129 research outputs found

    Geodesics on the manifold of multivariate generalized Gaussian distributions with an application to multicomponent texture discrimination

    Get PDF
    We consider the Rao geodesic distance (GD) based on the Fisher information as a similarity measure on the manifold of zero-mean multivariate generalized Gaussian distributions (MGGD). The MGGD is shown to be an adequate model for the heavy-tailed wavelet statistics in multicomponent images, such as color or multispectral images. We discuss the estimation of MGGD parameters using various methods. We apply the GD between MGGDs to color texture discrimination in several classification experiments, taking into account the correlation structure between the spectral bands in the wavelet domain. We compare the performance, both in terms of texture discrimination capability and computational load, of the GD and the Kullback-Leibler divergence (KLD). Likewise, both uni- and multivariate generalized Gaussian models are evaluated, characterized by a fixed or a variable shape parameter. The modeling of the interband correlation significantly improves classification efficiency, while the GD is shown to consistently outperform the KLD as a similarity measure

    Visual Quality Assessment and Blur Detection Based on the Transform of Gradient Magnitudes

    Get PDF
    abstract: Digital imaging and image processing technologies have revolutionized the way in which we capture, store, receive, view, utilize, and share images. In image-based applications, through different processing stages (e.g., acquisition, compression, and transmission), images are subjected to different types of distortions which degrade their visual quality. Image Quality Assessment (IQA) attempts to use computational models to automatically evaluate and estimate the image quality in accordance with subjective evaluations. Moreover, with the fast development of computer vision techniques, it is important in practice to extract and understand the information contained in blurred images or regions. The work in this dissertation focuses on reduced-reference visual quality assessment of images and textures, as well as perceptual-based spatially-varying blur detection. A training-free low-cost Reduced-Reference IQA (RRIQA) method is proposed. The proposed method requires a very small number of reduced-reference (RR) features. Extensive experiments performed on different benchmark databases demonstrate that the proposed RRIQA method, delivers highly competitive performance as compared with the state-of-the-art RRIQA models for both natural and texture images. In the context of texture, the effect of texture granularity on the quality of synthesized textures is studied. Moreover, two RR objective visual quality assessment methods that quantify the perceived quality of synthesized textures are proposed. Performance evaluations on two synthesized texture databases demonstrate that the proposed RR metrics outperforms full-reference (FR), no-reference (NR), and RR state-of-the-art quality metrics in predicting the perceived visual quality of the synthesized textures. Last but not least, an effective approach to address the spatially-varying blur detection problem from a single image without requiring any knowledge about the blur type, level, or camera settings is proposed. The evaluations of the proposed approach on a diverse sets of blurry images with different blur types, levels, and content demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods qualitatively and quantitatively.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Using the Dual-Tree Complex Wavelet Transform for Improved Fabric Defect Detection

    Get PDF
    Published ArticleThe dual-tree complex wavelet transform (DTCWT) solves the problems of shift variance and low directional selectivity in two and higher dimensions found with the commonly used discrete wavelet transform (DWT). It has been proposed for applications such as texture classification and content-based image retrieval. In this paper, the performance of the dual-tree complex wavelet transform for fabric defect detection is evaluated. As experimental samples, the fabric images from TILDA, a textile texture database from the Workgroup on Texture Analysis of the German Research Council (DFG), are used. The mean energies of real and imaginary parts of complex wavelet coefficients taken separately are identified as effective features for the purpose of fabric defect detection. Then it is shown that the use of the dual-tree complex wavelet transform yields greater performance as compared to the undecimated wavelet transform (UDWT) with a detection rate of 4.5% to 15.8% higher depending on the fabric type

    MULTIRIDGELETS FOR TEXTURE ANALYSIS

    Get PDF
    Directional wavelets have orientation selectivity and thus are able to efficiently represent highly anisotropic elements such as line segments and edges. Ridgelet transform is a kind of directional multi-resolution transform and has been successful in many image processing and texture analysis applications. The objective of this research is to develop multi-ridgelet transform by applying multiwavelet transform to the Radon transform so as to attain attractive improvements. By adapting the cardinal orthogonal multiwavelets to the ridgelet transform, it is shown that the proposed cardinal multiridgelet transform (CMRT) possesses cardinality, approximate translation invariance, and approximate rotation invariance simultaneously, whereas no single ridgelet transform can hold all these properties at the same time. These properties are beneficial to image texture analysis. This is demonstrated in three studies of texture analysis applications. Firstly a texture database retrieval study taking a portion of the Brodatz texture album as an example has demonstrated that the CMRT-based texture representation for database retrieval performed better than other directional wavelet methods. Secondly the study of the LCD mura defect detection was based upon the classification of simulated abnormalities with a linear support vector machine classifier, the CMRT-based analysis of defects were shown to provide efficient features for superior detection performance than other competitive methods. Lastly and the most importantly, a study on the prostate cancer tissue image classification was conducted. With the CMRT-based texture extraction, Gaussian kernel support vector machines have been developed to discriminate prostate cancer Gleason grade 3 versus grade 4. Based on a limited database of prostate specimens, one classifier was trained to have remarkable test performance. This approach is unquestionably promising and is worthy to be fully developed

    Directional edge and texture representations for image processing

    Get PDF
    An efficient representation for natural images is of fundamental importance in image processing and analysis. The commonly used separable transforms such as wavelets axe not best suited for images due to their inability to exploit directional regularities such as edges and oriented textural patterns; while most of the recently proposed directional schemes cannot represent these two types of features in a unified transform. This thesis focuses on the development of directional representations for images which can capture both edges and textures in a multiresolution manner. The thesis first considers the problem of extracting linear features with the multiresolution Fourier transform (MFT). Based on a previous MFT-based linear feature model, the work extends the extraction method into the situation when the image is corrupted by noise. The problem is tackled by the combination of a "Signal+Noise" frequency model, a refinement stage and a robust classification scheme. As a result, the MFT is able to perform linear feature analysis on noisy images on which previous methods failed. A new set of transforms called the multiscale polar cosine transforms (MPCT) are also proposed in order to represent textures. The MPCT can be regarded as real-valued MFT with similar basis functions of oriented sinusoids. It is shown that the transform can represent textural patches more efficiently than the conventional Fourier basis. With a directional best cosine basis, the MPCT packet (MPCPT) is shown to be an efficient representation for edges and textures, despite its high computational burden. The problem of representing edges and textures in a fixed transform with less complexity is then considered. This is achieved by applying a Gaussian frequency filter, which matches the disperson of the magnitude spectrum, on the local MFT coefficients. This is particularly effective in denoising natural images, due to its ability to preserve both types of feature. Further improvements can be made by employing the information given by the linear feature extraction process in the filter's configuration. The denoising results compare favourably against other state-of-the-art directional representations

    Methods for iris classification and macro feature detection

    Get PDF
    This work deals with two distinct aspects of iris-based biometric systems: iris classification and macro-feature detection. Iris classification will benefit identification systems where the query image has to be compared against all identities in the database. By preclassifying the query image based on its texture, this comparison is executed only against those irises that are from the same class as the query image. In the proposed classification method, the normalized iris is tessellated into overlapping rectangular blocks and textural features are extracted from each block. A clustering scheme is used to generate multiple classes of irises based on the extracted features. A minimum distance classifier is then used to assign the query iris to a particular class. The use of multiple blocks with decision level fusion in the classification process is observed to enhance the accuracy of the method.;Most iris-based systems use the global and local texture information of the iris to perform matching. In order to exploit the anatomical structures within the iris during the matching stage, two methods to detect the macro-features of the iris in multi-spectral images are proposed. These macro-features typically correspond to anomalies in pigmentation and structure within the iris. The first method uses the edge-flow technique to localize these features. The second technique uses the SIFT (Scale Invariant Feature Transform) operator to detect discontinuities in the image. Preliminary results show that detection of these macro features is a difficult problem owing to the richness and variability in iris color and texture. Thus a large number of spurious features are detected by both the methods suggesting the need for designing more sophisticated algorithms. However the ability of the SIFT operator to match partial iris images is demonstrated thereby indicating the potential of this scheme to be used for macro-feature detection

    Phenotype Recognition with Combined Features and Random Subspace Classifier Ensemble

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Automated, image based high-content screening is a fundamental tool for discovery in biological science. Modern robotic fluorescence microscopes are able to capture thousands of images from massively parallel experiments such as RNA interference (RNAi) or small-molecule screens. As such, efficient computational methods are required for automatic cellular phenotype identification capable of dealing with large image data sets. In this paper we investigated an efficient method for the extraction of quantitative features from images by combining second order statistics, or Haralick features, with curvelet transform. A random subspace based classifier ensemble with multiple layer perceptron (MLP) as the base classifier was then exploited for classification. Haralick features estimate image properties related to second-order statistics based on the grey level co-occurrence matrix (GLCM), which has been extensively used for various image processing applications. The curvelet transform has a more sparse representation of the image than wavelet, thus offering a description with higher time frequency resolution and high degree of directionality and anisotropy, which is particularly appropriate for many images rich with edges and curves. A combined feature description from Haralick feature and curvelet transform can further increase the accuracy of classification by taking their complementary information. We then investigate the applicability of the random subspace (RS) ensemble method for phenotype classification based on microscopy images. A base classifier is trained with a RS sampled subset of the original feature set and the ensemble assigns a class label by majority voting.</p> <p>Results</p> <p>Experimental results on the phenotype recognition from three benchmarking image sets including HeLa, CHO and RNAi show the effectiveness of the proposed approach. The combined feature is better than any individual one in the classification accuracy. The ensemble model produces better classification performance compared to the component neural networks trained. For the three images sets HeLa, CHO and RNAi, the Random Subspace Ensembles offers the classification rates 91.20%, 98.86% and 91.03% respectively, which compares sharply with the published result 84%, 93% and 82% from a multi-purpose image classifier WND-CHARM which applied wavelet transforms and other feature extraction methods. We investigated the problem of estimation of ensemble parameters and found that satisfactory performance improvement could be brought by a relative medium dimensionality of feature subsets and small ensemble size.</p> <p>Conclusions</p> <p>The characteristics of curvelet transform of being multiscale and multidirectional suit the description of microscopy images very well. It is empirically demonstrated that the curvelet-based feature is clearly preferred to wavelet-based feature for bioimage descriptions. The random subspace ensemble of MLPs is much better than a number of commonly applied multi-class classifiers in the investigated application of phenotype recognition.</p

    Vector extension of monogenic wavelets for geometric representation of color images

    No full text
    14 pagesInternational audienceMonogenic wavelets offer a geometric representation of grayscale images through an AM/FM model allowing invariance of coefficients to translations and rotations. The underlying concept of local phase includes a fine contour analysis into a coherent unified framework. Starting from a link with structure tensors, we propose a non-trivial extension of the monogenic framework to vector-valued signals to carry out a non marginal color monogenic wavelet transform. We also give a practical study of this new wavelet transform in the contexts of sparse representations and invariant analysis, which helps to understand the physical interpretation of coefficients and validates the interest of our theoretical construction
    corecore