159 research outputs found

    Markerless Motion Capture via Convolutional Neural Network

    Get PDF
    A human motion capture system can be defined as a process that digitally records the movements of a person and then translates them into computer-animated images. To achieve this goal, motion capture systems usually exploit different types of algorithms, which include techniques such as pose estimation or background subtraction: this latter aims at segmenting moving objects from the background under multiple challenging scenarios. Recently, encoder-decoder-type deep neural networks designed to accomplish this task have reached impressive results, outperforming classical approaches. The aim of this thesis is to evaluate and discuss the predictions provided by the multi-scale convolutional neural network FgSegNet_v2, a deep learning-based method which represents the current state-of-the-art for implementing scene-specific background subtraction. In this work, FgSegNet_v2 is trained and tested on BBSoF S.r.l. dataset, extending its scene- specific use to a more general application in several environments

    Video foreground segmentation with deep learning

    Get PDF
    This thesis tackles the problem of foreground segmentation in videos, even under extremely challenging conditions. This task comes with a plethora of hurdles, as the model needs to distinguish the difference between moving objects and irrelevant background motion which can be caused by the weather, illumination, camera movement etc. As foreground segmentation is often the first step of various highly important applications (video surveillance for security, patient/infant monitoring etc.), it is crucial to develop a model capable of producing excellent results in all kinds of conditions. In order to tackle this problem, we follow the recent trend in other computer vision areas and harness the power of deep learning. We design architectures of convolutional neural networks specifically targeted to counter the aforementioned challenges. We first propose a 3D CNN that models the spatial and temporal information of the scene simultaneously. The network is deep enough to successfully cover more than 50 different scenes of various conditions with no need for any fine-tuning. These conditions include illumination (day or night), weather (sunny, rainy or snowing), background movements (trees moving from the wind, fountains etc) and others. Next, we propose a data augmentation method specifically targeted to illumination changes. We show that artificially augmenting the data set with this method significantly improves the segmentation results, even when tested under sudden illumination changes. We also present a post-processing method that exploits the temporal information of the input video. Finally, we propose a complex deep learning model which learns the illumination of the scene and performs foreground segmentation simultaneously

    Sea-Surface Object Detection Based on Electro-Optical Sensors: A Review

    Get PDF
    Sea-surface object detection is critical for navigation safety of autonomous ships. Electrooptical (EO) sensors, such as video cameras, complement radar on board in detecting small obstacle sea-surface objects. Traditionally, researchers have used horizon detection, background subtraction, and foreground segmentation techniques to detect sea-surface objects. Recently, deep learning-based object detection technologies have been gradually applied to sea-surface object detection. This article demonstrates a comprehensive overview of sea-surface object-detection approaches where the advantages and drawbacks of each technique are compared, covering four essential aspects: EO sensors and image types, traditional object-detection methods, deep learning methods, and maritime datasets collection. In particular, sea-surface object detections based on deep learning methods are thoroughly analyzed and compared with highly influential public datasets introduced as benchmarks to verify the effectiveness of these approaches. The arti

    Deep Learning-Based Low Complexity and High Efficiency Moving Object Detection Methods

    Get PDF
    Moving object detection (MOD) is the process of extracting dynamic foreground content from the video frames, such as moving vehicles or pedestrians, while discarding the nonmoving background. It plays an essential role in computer vision field. The traditional methods meet difficulties when applied in complex scenarios, such as videos with illumination changes, shadows, night scenes,and dynamic backgrounds. Deep learning methods have been actively applied to moving object detection in recent years and demonstrated impressive results. However, many existing models render superior detection accuracy at the cost of high computational complexity and slow inference speed. This fact has hindered the development of such models in mobile and embedded vision tasks, which need to be carried out in a timely fashion on a computationally limited platform. The current research aims to use the technique of separable convolution in both 2D and 3D CNN together with our proposed multi-input multi-output strategy and two-branch structure to devise new deep network models that significantly improve inference speed, yet require smaller model size and achieve reduction in floating-point operations as compared to existing deep learning models with competitive detection accuracy. This research devised three deep neural network models, addressing the following main problems in the area of moving object detection: 1. Improving Detection Accuracy by extracting both spatial and temporal information: To improve detection accuracy, the proposed models adopt 3D convolution which is more suitable to extract both spatial and temporal information in video data than 2D convolution. We also put this 3D convolution into two-branch network that extracts both high-level global features and low-level detailed features can further increase the accuracy. 2. Reduce model size and computational complexity by changing network structure: The standard 2D and 3D convolution are further decomposed into depthwise and pointwise convolutions. While existing 3D separable CNN all addressed other problems such as gesture recognition, force prediction, 3D object classification or reconstruction, our work applied it to the moving object detection task for the first time in the literature. 3. Increasing inference speed by changing the input-output relationship: We proposed a multi-input multi-output (MIMO) strategy to increase inference speed, which can take multiple frames as the network input and output multiple frames of detection results. This MIMO embedded in 3Dseparable CNN can further increase model inference speed significantly and maintain high detection accuracy. Compared to state-of-the-art approaches, our proposed methods significantly increases the inference speed, reduces the model size, meanwhile achieving the highest detection accuracy in the scene dependent evaluation (SDE) setup and maintaining a competitive detection accuracy in the scene independent evaluation (SIE) setup. The SDE setup is widely used to tune and test the model on a specific video as the training and test sets are from the same video. The SIE setup is designed to assess the generalization capability of the model on completely unseen videos
    • …
    corecore