819 research outputs found

    Data management of on-line partial discharge monitoring using wireless sensor nodes integrated with a multi-agent system

    Get PDF
    On-line partial discharge monitoring has been the subject of significant research in previous years but little work has been carried out with regard to the management of on-site data. To date, on-line partial discharge monitoring within a substation has only been concerned with single plant items, so the data management problem has been minimal. As the age of plant equipment increases, so does the need for condition monitoring to ensure maximum lifespan. This paper presents an approach to the management of partial discharge data through the use of embedded monitoring techniques running on wireless sensor nodes. This method is illustrated by a case study on partial discharge monitoring data from an ageing HVDC reactor

    Framework for supporting JavaScript-Based Mobile Agents

    Get PDF
    The evolution of technology in interconnection solutions, such as networks or the Internet, and the emergence both of wireless sensors networks and distributed systems allowed many communication architectures to appear, being the Client-server architecture the most common. Here, we present a dissertation work about the mobile agents computing paradigm. A middleware and a mobile agent framework have been developed using the JavaScript language that allows the development, execution and the ability to move JavaScript mobile agents through the local network and Internet using Node.js for desktop operating systems and React Native for mobile operating systems, such as Android and iOS. This initiative arose as a way of dealing with problems raised by the considerable amount of existing Java based mobile agents platforms, which force the installation of the Java Virtual Machine on the devices, making complicated its execution in operating systems like macOS, iOS and others operating systems not compatible with Java

    Interactive Planning and Sensing for Aircraft in Uncertain Environments with Spatiotemporally Evolving Threats

    Get PDF
    Autonomous aerial, terrestrial, and marine vehicles provide a platform for several applications including cargo transport, information gathering, surveillance, reconnaissance, and search-and-rescue. To enable such applications, two main technical problems are commonly addressed.On the one hand, the motion-planning problem addresses optimal motion to a destination: an application example is the delivery of a package in the shortest time with least fuel. Solutions to this problem often assume that all relevant information about the environment is available, possibly with some uncertainty. On the other hand, the information gathering problem addresses the maximization of some metric of information about the environment: application examples include such as surveillance and environmental monitoring. Solutions to the motion-planning problem in vehicular autonomy assume that information about the environment is available from three sources: (1) the vehicle’s own onboard sensors, (2) stationary sensor installations (e.g. ground radar stations), and (3) other information gathering vehicles, i.e., mobile sensors, especially with the recent emphasis on collaborative teams of autonomous vehicles with heterogeneous capabilities. Each source typically processes the raw sensor data via estimation algorithms. These estimates are then available to a decision making system such as a motion- planning algorithm. The motion-planner may use some or all of the estimates provided. There is an underlying assumption of “separation� between the motion-planning algorithm and the information about environment. This separation is common in linear feedback control systems, where estimation algorithms are designed independent of control laws, and control laws are designed with the assumption that the estimated state is the true state. In the case of motion-planning, there is no reason to believe that such a separation between the motion-planning algorithm and the sources of estimated environment information will lead to optimal motion plans, even if the motion planner and the estimators are themselves optimal. The goal of this dissertation is to investigate whether the removal of this separation, via interactive motion-planning and sensing, can significantly improve the optimality of motion- planning. The major contribution of this work is interactive planning and sensing. We consider the problem of planning the path of a vehicle, which we refer to as the actor, to traverse a threat field with minimum threat exposure. The threat field is an unknown, time- variant, and strictly positive scalar field defined on a compact 2D spatial domain – the actor’s workspace. The threat field is estimated by a network of mobile sensors that can measure the threat field pointwise. All measurements are noisy. The objective is to determine a path for the actor to reach a desired goal with minimum risk, which is a measure sensitive not only to the threat exposure itself, but also to the uncertainty therein. A novelty of this problem setup is that the actor can communicate with the sensor network and request that the sensors position themselves in a procedure we call sensor reconfiguration such that the actor’s risk is minimized. This work continues with a foundation in motion planning in time-varying fields where waiting is a control input. Waiting is examined in the context of finding an optimal path with considerations for the cost of exposure to a threat field, the cost of movement, and the cost of waiting. For example, an application where waiting may be beneficial in motion-planning is the delivery of a package where adverse weather may pose a risk to the safety of a UAV and its cargo. In such scenarios, an optimal plan may include “waiting until the storm passes.� Results on computational efficiency and optimality of considering waiting in path- planning algorithms are presented. In addition, the relationship of waiting in a time- varying field represented with varying levels of resolution, or multiresolution is studied. Interactive planning and sensing is further developed for the case of time-varying environments. This proposed extension allows for the evaluation of different mission windows, finite sensor network reconfiguration durations, finite planning durations, and varying number of available sensors. Finally, the proposed method considers the effect of waiting in the path planner under the interactive planning and sensing for time-varying fields framework. Future work considers various extensions of the proposed interactive planning and sensing framework including: generalizing the environment using Gaussian processes, sensor reconfiguration costs, multiresolution implementations, nonlinear parameters, decentralized sensor networks and an application to aerial payload delivery by parafoil

    Architecture and Methods for Innovative Heterogeneous Wireless Sensor Network Applications

    Get PDF
    Nowadays wireless sensor netwoks (WSN) technology, wireless communications and digital electronics have made it realistic to produce a large scale miniaturized devices integrating sensing, processing and communication capabilities. The focus of this paper is to present an innovative mobile platform for heterogeneous sensor networks, combined with adaptive methods to optimize the communication architecture for novel potential applications in multimedia and entertainment. In fact, in the near future, some of the applications foreseen for WSNs will employ multi-platform systems with a high number of different devices, which may be completely different in nature, size, computational and energy capabilities, etc. Nowadays, in addition, data collection could be performed by UAV platforms which can be a sink for ground sensors layer, acting essentially as a mobile gateway. In order to maximize the system performances and the network lifespan, the authors propose a recently developed hybrid technique based on evolutionary algorithms. The goal of this procedure is to optimize the communication energy consumption in WSN by selecting the optimal multi-hop routing schemes, with a suitable hybridization of different routing criteria. The proposed approach can be potentially extended and applied to ongoing research projects focused on UAV-based sensing with WSN augmentation and real-time processing for immersive media experiences

    Autonomous construction agents: An investigative framework for large sensor network self-management

    Get PDF
    Recent technological advances have made it cost effective to utilize massive, heterogeneous sensor networks. To gain appreciable value from these informational systems, there must be a control scheme that coordinates information flow to produce meaningful results. This paper will focus on tools developed to manage the coordination of autonomous construction agents using stigmergy, in which a set of basic low-level rules are implemented through various environmental cues. Using VE-Suite, an open-source virtual engineering software package, an interactive environment is created to explore various informational configurations for the construction problem. A simple test case is developed within the framework, and construction times are analyzed for possible functional relationships pertaining to performance of a particular set of parameters and a given control process. Initial experiments for the test case show sensor saturation occurs relatively quickly with 5-7 sensors, and construction time is generally independent of sensor range except for small numbers of sensors. Further experiments using this framework are needed to define other aspects of sensor performance. These trends can then be used to help decide what kinds of sensing capabilities are required to simultaneously achieve the most cost-effective solution and provide the required value of information when applied to the development of real world sensor applications
    corecore