5 research outputs found

    2D/3D SOIL CONSUMPTION TRACKING IN A MARBLE QUARRY DISTRICT

    Get PDF
    Abstract. Complex extractive districts, such as the marble quarries in the Apuan Alps (northern Italy), require soil consumption monitoring over the years that could be achieved through high-resolution remotely sensed data. To derive 2D and 3D indicators with appropriate resolution for annual monitoring of high-resolution changes in soil consumption, aerial images, LiDAR acquisitions, satellite data, and Remotely Piloted Aircraft Systems (RPAS) acquisitions were used. In particular, open-access Sentinel-2 multispectral satellite imagery with a spatial resolution of 10 m was used to assess cover changes (2D), and then refined by manual interpretation for 5 years (2016-2021). 3D changes were detected by comparing free aerial LiDAR data from 2009 and 2017, integrated with two stereo models obtained from Pléiades high-resolution satellite images from 2020 and 2022. 3D changes observed over the years by algebraic elevation comparison, performed in QGIS 3.x environment, highlight quarries characterized by intense mining activities (extracted marble blocks, characterized by positive elevation differences) and quarry area management (debris disposal and service infrastructure construction, characterized by negative elevation differences). The combined use of 2D and 3D change indicators can be challenging in order to correctly represent soil consumption over the years. A dual 2D/3D webgis client have been developed for proper representation of 2D/3D spatial indicators of ongoing extraction activities in the Carrara marble basin: high-resolution images have been served as tiled data, while 2D/3D spatial indicators are served as static and/or tiled vector data. Open-Source libraries have used in data processing, serving and representation inside a map interface

    Web-based scientific exploration and analysis of 3D scanned cuneiform datasets for collaborative research

    Get PDF
    The three-dimensional cuneiform script is one of the oldest known writing systems and a central object of research in Ancient Near Eastern Studies and Hittitology. An important step towards the understanding of the cuneiform script is the provision of opportunities and tools for joint analysis. This paper presents an approach that contributes to this challenge: a collaborative compatible web-based scientific exploration and analysis of 3D scanned cuneiform fragments. The WebGL -based concept incorporates methods for compressed web-based content delivery of large 3D datasets and high quality visualization. To maximize accessibility and to promote acceptance of 3D techniques in the field of Hittitology, the introduced concept is integrated into the Hethitologie-Portal Mainz, an established leading online research resource in the field of Hittitology, which until now exclusively included 2D content. The paper shows that increasing the availability of 3D scanned archaeological data through a web-based interface can provide significant scientific value while at the same time finding a trade-off between copyright induced restrictions and scientific usability

    INTERACTIVE ONLINE VISUALIZATION OF COMPLEX 3D GEOMETRIES

    Get PDF
    In the last decade 3D datasets of the Cultural Heritage field have become extremely rich and high detailed due to the evolution of the technologies they derive from. However, their online deployment, both for scientific and general public purposes is usually deficient in user interaction and multimedia integration. A single solution that efficiently addresses these issues is presented in this paper. The developed framework provides an interactive and lightweight visualization of high-resolution 3D models in a web browser. It is based on 3D Heritage Online Presenter (3DHOP) and Three.js library, implemented on top of WebGL API. 3DHOP capabilities are fully exploited and enhanced with new, high level functionalities. The approach is especially suited to complex geometry and it is adapted to archaeological and architectural environments. Thus, the multi-dimensional documentation of the archaeological site of Meteora, in central Greece is chosen as the case study. Various navigation paradigms are implemented and the data structure is enriched with the incorporation of multiple 3D model viewers. Furthermore, a metadata repository, comprises ortho-images, photographic documentation, video and text, is accessed straight forward through the inspection of the main 3D scene of Meteora by a system of interconnections

    ULTRA CLOSE-RANGE DIGITAL PHOTOGRAMMETRY AS A TOOL TO PRESERVE, STUDY, AND SHARE SKELETAL REMAINS

    Get PDF
    Skeletal collections around the world hold valuable and intriguing knowledge about humanity. Their potential value could be fully exploited by overcoming current limitations in documenting and sharing them. Virtual anthropology provides effective ways to study and value skeletal collections using three-dimensional (3D) data, e.g. allowing powerful comparative and evolutionary studies, along with specimen preservation and dissemination. CT- and laser scanning are the most used techniques for three-dimensional reconstruction. However, they are resource-intensive and, therefore, difficult to be applied to large samples or skeletal collections. Ultra close-range digital photogrammetry (UCR-DP) enables photorealistic 3D reconstructions from simple photographs of the specimen. However, it is the least used method in skeletal anthropology and the lack of appropriate protocols often limit the quality of its outcomes. This Ph.D. thesis explored UCR-DP application in skeletal anthropology. The state-of-the-art of this technique was studied, and a new approach based on cloud computing was proposed and validated against current gold standards. This approach relies on the processing capabilities of remote servers and a free-for-academic use software environment; it proved to produce measurements equivalent to those of osteometry and, in many cases, they were more precise than those of CT-scanning. Cloud-based UCR-DP allowed the processing of multiple 3D models at once, leading to a low-cost, quick, and effective 3D production. The technique was successfully used to digitally preserve an initial sample of 534 crania from the skeletal collections of the Museo Sardo di Antropologia ed Etnografia (MuSAE, Università degli Studi di Cagliari). Best practices in using the technique for skeletal collection dissemination were studied and several applications were developed including MuSAE online virtual tours, virtual physical anthropology labs and distance learning, durable online dissemination, and values-led participatorily designed interactive and immersive exhibitions at the MuSAE. The sample will be used in a future population study of Sardinian skeletal characteristics from the Neolithic to modern times. In conclusion, cloud-based UCR-DP offers many significant advantages over other 3D scanning techniques: greater versatility in terms of application range and technical implementation, scalability, photorealistic restitution, reduced requirements relating to hardware, labour, time, and cost, and is, therefore, the best choice to document and value effectively large skeletal samples and collections
    corecore