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1.  Introduction

Tomographic imaging is based on recording projection 
images of an object along several directions of view [1–3]. 
The resulting data can be interpreted as a collection of line 
integrals of an unknown attenuation coefficient function f (x). 
In this work, we discretize the problem by approximating f as 
a vectorized pixel image f ∈ RN2

 and using the pencil-beam 
model for x-rays, so the indirect measurement is modelled 
by a matrix equation Af = m. The inverse problem of recon-
structing f  from tomographic data is highly sensitive to noise 
and modelling errors, or in other words, it is ill-posed.

We focus on overcoming ill-posedness by enforcing spar-
sity of f  with respect to a linear sparsifying transform. Among 
many possible choices, we consider an orthonormal wavelets 
basis, which provides a reasonable trade-off between compu-
tational cost and quality of the reconstruction, with respect to 
more recent directional-aware sparsifying transforms.

In practice, the sparse reconstruction f S ∈ RN2
 is defined 

as the minimizer of this variational regularization functional:

f S = argmin
f∈RN2

{
1
2
‖Af − m‖2

2 + µ ‖Wf‖1

}
,� (1)

where the matrix W is a digital implementation of the wavelet 
transform we consider.

The parameter μ in (1) describes a trade-off between 
emphasizing more the data fidelity term or the regularizing 
penalty term. In general, the larger the noise amplitude in the 
data, the larger μ needs to be.

One popular method to solve the problem (1) is the so-
called iterative soft-thresholding algorithm (ISTA). Such an 
algorithm has been studied already in [4]; the adaptation to 
sparsity-promoting inversion was introduced in [5] and fur-
ther developed in [6]. Nevertheless, the convergence rate for 
a constrained problem, such as non-negativity constraints, 
is not taken into account in [5, 6]. However, in tomographic 
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problems, enforcing non-negativity on the attenuation coef-
ficients is highly desirable. This is based on the physical fact 
that the x-ray radiation can only attenuate inside the target, not 
strengthen. Thus, the problem we need to solve reads as

f S = argmin
f∈RN2 , f�0

{
1
2
‖Af − m‖2

2 + µ ‖Wf‖1

}
,� (2)

where the inequality f � 0 is meant component-wise. In their 
seminal paper [7], Peijun Chen, Jianguo Huang, and Xiaoqun 
Zhang show that the minimizer of (2) can be computed using 
the primal-dual fixed point (PDFP) algorithm:

y(i+1) = PC

(
f (i) − τ∇g(f (i))− λWTv(i)

)

v(i+1) =
(

I − Tµ
)(

Wy(i+1) + v(i)
)

f (i+1) = PC

(
f (i) − τ∇g(f (i))− λWTv(i+1)

)
,

� (3)

where τ and λ are positive parameters, g(f) = 1
2‖Af − m‖2

2, 
and T  is the soft-thresholding operator defined by

Tµ(c) =





c + µ
2 if c � −µ

2
0 if |c| < µ

2
c − µ

2 if c � −µ
2 .

� (4)

Here µ > 0 represents the thresholding parameter, while τ 
and λ are parameters that need to be suitably chosen to guar-
antee convergence. In detail, 0 < λ < 1/λmax(WWT), where 
λmax denotes the maximum eigenvalue, and 0 < τ < 2/τlip, 
being τlip the Lipschitz constant for g(f). Furthermore, in (3) 

the non-negative ‘quadrant’ is denoted by C = RN2

+  and PC 
is the Euclidian projection. In other words, PC replaces any 
negative elements in the input vector by zero.

Choosing the soft-thresholding parameter μ is analogous 
to the notoriously difficult problem of picking the optimal 
regularization parameter in Tikhonov regularization. Many 
approaches for the regularization parameter selection have 
been proposed. For a selection of methods designed for total 
variation (TV) regularization see the following studies: [8–
18]. An automatic regularization parameter choice technique 
using a sparsity-promoting penalty for image denoising is 
studied in [19]. Iterative hard-thresholding for compressed 
sensing has been studied in [20].

In this paper, we introduce a novel automatic method for 
choosing μ based on a control algorithm driving the sparsity 
of the reconstruction to an a priori known ratio 0 � Cpr � 1 of 
nonzero wavelet coefficients in f . Our approach is based on 
the following idea: in sparsity-promoting regularization, it is 
natural to assume that the a priori information is given as the 
percentage of nonzero coefficients in the unknown. The idea of 
using the a priori known level of sparsity has been used previ-
ously [21, 22], however, the idea of using feedback control to 
achieve this is new.

We think of the iteration (3) as a plant which takes the cur
rent threshold parameter µ(i) as an input and returns C(i), the 
level of sparsity in the iterate f (i), as an output. Then, we apply 
a simple incremental feedback control to µ(i). The feedback 
loop we propose is inspired by proportional-integral-derivative 

(PID) controllers, which are widely used to control industrial 
processes [23–25]. If Cpr  is the expected degree of sparsity, 
and C(i) is the degree of sparsity at the current iterate i, we 
change µ(i) adaptively as follows:

µ(i+1) = µ(i) + β(C(i) − Cpr),� (5)

where β > 0 is a parameter used to tune the controller. 
We propose a simple method for choosing β based on the 
wavelet coefficients of the back-projection reconstruction, 
which is quick and easy to compute. If the β chosen is too 
large, then the controller results in an oscillating behavior for 
the sequence (µ(i))i. However, if the chosen β is too small, 
reaching the expected sparsity level may take a long time. 
Therefore we also account for an additional fine-tuning of the 
controller by exploiting the zero-crossings of the controller 
error e(i) = C(i) − Cpr .

We test our fully automatic controlled wavelet domain 
sparsity (CWDS) method on both simulated and real tomo-
graphic data. The results suggest that our method produces 
robust and accurate reconstructions, when the suitable degree 
of sparsity is available.

CWDS has a connection to the following studies, which 
also uses a parameter changing adaptively during the itera-
tions: [26–32]. However, our approach is different from the 
others as it promotes an a priori known level of sparsity. Also, 
this is not the first study which has used the wavelet trans-
form as a regularization tool in limited data tomography. A 
non-exhaustive list includes [22, 33–38]. However, the pro-
posed approach is different from the previous works, since 
it promotes a fully automatic choice for the regularization 
parameter.

2.  Materials and methods

2.1. Tomography setup

Consider a physical domain Ω ⊂ R2  and a non-negative atten-
uation function f : Ω ⊂ R2 → R+. As outlined in the intro-
duction, we represent f by a matrix f = [ f̃ij] ∈ RN×N that is 
later on intended as a vector belonging to RN2

, obtained by 
stacking the entries of the matrix column by column. In x-ray 
tomography, the detector measures the incoming photons and 
the measurement data are collected from the intensity losses 
of x-rays from different directions or angles of view. After 
calibration, the measurements can be modeled as

∫

LX

f (x) ds =
N∑

i=1

N∑
j=1

aij f̃ij,

where aij is the distance that an x-ray line LX travels through 
the pixel (i, j). This results in the following matrix model:

m = Af ,� (6)

where the measurement matrix A = [aij] ∈ RP×N2
 contains 

information about the measurement geometry, and m ∈ RP 
is the vector representing the measured data (also called sino-
gram), P being the number of angles of view multiplied by the 
number of detector cells.

Meas. Sci. Technol. 29 (2018) 014002
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Notice that in the following, we assume both the measure-
ment matrix A and the measured data m to be normalized by 
the norm ‖A‖ of the matrix A.

2.2.  2D Haar wavelets

For the sake of the readers’ convenience, we briefly recall here 
the main ideas about Haar wavelets.

Consider the two real-valued functions ϕ(x) and ψ(x) 
defined on the interval [0, 1]. Generally, ϕ(x) is referred to as 
the scaling function and ψ(x) as the mother wavelet. They are 
defined as follows:

ϕ(x) ≡ 1, ψ(x) =
{

1 if 0 � x < 1/2,
−1 if 1/2 � x � 1.

A discrete Haar wavelet system, where discrete means that the 
transform is associated with a discrete parameter set, is built by 
appropriately scaling and translating the mother wavelet ψ(x):

ψjk(x) := 2 j/2ψ(2 jx − k) for j � 0, 0 � k � 2 j − 1,

and the scaling function ϕ(x):

ϕjk(x) := 2 j/2ϕ(2 jx − k) for j � 0, 0 � k � 2 j − 1,

where ϕ(x) = 0 for x < 0 and x > 1. Here, j, k ∈ Z.
It is well known that the above 1D construction leads to an 

orthonormal system. In 2D, we consider the standard tensor-
product extension of the 1D Haar wavelet transform. In detail, 
a 2D Haar system is spanned by four types of functions. Three 
of these types have the following form:

ϕjk(x)ψjk(y), ψjk(x)ϕjk(y), ψjk(x)ψjk(y),� (7)

and the fourth type is given by ϕj0k(x)ϕj0k(y). Notice that the 
fourth type describes the coarsest scale j0. The associated 
matrix underlying the discrete wavelet transform of a function 
f  is given by

W =

[
Wϕ WV

ψ

WH
ψ WD

ψ

]
∈ RN2×N2

where

Wϕ =
1√
RS

R∑
r=1

S∑
s=1

f{q}ϕj0k{r}ϕj0k{s}� (8)

WH
ψ =

1√
RS

R∑
r=1

S∑
s=1

f{q}ψjk{r}ϕjk{s}� (9)

WV
ψ =

1√
RS

R∑
r=1

S∑
s=1

f{q}ϕjk{r}ψjk{s}� (10)

WD
ψ =

1√
RS

R∑
r=1

S∑
s=1

f{q}ψjk{r}ψjk{s}� (11)

with q = r + R ∗ (s − 1), and the brackets {·} indicating that 
we now intend also φ and ψ to be discrete functions defined in 
the intervals [1, R] or [1, S], being R, S ∈ Z.

Thus, the vector collecting all the wavelet coefficients is 
given by

Wf ∈ RN2
.� (12)

With the above notation, the minimization problem (2) 
reads

f S = argmin
f∈RN2

+

{
1
2
‖Af − m‖2

2 + µ‖Wf‖1

}
.� (13)

One of the main benefits of wavelets is that the transform 
coefficients are easy to compute and many fast algorithmic 
implementations are available.

For more information about the Haar wavelet transform 
and its implementation, we refer to the classic text [39].

2.3.  Sparsity promoting-regularization

We consider the functional in (2) with {ψγ}γ∈Γ being the Haar 
wavelet basis as described in section 2.2. To solve the mini-
mization problem (2), we implement the PDFP algorithm (3).

2.4.  Sparsity selection

We assume that we have an object available f pr similar to the 
one we are imaging.

Given κ � 0, for a vector w ∈ RN2
 we define the number of 

elements larger than κ in absolute value as follows:

#κw := #{ i |1 � i � N2, |wi| > κ}.

Now, the prior sparsity level is defined by

Cpr =
#κ{Wf pr}

N2 ,

where N2 is the total number of coefficients. In practical com-
putations, the value of κ is set to be small but positive.

2.5.  Automatic selection of the soft-thresholding parameter μ

Assume that we know a priori the expected degree of sparsity 
0 < Cpr � 1 in the reconstruction. We introduce a simple feed-
back loop to drive the soft-thresholding parameter μ to the 
desired ratio Cpr  of nonzero wavelet coefficients.

The core idea is to allow µ = µ(i) to vary during the itera-
tions by adaptively tuning it at each iteration by the following 
updating rule:

µ(i+1) := µ(i) + β(C(i) − Cpr),

where 0 � C(i) � 1 is the sparsity level of the reconstruction 
f (i) at the ith iteration. The above controller is a special case 
of an incremental PID-controller, where only integral control 
is performed.

2.6. The tuning parameter β

Selecting the tuning parameter β is easier than selecting the 
soft-thresholding parameter μ. Indeed, β has to be small 
enough to avoid oscillations in the sparsity C(i) of the iterates 
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as a function of i. If the chosen β is too small, this only results 
in a slower convergence of the algorithm.

To this purpose, we choose β by making a suitable esti-
mate for the initial µ(0). First, we compute the back-pro-
jection of the measured data to get a rough reconstruction. 
Back-projection is quick to compute and shows the dominant 
features of the target, but noise and artefacts are still pre-
dominant, especially when only a few projection views are 
available. As a result, the back-projection reconstruction is 
only good enough for estimating an initial estimate for µ(0), 
which is done by computing its wavelet coefficients. The ini-
tial value of the thresholding parameter µ(0) is set equal to the 
mean of the absolute values of the M smallest wavelet coef-
ficients. In our case, we choose M = n (1 − Cpr), where n is 
the total number of wavelet coefficients. Lastly, the tuning 
parameter is set to be β = ωµ(0), where ω is a positive param
eter. To start with a small value of β, ω is required to be small, 
and vice versa.

In addition, the controller is fine-tuned by detecting when 
the sign of difference e(i) = C(i) − Cpr  changes. When this 
happens, β is updated by β|e(i) − e(i−1)|. The underlying 
idea is that, if the desired sparsity level is crossed, that is, e 
changes sign, either β is far too large and oscillations have 
emerged, or we are already reasonably close to the optimal 
μ, and β can be decreased without affecting the performance 
too much.

2.7.  Pseudo-algorithm

A step-by-step description of the proposed CWDS algorithm 
is summarized in algorithm 1.

Algorithm 1.  Controlled wavelet domain sparsity algorithm.

1: �Inputs: measurement data vector m, system matrix A, param
eters τ , λ > 0 to ensure convergence, a priori degree of spar-
sity Cpr , initial thresholding parameter µ(0), maximum number 
of iterations Imax > 0, tolerances ε1, ε2 > 0 for the stopping 
rule and control stepsize β > 0.

2: f (0) = 0, i = 0, e = 1, and C(0) = 1
3: while i < Imax and |e| � ε1 or d � ε2 do

4:    e = C(i) − Cpr

5:    if sign(e(i+1)) �= sign(e(i)) then

6:      β = β(1 − |e(i+1) − e(i)|)
7:    µ(i+1) = max{0,µ(i) + βe}
8:    y(i+1) = max{0, f (i) − γ∇g(f (i))− λWTv(i)}
9:    v(i+1) = (I − Tµ(i))(Wy(i+1) + v(i))

10:    f (i+1) = max{0, f (i)−γ∇g(f (i))−λWTv(i+1)}
11:    C(i+1) = N−2#κ(Wf (i+1))

12:    d = ‖ f (i+1) − f (i)‖2/‖f (i+1)‖2

13:    i := i + 1

3.  Data acquisition

In this paper, we consider both simulated data (see section 3.1) 
and real data (see section 3.2).

3.1.  Simulated data

We use the Shepp–Logan phantom, available, for instance, 
in the Matlab image processing toolbox (see figure  1). The 
phantom is sized N × N , with N = 328. The projection data 
(i.e. sinogram) of the simulated phantom is corrupted by a 
white Gaussian process with zero mean and 0.1% variance.

3.2.  Real data

We use the tomographic x-ray real data of a walnut, consisting 
of a 2D cross-section of a real 3D walnut measured with a 
custom-built CT device available at the University of Helsinki 
(Finland). The dataset is available and freely downloadable 
at http://fips.fi/dataset.php. For detailed documentation of the 
acquiring setup, including the specifications of the x-ray sys-
tems, see [40]. Here, we only mention that the sinogram is 
sized 328 × 120. Sinograms with different resolutions for the 
angle of view can be obtained by further downsampling.

4.  Numerical experiments

In this section, we present numerical results in the framework 
of 2D fan-beam geometry.

4.1.  Algorithm parameters

In all the experiments, we set λ = 0.99 (being 
λmax(WWT) = 1) and τ = 1 to ensure convergence. Also, 
we choose ε1 = 5 × 10−4 and ε2 = 5 × 10−4 for the stopping 
rule, and Imax = 1500 as a safeguard maximum number of 
iterations (which is never attained in the results reported in 
section 4.3), β = ωµ(0), where ω = 1 and the values of µ(0) 
for each experiments are shown in table 1.

All the algorithms were implemented in Matlab 8.5 
(R2015a) and performed on Intel Core i5 at 2.9 GHz and CPU 
8GB 1867 MHz DDR3 memory. The Haar matrix W is gen-
erated by using Spot–A Linear-Operator Toolbox [41]. The 
number of scales for the wavelet transform is set equal to 3 
(see figure 2).

Table 1.  Initial values µ(0) of the soft-thresholding parameter.

Target 120 data 30 data

Shepp–Logan 0.0202 0.0195
Walnut 0.0019 0.0021

Figure 1.  The Shepp–Logan phantom, sized 328 × 328, generated 
with Matlab.

Meas. Sci. Technol. 29 (2018) 014002
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4.2.  A priori sparsity level

To compute the desired sparsity level, we choose κ = 10−6 
for both the Shepp–Logan phantom and the walnut, and we 
apply the strategy outlined in section 2.5. In particular, for the 
walnut case, since we do not have at our disposal the ‘original’ 
target, we compute the sparsity level from the photographs of 
two walnuts cut in half (see figure 3). The a priori sparsity 
level Cpr  for the walnut is the average of those two sparsity 
levels.

For the Shepp–Logan phantom, the percentage of nonzero 
coefficients was estimated to be 12%. The percentage of the 
nonzero coefficients for the walnut case was estimated to be 
32%.

4.3.  Reconstruction results

In this section, we present numerical results for the CWDS 
method, using both simulated and real data. As a benchmark 
comparison, we computed the reconstructions also with fil-
tered back-projection (FBP) and with the anisotropic total 
variation (TV) approach. For both the simulated and real data, 
we computed the reconstructions for two different resolutions 
of the angle of view, namely 120 and 30 projection directions, 
respectively.

The FBP and CWDS reconstructions of the Shepp–Logan 
phantom are shown in figure 4. Plots of the sparsity levels, 
as the iteration progresses, are reported in figure 8. For the 
120 projections case, the proposed approach converges in 885 
iterations, while in the 30 projections case, it converges in 
301 iterations. As a figure of merit, we use the relative error: 
the obtained values are summarized in table 2, where we also 
report the values of the relative error obtained for the FBP 
reconstructions.

Concerning the TV approach, we consider smoothed TV 
(sTV) [42], where a small quantity δ is considered to remove 
the singularity of the discrete gradient:

TVδ( f) =
N2∑
i=1

∥∥∥
(
∇i f
δ

)∥∥∥
2

where ∇i ∈ R2×N2
 is the ith submatrix of the discrete gradient 

operator ∇, namely (∇f)i = ∇if . Similar to wavelets, the 
TV operator can be understood as a sparsifying transforma-
tion, which transforms the original image into an edge map. 
The reconstructions are computed using the gradient descent 
method, with the Barzilai–Borwein [43] strategy for the step 
length selection. For the regularization parameter, we sampled 
ten different values µ ∈ [10−8, 101] and the smooting param
eter δ is set equal to 10−6. For the simulated Shepp–Logan 
phantom, we computed the relative error: the values for each 
reconstruction are reported in table 3. One of the drawbacks 

Figure 3.  Photographs of the walnuts split in half. The sparsity 
level of each image was calculated to provide the a priori 
information of the sparsity level for the measured walnut. The 
above photographs do not include the measured walnut.

Figure 2.  Wavelet transform of the left photograph in figure 3. 
The original image is high-pass filtered, yielding the three large 
images. It is then low-pass filtered and downscaled, yielding an 
approximation image; this image is high-pass filtered to produce 
three smaller detailed images, and low-pass filtered to produce the 
final approximation image in the upper-left corner.

Table 2.  The relative error of the Shepp–Logan phantom 
reconstructions for FBP and CWDS.

Method 120 data 30 data

FBP 0.15 0.27
CWDS 0.04 0.08

Figure 4.  Reconstructions of the Shepp–Logan phantom using FBP 
with (a) 120 projections, and (c) 30 projections. Reconstructions 
using CWDS with (b) 120 projections, and (d) 30 projections.

Meas. Sci. Technol. 29 (2018) 014002



Z Purisha et al

6

of the standard sTV approach, compared to the CWDS, is 
that to select the ‘best’ reconstruction, quite often in practice, 
one computes the reconstructions for different values of the 
regularization parameter μ and then the ‘best’ one is manu-
ally choosen, by selecting the image that yields the smallest 
relative error or, when such a measure is not available, the 
one which seems most appealing through visual inspection. 
To show how sensible the quality of the recostruction is to the 
choice of the regularization parameter, we report sTV recon-
structions for the Shepp–Logan phantom using two different 
values of μ: 10-4, corresponding to the smallest relative errors 
and 10-2 to bigger relative errors, as presented in table 3. The 
reconstructions are collected in figure 5.

Similarly for the walnut, we report in figure 7 sTV recon-
structions for two different values of the regularization 
parameter μ. Once again, we show the best and a rather poor 
result, this time choosing through visual inspection. The FBP 
and CWDS reconstructions for the walnut dataset, for both 
120 and 30 projections, are collected in figure 6. The corre
sponding sparsity plots are shown in figure  10. Concerning 
the number of iterations to convergence, the 120 projections 
case required 180 iterations, while in the 30 projections case 
convergence was reached in 206 iterations.

Lastly, the computation times for all the reconstructions are 
reported in table 4.

5.  Discussion

We presented results for both simulated and real x-ray data, 
also in the limited data case of only 30 projection views, 
with the fully automatic CWDS method. As can be seen 
in figures 4 and 6, the reconstructions for both the Shepp–
Logan phantom and the walnut data outperform the FBP 
reconstructions. For the Shepp–Logan case, this is con-
firmed by the relative errors reported in table  2. In detail, 
the reconstructions using CWDS produce sharper images, 
with less artefacts. Overall, the quality of the reconstruc-
tion remains good even when the number of projections is 
reduced to 30, while, for the FBP reconstructions, streak 
artefacts overwhelm the reconstructions. Finally, the pres-
ence of �1-norm term combined with a sparsity transform, 
that produce denoising, and the non-negativity constraint 
(which is not enforced in the classical FBP scheme) defini-
tively improves the reconstructions.

The image quality of the CWDS reconstructions are 
comparable to those obtained using sTV. However, for 

Figure 5.  sTV reconstructions of the Shepp–Logan phantom using 
µ = 10−4 with (a) 120 projections and (c) 30 projection. sTV 
reconstructions of the Shepp–Logan phantom using µ = 10−2 with 
(b) 120 projections and (d) 30 projection.

Figure 6.  Reconstructions of the walnut using FBP with (a) 120 
projections, and (c) 30 projections. Reconstructions of the walnut 
using CWDS with (b) 120 projections, and (d) 30 projections.

Table 4.  Computation times for FBP reconstructions and CWDS 
reconstructions, in seconds.

Target Method 120 data 30 data

Walnut FBP 0.45 0.09
CWDS 17.40 16.30

Shepp–Logan FBP 0.02 0.01
CWDS 98.90 29.50

Table 3.  The relative error for the Shepp–Logan reconstructions 
using sTV.

μ 120 data 30 data

10−4 0.014 0.044

10−2 0.236 0.289
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the sTV reconstructions, we can obtain satisfying results 
only if we use a proper regularization parameter μ. In 
these experiments, we compute sTV reconstructions for 
ten different values of the regularization parameter. For 
the Shepp–Logan phantom, the smallest relative errors for 
120 and 30 projection data are attained by using µ = 10−4. 
Using different μ may yield poor reconstructions, as can 
be seen in figures 5 and 7 for the Shepp–Logan phantom 
and the walnut, respectively. We stress that one of the 
main advantages of the proposed CWDS method is that it 
does not require any tuning for the regularization param
eter. Also, compared to some other approaches that appear 
simpler, like iterative hard thresholding by keeping a 
constant number of largest wavelet coefficients [20], the 
CWDS seemingly can be extended to different forms of 

thresholding with slight changes. For instance, future 
work could focus in coupling the tuning-free idea intro-
duced with CWDS with the anisotropic TV formulation. 
The CWDS could potentially be applied as well to other 
techniques than thresholding-based iterative reconstruc-
tion algorithms.

Concerning the behavior of the sparsity level for the walnut 
case, it can be seen in the first row of figure 8 that the initial 
rapid oscillations decays fast. This is due to the role of the 
additional controller tuning β, as presented in section 2.6.

For the Shepp–Logan case, it can be seen in figure 9, and 
with a closer look for some iterations in figure  10, that the 
ratio of nonzero wavelet coefficients produces long lasting 
high frequency oscillations. In the case of 30 projections, the 
oscillations are fixated around the desired level of sparsity, and 
thus they are likely controller induced: the tuning parameter 
β is too large and thus the ratio of nonzero coefficients keeps 
overshooting, and, at the same time, since the absolute differ-
ence of the controller error e of two consecutive iterations is 
very small, β decreases slowly. In the case of 120 projections, 
however, the oscillations are not centered around the desired 
level of sparsity. This unexpected behavior is likely to be an 
indication of the nonlinearities in the system. Fortunately, 
the problem seems relatively minor in this case: the ratio of 

Figure 7.  sTV reconstructions of the walnut using µ = 10−5 with 
(a) 120 projections and (c) 30 projection. sTV reconstructions of 
the walnut using µ = 10−3 with (a) 120 projections and (c) 30 
projections.

Figure 9.  The ratio of nonzero wavelet coefficients as the iteration 
progresses, for the Shepp–Logan phantom. (a) 120 projections. (b) 
30 projections.

Figure 8.  The ratio of nonzero wavelet coefficients as the 
iteration progresses for the walnut case. (a) 120 projections. (b) 30 
projections. The dashed line shows the sparsity prior Cpr .

Figure 10.  A closer look at the sparsity level shows oscillations 
for the Shepp–Logan phantom. (a) 120 projections (iterations 
100–400). (b) 30 projections (iterations 100–200). The dashed line 
shows the sparsity prior Cpr .
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nonzero coefficients of the reconstruction eventually gets suf-
ficiently close to the desired level.

The proposed feedback controller is relatively easy to 
implement and some related-experiments have been done 
successfully using the method. However, if, for the suggested 
simple controller, the nonlinearity and the uncertainty of the 
system prove to be too much in some cases, alternative con-
troller designs are required. Future research might therefore 
involve the use of nonlinear control techniques to avoid prob-
lems caused by the nonlinearity. Also, future research could 
delve into alternative adaptive self-tuning controllers, such 
as the adaptive integral controller introduced in [44]. Such 
controllers might improve the system response to unexpected 
disturbances and help with the oscillations caused by the slow 
decay of β and the nonlinearities demonstrated in figure  9. 
Additionally, careful analysis of the dynamics of the algorithm 
(3) is required to see if convergence of CWDS can always be 
guaranteed with the methods presented in this paper, or if a 
more advanced control is required.

Anyhow, what is remarkable is that, for all numerical 
experiments, the sparsity level eventually converges to the 
desired sparsity level Cpr .

6.  Conclusion

In this paper, we proposed a new approach in tuning the 
regularization parameter, in this case the sparsity level of the 
reconstruction in the wavelet domain. The CWDS seems to be 
a promising strategy, especially in real-life applications where 
the end-users could avoid manually tuning the parameters.

In the case of sparsely collected projection data, the fully 
automatic CWDS outperforms the conventional FBP algo-
rithm in terms of image quality (measured as relative RMS 
error).

Acknowledgments

This work was supported by the Academy of Finland through 
the Finnish Centre of Excellence in Inverse Problems Research 
2012–2017 (Academy of Finland CoE-project 284715).

ORCID iDs

Zenith Purisha  https://orcid.org/0000-0003-0801-3087

References

	 [1]	 Kak A C and Slaney M 2001 Principles of Computerized 
Tomographic Imaging (Philadelphia: SIAM) (https://doi.
org/10.1137/1.9780898719277)

	 [2]	 Natterer F 2001 The Mathematics of Computerized 
Tomography (Philadelphia: SIAM)(https://doi.
org/10.1137/1.9780898719284)

	 [3]	 Shepp L A and Kruskal J 1978 Computerized tomography: the 
new medical x-ray technology Am. Math. Mon. 85 420–39

	 [4]	 Lions P-L and Mercier B 1979 Splitting algorithms for the 
sum of two nonlinear operators SIAM J. Numer. Anal. 
16 964–79

	 [5]	 Daubechies I, Defrise M and DeMol C 2004 An iterative 
thresholding algorithm for linear inverse problems with a 
sparsity constraint Commun. Pure Appl. Math. 57 1413–57

	 [6]	 Loris I and Verhoeven C 2011 On a generalization of the 
iterative soft-thresholding algorithm for the case of non-
separable penalty Inverse Problems 27 125007

	 [7]	 Chen P, Huang J and Zhang X 2016 A primal-dual fixed  
point algorithm for minimization of the sum of three  
convex separable functions Fixed Point Theory Appl. 
2016 54

	 [8]	 Rullgård H 2008 A new principle for choosing regularization 
parameter in certain inverse problems (arXiv:0803.3713v2 
[math.NA])

	 [9]	 Clason C, Jin B and Kunisch K 2010 A duality-based 
splitting method for �1-tv image restoration with automatic 
regularization parameter choice SIAM J. Sci. Comput. 
32 1484–505

	[10]	 Dong Y, Hintermüller M and Rincon-Camacho M M 2011 
Automated regularization parameter selection in multi-
scale total variation models for image restoration J. Math. 
Imaging Vis. 40 82104

	[11]	 Frick K, Marnitz P and Munk A 2012 Statistical 
multiresolution dantzig estimation in imaging: fundamental 
concepts and algorithmic framework Electron. J. Stat. 
6 231–68

	[12]	 Wen Y-W and Chan R H 2011 Parameter selection for 
total-variation-based image restoration using discrepancy 
principle IEEE Trans. Image Process. 21 1770–81

	[13]	 Chen K, Loli Piccolomini E and Zama F 2014 An automatic 
regularization parameter selection algo-rithm in the total 
variation model for image deblurring Numer. Algorithms 
67 7392

	[14]	 Toma A, Sixou B and Peyrin F 2015 Iterative choice of the 
optimal regularization parameter in TV image restoration 
Inverse Problems Imaging 9 1171–91

	[15]	 Niinimäki K, Lassas M, Hämäläinen K, Kallonen A, 
Kolehmainen V, Niemi E and Siltanen S 2014 Multi-
resolution parameter choice method for total variation 
regularized tomography SIAM Journal on Imaging Sciences 
9.3 938–974

	[16]	 Liu J, Huang T-Z, Lv X-G and Wang S 2017 High-order 
total variation-based poissonian image deconvolution with 
spatially adapted regularization parameter Appl. Math. 
Modelling 45 516–29

	[17]	 Becker H, Albera L, Comon P, Nunes J-C, Gribonval R, 
Fleureau J, Guillotel P and Merlet I 2017 Sissy: an  
efficient and automatic algorithm for the analysis of EEG 
sources based on structured sparsity NeuroImage 157 
157–72

	[18]	 Hao B and Zhu J 2017 Fast l1 regularized iterative forward 
backward splitting with adaptive parameter selection 
for image restoration J. Vis. Commun. Image Represent. 
44 139–47

	[19]	 Pfister L and Bresler Y 2017 Automatic parameter tuning 
for image denoising with learned sparsifying transforms 
IEEE International Confe on Acoustics, Speech and 
Signal Processing (ICASSP) https://doi.org/10.1109/
ICASSP.2017.7953316

	[20]	 Blumensath T and Davies M E 2009 Iterative hard 
thresholding for compressed sensing Applied and 
Computational Harmonic Analysis 27 265–74

	[21]	 Kolehmainen V, Lassas M, Niinimäki K and Siltanen S 2012 
Sparsity-promoting bayesian inversion Inverse Problems 28 
025005

	[22]	 Hämäläinen K, Kallonen A, Kolehmainen V, Lassas M, 
Niinimäki K and Siltanen S 2013 Sparse tomography SIAM 
J. Sci. Comput. 35 B644–65

	[23]	 Åström K J and Hägglund T 1995 PID Controllers: Theory, 
Design, and Tuning vol 2 (Research Park, NC: ISA)

Meas. Sci. Technol. 29 (2018) 014002

https://orcid.org/0000-0003-0801-3087
https://orcid.org/0000-0003-0801-3087
https://doi.org/10.1137/1.9780898719277
https://doi.org/10.1137/1.9780898719277
https://doi.org/10.1137/1.9780898719284
https://doi.org/10.1137/1.9780898719284
https://doi.org/10.2307/2320062
https://doi.org/10.2307/2320062
https://doi.org/10.2307/2320062
https://doi.org/10.1137/0716071
https://doi.org/10.1137/0716071
https://doi.org/10.1137/0716071
https://doi.org/10.1002/cpa.20042
https://doi.org/10.1002/cpa.20042
https://doi.org/10.1002/cpa.20042
https://doi.org/10.1088/0266-5611/27/12/125007
https://doi.org/10.1088/0266-5611/27/12/125007
https://doi.org/10.1186/s13663-016-0543-2
https://doi.org/10.1186/s13663-016-0543-2
http://arxiv.org/abs/0803.3713v2
https://doi.org/10.1137/090768217
https://doi.org/10.1137/090768217
https://doi.org/10.1137/090768217
https://doi.org/10.1007/s10851-010-0248-9
https://doi.org/10.1007/s10851-010-0248-9
https://doi.org/10.1214/12-EJS671
https://doi.org/10.1214/12-EJS671
https://doi.org/10.1214/12-EJS671
https://doi.org/10.1109/TIP.2011.2181401
https://doi.org/10.1109/TIP.2011.2181401
https://doi.org/10.1109/TIP.2011.2181401
https://doi.org/10.1007/s11075-013-9775-y
https://doi.org/10.1007/s11075-013-9775-y
https://doi.org/10.3934/ipi.2015.9.1171
https://doi.org/10.3934/ipi.2015.9.1171
https://doi.org/10.3934/ipi.2015.9.1171
https://doi.org/10.1137/15M1034076]
https://doi.org/10.1137/15M1034076]
https://doi.org/10.1137/15M1034076]
https://doi.org/10.1016/j.apm.2017.01.009
https://doi.org/10.1016/j.apm.2017.01.009
https://doi.org/10.1016/j.apm.2017.01.009
https://doi.org/10.1016/j.neuroimage.2017.05.046
https://doi.org/10.1016/j.neuroimage.2017.05.046
https://doi.org/10.1016/j.neuroimage.2017.05.046
https://doi.org/10.1016/j.jvcir.2017.01.016
https://doi.org/10.1016/j.jvcir.2017.01.016
https://doi.org/10.1016/j.jvcir.2017.01.016
https://doi.org/10.1109/ICASSP.2017.7953316
https://doi.org/10.1109/ICASSP.2017.7953316
https://doi.org/10.1016/j.acha.2009.04.002
https://doi.org/10.1016/j.acha.2009.04.002
https://doi.org/10.1016/j.acha.2009.04.002
https://doi.org/10.1088/0266-5611/28/2/025005
https://doi.org/10.1088/0266-5611/28/2/025005
https://doi.org/10.1137/120876277
https://doi.org/10.1137/120876277
https://doi.org/10.1137/120876277


Z Purisha et al

9

	[24]	 Araki M 2009 PID control Control Systems, Robotics and 
Automation: System Analysis and Control: Classical 
Approaches II ed H Unbehauen (Oxford: EOLSS Publishers 
Co. Ltd.) pp 58–79

	[25]	 Bennett S 1993 A History of Control Engineering, 1930–1955 
vol 47 (London: IET)

	[26]	 Bahraoui M and Lemaire B 1994 Convergence of diagonally 
stationary sequences in convex optimization Set-Valued 
Analysis 2 49–61

	[27]	 Attouch H 1996 Viscosity solutions of minimization problems 
SIAM J. Optim. 6 769–806

	[28]	 Attouch H and Cominetti R 1996 A dynamical approach to 
convex minimization coupling approximation with the 
steepest descent method J. Differ. Equ. 128 519–40

	[29]	 Cabot A 2005 Proximal point algorithm controlled by a slowly 
vanishing term: applications to hierarchical minimization 
SIAM J. Optim. 15 555–72

	[30]	 Rosasco L, Tacchetti A and Villa S 2014 Regularization 
by early stopping for online learning algorithms 
(arXiv:1405.0042v1)

	[31]	 Rosasco L, Villa S and Vũ B C 2016 A stochastic inertial 
forward–backward splitting algorithm for multivariate 
monotone inclusions Optimization 65 1293–314

	[32]	 Hale E T, Yin W and Zhang Y 2008 Fixed-point continuation 
for �1-minimization: methodology and convergence SIAM J. 
Optim. 19 1107–30

	[33]	 Rantala M, Vanska S, Jarvenpaa S, Kalke M, Lassas M, 
Moberg J and Siltanen S 2006 Wavelet-based reconstruction 
for limited-angle x-ray tomography IEEE Trans. Med. 
Imaging 25 210–7

	[34]	 Niinimäki K, Siltanen S and Kolehmainen V 2007 Bayesian 
multiresolution method for local tomography in dental 
x-ray imaging Phys. Med. Biol. 52 6663

	[35]	 Soussen C and Idier J 2008 Reconstruction of three-
dimensional localized objects from limited angle x-ray 
projections: an approach based on sparsity and multigrid 
image representation J. Electron. Imaging 17 033011–1

	[36]	 Klann E, Ramlau R and Reichel L 2011 Wavelet-based 
multilevel methods for linear ill-posed problems BIT 
Numer. Math. 51 669–94

	[37]	 Klann E, Quinto E T and Ramlau R 2015 Wavelet methods 
for a weighted sparsity penalty for region of interest 
tomography Inverse Problems 31 025001

	[38]	 Helin T and Yudytskiy M 2013 Wavelet methods in multi-
conjugate adaptive optics Inverse Problems 29 085003

	[39]	 Daubechies I 1992 Ten Lectures on Wavelets (Philadelphia, 
PA: SIAM) (https://doi.org/10.1137/1.9781611970104)

	[40]	 Hämäläinen K, Harhanen L, Kallonen A, Kujanpää A, 
Niemi E and Siltanen S 2015 Tomographic x-ray data of a 
walnut (arXiv:1502.04064)

	[41]	 Vanden Berg E and Friedlander M 2013 Spot a linear-operator 
toolbox www.cs.ubc.ca/labs/scl/spot/ (accessed: 02 Auguest 
2013)

	[42]	 Vogel C R 2002 Computational Methods for Inverse 
Problems (Philadelphia, PA: SIAM) (https://doi.
org/10.1137/1.9780898717570)

	[43]	 Barzilai J and Borwein J M 1988 Two point step size gradient 
methods IMA J. Numer. Anal. 8 141–8

	[44]	 Logemann H and Townley S 1997 Adaptive integral control of 
time-delay systems IEE Proc. Control Theory Appl. 144 531–6

Meas. Sci. Technol. 29 (2018) 014002

https://doi.org/10.1007/BF01027092
https://doi.org/10.1007/BF01027092
https://doi.org/10.1007/BF01027092
https://doi.org/10.1137/S1052623493259616
https://doi.org/10.1137/S1052623493259616
https://doi.org/10.1137/S1052623493259616
https://doi.org/10.1006/jdeq.1996.0104
https://doi.org/10.1006/jdeq.1996.0104
https://doi.org/10.1006/jdeq.1996.0104
https://doi.org/10.1137/S105262340343467X
https://doi.org/10.1137/S105262340343467X
https://doi.org/10.1137/S105262340343467X
https://arxiv-web.arxiv.org/abs/1405.0042v1
https://doi.org/10.1080/02331934.2015.1127371
https://doi.org/10.1080/02331934.2015.1127371
https://doi.org/10.1080/02331934.2015.1127371
https://doi.org/10.1137/070698920
https://doi.org/10.1137/070698920
https://doi.org/10.1137/070698920
https://doi.org/10.1109/TMI.2005.862206
https://doi.org/10.1109/TMI.2005.862206
https://doi.org/10.1109/TMI.2005.862206
https://doi.org/10.1088/0031-9155/52/22/008
https://doi.org/10.1088/0031-9155/52/22/008
https://doi.org/10.1117/1.2954960
https://doi.org/10.1117/1.2954960
https://doi.org/10.1117/1.2954960
https://doi.org/10.1007/s10543-011-0320-x
https://doi.org/10.1007/s10543-011-0320-x
https://doi.org/10.1007/s10543-011-0320-x
https://doi.org/10.1088/0266-5611/31/2/025001
https://doi.org/10.1088/0266-5611/31/2/025001
https://doi.org/10.1088/0266-5611/29/8/085003
https://doi.org/10.1088/0266-5611/29/8/085003
https://doi.org/10.1137/1.9781611970104
http://arxiv.org/abs/1502.04064
http://www.cs.ubc.ca/labs/scl/spot/
https://doi.org/10.1137/1.9780898717570
https://doi.org/10.1137/1.9780898717570
https://doi.org/10.1093/imanum/8.1.141
https://doi.org/10.1093/imanum/8.1.141
https://doi.org/10.1093/imanum/8.1.141
https://doi.org/10.1049/ip-cta:19971526
https://doi.org/10.1049/ip-cta:19971526
https://doi.org/10.1049/ip-cta:19971526

