the University of Malaya for 
providing scholarship to the first author of this paper. 

REFERENCES 

Abedin, M., Nessa, S., Al-Shaer, E. and Khan, L. (2006), "Vulnerability analysis for evaluating quality of 
protection of security policies", Proceedings of the 2nd ACM workshop on Quality of protection, 
Alexandria, Virginia, USA, pp. 49-52. 

Ahmed, M.S., Al-Shaer, E. and Khan, L. (2008), "A Novel Quantitative Approach For Measuring Network 
Security", Proceedings of the 27th IEEE Conference on Computer Communications (INFOCOM 2008), 
pp. 1957-1965. 

Alsubhi, K., Al-Shaer, E. and Boutaba, R. (2008), "Alert prioritization in intrusion detection systems", 
Proceedings of the IEEE Network Operations and Management Symposium, Salvador, Brazil, pp. 33-40. 



37 
 

Årnes, A., Sallhammar, K., Haslum, K., Brekne, T., Moe, M.E.G. and Knapskog, S.J. (2005), "Real-time risk 
assessment with network sensors and intrusion detection systems", Proceedings of the International 
Conference on Computational Intelligence and Security, Vol. 3802, Xian, China, pp. 388-397. 

Årnes, A., Valeur, F., Vigna, G. and Kemmerer, R. (2006), "Using Hidden Markov Models to Evaluate the 
Risks of Intrusions: System Architecture and Model Validation", Proceedings of the International 
Symposium on Recent Advances in Intrusion Detection (RAID), pp. 145–164. 

Aussibal, J. and Gallon, L. (2008), "A New Distributed IDS Based on CVSS Framework", Proceedings of the 
IEEE International Conference on Signal Image Technology and Internet Based Systems (SITIS '08), pp. 
701-707. 

Caswell, B. and Beale, J. (2004), "Snort 2.1 Intrusion Detection", 2nd edition, Syngress. 

Caswell, B. and Roesch, M. (1998), "Snort: The open source network intrusion detection system", Available at: 
http://www.snort.org (Accessed: 20 August 2010). 

Clark, J.W. and Stavrou, A. (2011), "Breaching & Protecting an Anonymizing Network System", Proceedings 
of the 6th Annual Symposium on Information Assurance, New York, USA, pp. 32-44. 

DARPA (2011), "DARPA Intrusion Detection Data Sets", Available at: 
http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/index.html (Accessed: 1 July 
2011). 

Davis, C., Schiller, M. and Wheeler, K. (2007), "IT Auditing: Using Controls to Protect Information Assets", 
McGraw-Hill. 

Dondo, M.G. (2008), "A vulnerability prioritization system using a fuzzy risk analysis approach", Proceedings 
of the 23rd International Information Security Conference, Milano, Italy, pp. 525-539. 

Ekelhart, A., Fenz, S. and Neubauer, T. (2009), "AURUM: A Framework for Information Security Risk 
Management", Proceedings of the 42nd Hawaii International Conference on System Sciences, pp. 1-10. 

Fenz, S. and Neubauer, T. (2009), "How to determine threat probabilities using ontologies and Bayesian 
networks", Proceedings of the 5th Annual Workshop on Cyber Security and Information Intelligence 
Research: Cyber Security and Information Intelligence Challenges and Strategies, Oak Ridge, 
Tennessee. 

Gregg, M. and Kim, D. (2005), "Inside Network Security Assessment: Guarding your IT Infrastructure", Sams. 

Haslum, K., Abraham, A. and Knapskog, S. (2007), "DIPS: A Framework for Distributed Intrusion Prediction 
and Prevention Using Hidden Markov Models and Online Fuzzy Risk Assessment", Proceedings of the 
Third International Symposium on Information Assurance and Security, Trondheim, Norway, pp. 183-
190. 

Haslum, K. and Årnes, A. (2007), "Multisensor Real-Time Risk Assessment Using Continuous-Time Hidden 
Markov Models", Proceedings of the International Conference on Computational Intelligence and 
Security, Vol. 4456, Guangzhou, China, pp. 694-703. 

Hausrath, N.L. (2011), "Methods for Hospital Network and Computer Security". M.Sc. University of Cincinnati. 

Heyman, T., Scandariato, R., Huygens, C. and Joosen, W. (2008), "Using Security Patterns to Combine Security 
Metrics", Proceedings of the Third International Conference on Availability, Reliability and Security 
(ARES 08), pp. 1156-1163. 

Houmb, S.H. and Franqueira, V.N.L. (2009), "Estimating ToE Risk Level Using CVSS", Proceedings of the 
International Conference on Availability, Reliability and Security (ARES '09), pp. 718-725. 

Houmb, S.H., Franqueira, V.N.L. and Engum, E.A. (2009), "Quantifying security risk level from CVSS 
estimates of frequency and impact", Journal of Systems and Software, Vol. 83. No. 9, pp. 1622-1634. 

Kheir, N., Cuppens-Boulahia, N., Cuppens, F. and Debar, H. (2010), "A service dependency model for cost-
sensitive intrusion response", Proceedings of the 15th European Conference on Research in Computer 
Security, pp. 626-642. 

Lai, Y.P. and Hsia, P.L. (2007), "Using the vulnerability information of computer systems to improve the 
network security", Computer Communications, Vol. 30 No. 9, pp. 2032-2047. 

Lee, W., Fan, W., Miller, M., Stolfo, S.J. and Zadok, E. (2002), "Toward cost-sensitive modeling for intrusion 
detection and response", Journal of Computer Security, Vol. 10 No. 1-2, pp. 5-22. 

Lee, W. and Qin, X. (2003), "Statistical causality analysis of INFOSEC alert data", Proceedings of the Recent 
Advances in Intrusion Detection, Vol. 2820/2003, pp. 73-93. 



38 
 

Lin, C.H., Chen, C.H. and Laih, C.S. (2008), "A Study and Implementation of Vulnerability Assessment and 
Misconfiguration Detection", Proceedings of the IEEE Asia-Pacific Services Computing Conference 
(APSCC '08), pp. 1252-1257. 

Mell, P., Scarfone, K. and Romanosky, S. (2006), "Common Vulnerability Scoring System", IEEE Security & 
Privacy, Vol. 4 No. 6, pp. 85-89. 

Mu, C.P., Li, X.J., Huang, H.K. and Tian, S.F. (2008), "Online Risk Assessment of Intrusion Scenarios Using 
D-S Evidence Theory", Proceedings of the 13th European Symposium on Research in Computer 
Security, Malaga, Spain, pp. 35-48. 

Munteanu, A.B. (2006), "Information Security Risk Assessment: The Qualitative Versus Quantitative 
Dilemma", Proceedings of the 6th International Business Information Management Association (IBIMA) 
Conference, pp. 227-232. 

Nicol, D.M., Sanders, W.H. and Trivedi, K.S. (2004), "Model-based evaluation: from dependability to security", 
IEEE Transactions on Dependable and Secure Computing,, Vol. 1 No. 1, pp. 48-65. 

Ning, P., Cui, Y., Reeves, D.S. and Xu, D. (2004), "Techniques and tools for analyzing intrusion alerts", ACM 
Transactions on Information System Security, Vol. 7 No. 2, pp. 274-318. 

NIST (2011), "National Vulnerability Database version 2.0", Available at: http://nvd.nist.gov/ (Accessed: 1 
April 2011). 

Noel, S. and Jajodia, S. (2008), "Optimal IDS Sensor Placement and Alert Prioritization Using Attack Graphs", 
Journal of Network and Systems Management, Vol. 16 No. 3, pp. 259-275. 

Pak, C. and Cannady, J. (2009), "Asset priority risk assessment using hidden markov models", Proceedings of 
the 10th ACM conference on SIG-information technology education, Fairfax, Virginia, USA, pp. 65-73. 

Porras, P.A., Fong, M.W. and Valdes, A. (2002), "A mission-impact-based approach to INFOSEC alarm 
correlation", Recent Advances in Intrusion Detection, Vol. 2516, pp. 95-114. 

Rogers, R., Fuller, E., Miles, G. and Cunningham, B. (2005), "Network Security Evaluation Using the NSA IEM 
", Syngress  

Saaty, T.L. (2008a), "Decision making with the analytic hierarchy process", International Journal of Services 
Sciences, Vol. 1 No. 1, pp. 83-98. 

Saaty, T.L. (2008b), "Relative Measurement and Its Generalization in Decision Making Why Pairwise 
Comparisons are Central in Mathematics for the Measurement of Intangible Factors The Analytic 
Hierarchy/Network Process", RACSAM. Rev. R. Acad. Cien. Serie A. Mat, Vol. 102 No. 2, pp. 251-318. 

Savola, R.M. and Abie, H. (2009), "Identification of Basic Measurable Security Components for a Distributed 
Messaging System", Proceedings of the Third International Conference on Emerging Security 
Information, Systems and Technologies (SECURWARE '09), pp. 121-128. 

Strasburg, C., Stakhanova, N., Basu, S. and Wong, J.S. (2009), "Intrusion response cost assessment 
methodology", Proceedings of the 4th International Symposium on Information, Computer, and 
Communications Security, Sydney, Australia, pp. 388-391. 

Subramanian, D., Le, H.T. and Loh, P.K.K. (2009), "Fuzzy Heuristic Design for Diagnosis of Web-Based 
Vulnerabilities", Proceedings of the Fourth International Conference on Internet Monitoring and 
Protection (ICIMP '09), pp. 103-108. 

Symantec (2011), "Symantec Internet Security Threat Report - Trends for 2010". Available at: 
http://www.symantec.com/business/threatreport/index.jsp (Accessed: 16 July 2011). 

Toth, T. and Kruegel, C. (2002), "Evaluating the impact of automated intrusion response mechanisms", 
Proceedings of the 18th Annual Computer Security Applications Conference, pp. 301-310. 

Valdes, A. and Skinner, K. (2001), "Probabilistic Alert Correlation", Proceedings of the 4th International 
Symposium on Recent Advances in Intrusion Detection, pp. 54-68. 

Wang, C. and Wulf, W.A. (1997), "Towards A Framework for Security Measurement", Proceedings of the 20th 
National Information Systems Security Conference, Baltimore, MD, pp. 522-533. 

Xiao, S.S., Zhang, Y.G., Liu, X.J. and Gao, J.J. (2008), "Alert Fusion Based on Cluster and Correlation 
Analysis", Proceedings of the International Conference on Convergence and Hybrid Information 
Technology, Daejeon, South Korea, pp. 163-168. 

Xu, D. and Ning, P. (2005), "Privacy-preserving alert correlation: a concept hierarchy based approach", 
Proceedings of the 21st Annual Computer Security Applications Conference, pp. 537-546. 



39 
 

Yu, S. and Rubo, Z. (2008), "Automatic intrusion response system based on aggregation and cost", Proceedings 
of the International Conference on Information and Automation (ICIA), pp. 1783-1786. 

Zahedi, F. (1986), "The Analytic Hierarchy Process: A Survey of the Method and Its Applications", Interfaces, 
Vol. 16 No. 4, pp. 96-108. 

Zhang, Z., Ho, P. and He, L. (2009), "Measuring IDS-estimated attack impacts for rational incident response: A 
decision theoretic approach", Computers & Security, Vol. 28 No. 7, pp. 605-614. 

Zhang, Z., Lin, X. and Ho, P.H. (2007), "Measuring Intrusion Impacts for Rational Response: A State-based 
Approach", Proceedings of the Second International Conference on Communications and Networking in 
China (CHINACOM '07), pp. 317-321. 

 
  


	A risk index model for security incident prioritisation
	Recommended Citation

	MainHeading

