44 research outputs found

    Solving the Selesnick-Burrus Filter Design Equations Using Computational Algebra and Algebraic Geometry

    Get PDF
    In a recent paper, I. Selesnick and C.S. Burrus developed a design method for maximally flat FIR low-pass digital filters with reduced group delay. Their approach leads to a system of polynomial equations depending on three integer design parameters K,L,MK,L,M. In certain cases (their ``Region I''), Selesnick and Burrus were able to derive solutions using only linear algebra; for the remaining cases ("Region II''), they proposed using Gr\"obner bases. This paper introduces a different method, based on multipolynomial resultants, for analyzing and solving the Selesnick-Burrus design equations. The results of calculations are presented, and some patterns concerning the number of solutions as a function of the design parameters are proved.Comment: 34 pages, 2 .eps figure

    Resultant optimization of the three-dimensional intersection problem

    Get PDF
    Resultant approach is here employed to optimize the dimensionless space angles to solve in a closed form the over-determined three-dimensional intersection problem. The advantages of the resultant optimization approach are the non-requirement of the approximate initial starting values, non iterative and does not rely on linearization during its operation, save for the nonlinear variance-covariance/error propagation to generate the weight matrix. Resultant method, a branch of abstract algebra, is employed to compute the combinatorial scatters, which are then optimized to offer a closed form solution. Using the test network Stuttgart Central as an example, it is demonstrated that the resultant optimization approach can be applied as an alternative approach to conventional methods such as least squares for point positioning within the over-determined intersection framework, especially when the approximate starting values for linearization and iterative approaches are not known as may happen in Photogrammetry, Machine Vision or in Robotics

    Iterated Resultants in CAD

    Get PDF

    Exact matrix formula for the unmixed resultant in three variables

    Get PDF
    We give the first exact determinantal formula for the resultant of an unmixed sparse system of four Laurent polynomials in three variables with arbitrary support. This follows earlier work by the author on exact formulas for bivariate systems and also uses the exterior algebra techniques of Eisenbud and Schreyer. Along the way we will prove an interesting new vanishing theorem for the sheaf cohomology of divisors on toric varieties. This will allow us to describe some supports in four or more variables for which determinantal formulas for the resultant exist.Comment: 24 pages, 2 figures, Cohomology vanishing theorem generalized with new combinatorial proof. Can state some cases of exact resultant formulas in higher dimensio

    Algorithmic Boundedness-From-Below Conditions for Generic Scalar Potentials

    Get PDF
    Checking that a scalar potential is bounded from below (BFB) is an ubiquitous and notoriously difficult task in many models with extended scalar sectors. Exact analytic BFB conditions are known only in simple cases. In this work, we present a novel approach to algorithmically establish the BFB conditions for any polynomial scalar potential. The method relies on elements of multivariate algebra, in particular, on resultants and on the spectral theory of tensors, which is being developed by the mathematical community. We give first a pedagogical introduction to this approach, illustrate it with elementary examples, and then present the working Mathematica implementation publicly available at GitHub. Due to the rapidly increasing complexity of the problem, we have not yet produced ready-to-use analytical BFB conditions for new multi-scalar cases. But we are confident that the present implementation can be dramatically improved and may eventually lead to such results.Comment: 27 pages, 2 figures; v2: added reference
    corecore