497 research outputs found

    A multi-level preconditioned Krylov method for the efficient solution of algebraic tomographic reconstruction problems

    Full text link
    Classical iterative methods for tomographic reconstruction include the class of Algebraic Reconstruction Techniques (ART). Convergence of these stationary linear iterative methods is however notably slow. In this paper we propose the use of Krylov solvers for tomographic linear inversion problems. These advanced iterative methods feature fast convergence at the expense of a higher computational cost per iteration, causing them to be generally uncompetitive without the inclusion of a suitable preconditioner. Combining elements from standard multigrid (MG) solvers and the theory of wavelets, a novel wavelet-based multi-level (WMG) preconditioner is introduced, which is shown to significantly speed-up Krylov convergence. The performance of the WMG-preconditioned Krylov method is analyzed through a spectral analysis, and the approach is compared to existing methods like the classical Simultaneous Iterative Reconstruction Technique (SIRT) and unpreconditioned Krylov methods on a 2D tomographic benchmark problem. Numerical experiments are promising, showing the method to be competitive with the classical Algebraic Reconstruction Techniques in terms of convergence speed and overall performance (CPU time) as well as precision of the reconstruction.Comment: Journal of Computational and Applied Mathematics (2014), 26 pages, 13 figures, 3 table

    Wavelet methods for a weighted sparsity penalty for region of interest tomography

    Get PDF
    We consider region of interest (ROI) tomography of piecewise constant functions. Additionally, an algorithm is developed for ROI tomography of piecewise constant functions using a Haar wavelet basis. A weighted ℓp–penalty is used with weights that depend on the relative location of wavelets to the region of interest. We prove that the proposed method is a regularization method, i.e., that the regularized solutions converge to the exact piecewise constant solution if the noise tends to zero. Tests on phantoms demonstrate the effectiveness of the method.FWF, T 529-N18, Mumford-Shah models for tomography IINSF, 1311558, Tomography and Microlocal AnalysisFWF, W 1214, Doktoratskolleg "Computational Mathematics

    Controlled wavelet domain sparsity for x-ray tomography

    Get PDF
    Tomographic reconstruction is an ill-posed inverse problem that calls for regularization. One possibility is to require sparsity of the unknown in an orthonormal wavelet basis. This, in turn, can be achieved by variational regularization, where the penalty term is the sum of the absolute values of the wavelet coefficients. The primal-dual fixed point algorithm showed that the minimizer of the variational regularization functional can be computed iteratively using a soft-thresholding operation. Choosing the soft-thresholding parameter mu > 0 is analogous to the notoriously difficult problem of picking the optimal regularization parameter in Tikhonov regularization. Here, a novel automatic method is introduced for choosing mu, based on a control algorithm driving the sparsity of the reconstruction to an a priori known ratio of nonzero versus zero wavelet coefficients in the unknown.Peer reviewe
    • …
    corecore