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ABSTRACT 
Resultant approach is here employed to optimize the dimensionless space angles to solve in a closed 
form the over-determined three-dimensional intersection problem. The advantages of the resultant 
optimization approach are the non-requirement of the approximate initial starting values, non iterative 
and does not rely on linearization during its operation, save for the nonlinear variance-covariance/error 
propagation to generate the weight matrix. Resultant method, a branch of abstract algebra, is employed 
to compute the combinatorial scatters, which are then optimized to offer a closed form solution. Using 
the test network Stuttgart Central as an example, it is demonstrated that the resultant optimization 
approach can be applied as an alternative approach to conventional methods such as least squares for 
point positioning within the over-determined intersection framework, especially when the approximate 
starting values for linearization and iterative approaches are not known as may happen in 
Photogrammetry, Machine Vision or in Robotics. 
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INTRODUCTION 
In an earlier paper [1], the closed form solution of the planar lateration and intersection 
problems was presented. This idea was further developed in [7],[8] to include the 
minimal three-dimensional intersection problem, a classical Photogrammetric 
positioning technique. The presence of Global Positioning System (GPS: Global 
Problem Solver) demands that geodetic and photogrammetric direction observations 
(Machine Vision, "Total Observing Stations") have to be analysed in a 
three-dimensional Euclidean Space. The pair of tools called "Resection and 
Intersection" has to operate three-dimensionally. In [7],[8], we have already 
demonstrated how the three-dimensional intersection problem can be solved using the 
dimensionless space angles in the minimal sense (i.e, non-over-determined case). In 
practise however, one is often faced with a situation where more observations than 
unknowns exist thus necessitating the need to solve the over-determined problem. 
More often, the over-determined solutions adopted in practice are iterative in nature 
and thus pegging their functionality on the choice of approximate starting values, 
linearization for nonlinear models and iterating to achieve convergence. 
   The present contribution proposes the use of the resultant approach suggested by B. 
Strumfels [16],[17] as the computing engine of the Gauss-Jacobi combinatorial 
algorithm, see i.e., [2], to solve the nonlinear over-determined three-dimensional 
intersection problem. Space angles are here used in an over-determined sense to solve 
via resultant optimization the over-determined three-dimensional intersection problem. 
   The problem of initial starting values for iterative approaches has been addressed 
in the works of [18],[19] which proposes faster methods to find the approximate 
starting values. The requirements of some starting values, iterations and linearization  
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however still underpin classical procedures in spite of the faster procedures for 
determining starting values proposed by [18], [19]. The algebraic resultant 
optimization that is applied in the present contribution however enjoys the advantage 
that all the requirements listed above for non-algebraic approaches are immaterial. The 
nonlinear problem is solved in an exact form with linearization permitted only during 
the formation of the nonlinear variance-covariance/error propagation to generate the 
weight matrix of the combinatorial scatter. No starting values, linearization of the 
observation equations, iterations and convergence conditions are required. The only 
requirement is to be able to solve in a closed (exact) form systems of nonlinear 
equations, a condition already presented in [8] and the fulfilment of Theorem 2.1 in [4]. 
Other added advantages of the proposed approach are its capability to diagnose 
outlying observations [2] and the provision of an independent approach that can be 
used to control the non-algebraic classical procedures. For other works related to the 
treatment of nonlinear problems, the reader is referred to [9], [10], [11], [12], [13], [15], 
and [17]. 
   The present contribution therefore is an extension of the closed form solution of 
three-dimensional intersection problem [7],[8] by employing the Gauss-Jacobi 
combinatorial approach presented in [2] to solve without initial starting values, 
linearization or iteration, the over-determined three-dimensional intersection problem. 
 
THREE-DIMENSIONAL INTERSECTION WITH MORE OBSERVATIONS THAN UNKNOWNS 
 
For the complete theory of three-dimensional intersection problem and the solution in 
closed form using resultant approach, we refer to [8]. Here the over-determined 
version is introduced. In order to formulate the over-determined three-dimensional 
intersection problem, one needs to understand the minimal version of the problem 
which is presented as follows; Given three space angles 12 23 31{ , , }ψ ψ ψ  obtained from 
the spherical coordinates of type horizontal directions iT  and vertical directions iB , 
for 1,..., 3i =  in Figure (1), the distances 1 1 2 2 3 3{ , , }x S x S x S= = =  from the unknown 
point E3P ∈  to three other known stations E3 1,2, 3iP i∈ =  have to be determined in 
the first step. In the second step the derived distances from step 1 are treated as 
pseudo-observations. From an unknown point E3P ∈  to a minimum of three known 
points E3 1,2, 3iP i∈ =  (see, e.g., Figure 1), the position { , , }X Y Z  of the unknown 
point E3P ∈  has to be determined. When only three known stations are used to 
determine the three-dimensional position of the unknown station, the problem reduces 
to that of minimal 3d closed form solution. The algebraic form of the problem (i.e., 
following Theorem 2.1 in [4]) was developed by first converting the nonlinear system 
of equations into polynomial in [8] as follows: 
  From Figure 1, the nonlinear system of equations for the three dimensional 3-point 
positioning was given as 

 

2 2 2
2 1 12 12 12 1

2 2 2
3 2 23 23 23 2

2 2 2
1 3 31 31 31 3

2 cos( )

2 cos( )

2 cos( )

x x S S x

x x S S x

x x S S x

ψ

ψ

ψ

= + −

= + −

= + −

  (1) 

and expressed in algebraic form (2) without bilinear terms as 
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1 1 2 2 3 3{ , , }x S x S x S= = =  being the distances from 1P  to 0P , 2P  to 0P , and 3P  to 0P  
respectively. 
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   From the formulation of the minimal case, the over-determined version of the 
problem can now be said to be when more than three stations are given, i.e., 
1 2 3, , ,..., .nP P P P  In this case, the observations will comprise distances from 1P  to 0P , 
2P  to 0P , 3P  to 0P ,. . . , nP  to 0P  with the unknowns being { , , }X Y Z  and 3n > . 

Such is the kind of problem requiring resultant optimisation herein proposed. 

 
Fig.1: 3-point intersection. 

 
RESULTANTS OPTIMISATION 

Resultant approach 
   Whereas the resultant of two polynomials is well known and algorithms for 
computing it are well incorporated into computer algebra packages such as Maple, the 
Multipolynomial resultant, i.e., the resultant of more than two polynomials still remain 
an active area of research. The resultant of two polynomials, also known as the 
Sylvester resultant to solve Engineering problems is exemplified in the works of [13, 
pp.72-76] and [3]. 
   Here, the term resultant refers to the resultants of more than two polynomials, also 
called Multipolynomial resultant [14]. It is treated as a tool besides the Groebner bases 
to eliminate variables in solution of polynomial systems of equations. The use of 
resultant approach to solve in a closed form the minimum three-dimensional resection 
problem has already been presented in the work of [8]. 

Optimization of the three-dimensional intersection problem 
In order to solve the over-determined three-dimensional intersection problem in closed 
form, the resultant approach is first applied to solve for the distances 
1 1 2 2 3 3{ , , }x S x S x S= = =  from (2) as discussed in [8, equations 3-3 to 3-14] to give the 

computing engine of the combinatorial algorithm [2] as 

 

4 3 2
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with the coefficients as already given in [8, appendix]. Using (3) and steps 1-5 of the 
Gauss-Jacobi combinatorial algorithm [2], the adjusted distances of the stations 
involved in the optimization are determined as follows: 

Step 1: Given an over-determined system with n  observations in m  unknown 
distances, form from the n  observations the  

 
!( )

!( )!
nk noof combinations

m n m
=

−
 (4) 

minimal combinations that comprise m  distance equations that are to be solved 
using (3). 
Step 2: Solve each set of m  distance equations from Step 1 above for distances 
using resultant approach derived computing engine (i.e. Eq (3)).  
Step 3: Perform the nonlinear error/variance-covariance propagation to obtain the 
variance-covariance matrix of pseudo-observations resulting from the computational 
engine in Step 2. 
Step 4: Using the pseudo-observations of Step 2 and the variance-covariance matrix 
from Step 3, adjust the pseudo-observations via the special linear Gauss-Markov 
model. 
Step 5: Compute the adjusted distances of the network. 
 

Once the distances have been obtained, they are used once again in the Gauss-Jacobi 
combinatorial algorithm to give the position. In order to compute the point position 
from the adjusted distances, the resultant approach is used to derive the position 
equations [5, Box 3-5, equations 3-35 and 3-39] as 
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and 
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−

 (6) 

with the coefficient and the solution procedures as discussed in [5]. Equations (5) and 
(6) are then used as the computing engine in the Gauss-Jacobi combinatorial 
algorithm with steps 1-5 performed as follow:  
 

Step 1: Given an over-determined system with n  observations in m  unknown 
positions, form using (4) and the n  observations k  minimal combinations that 
comprise m  position equations that are to be solved in closed form. 
Step 2: Solve each set of m  position equations from Step 1 above for positions 
{ , , }X Y Z  using resultant approach derived computing engine (i.e. Eqs. (5) and (6)) 
as discussed in [5]. 
Step 3: Perform the nonlinear error/variance-covariance propagation to obtain the 
variance-covariance matrix of pseudo-observations resulting from the computational 
engine in Step 2. 
Step 4: Using the pseudo-observations of Step 2 and the variance-covariance matrix 
from Step 3, adjust the pseudo-observations via the special linear Gauss-Markov 
model. 
Step 5: Compute the adjusted barycentric position { , , }X Y Z  of the unknown point in 
the network. 
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TEST NETWORK 

Experiment 
   The three-dimension position of the unknown point 1K  are to be determined by 
the procedure outlined above. Due to the availability of superfluous observations, 
made possible by the availability of several known points of the test network 
``Stuttgart Central'' (Figure 2), the closed form three-dimensional intersection 
procedure gives way to procedures for solving the over-determined three-dimension 
intersection problem. In this case therefore, all the known GPS network stations 
(Haussmanstr., Eduardpfeiffer, Lindenmuseum, Liederhalle, Dach LVM, Dach FH, and 
Schlossplatz) of this network ``Stuttgart Central''  have to be used. 

            
Fig. 2: Test network Stuttgart Central 

 
The over-determined three-dimensional intersection problem is optimised using the 
resultant approach in six steps as follows: 
Step 1: (construction of minimal combinatorial subsets for determination of network   
distances): 
From Figure 2, 35 minimal combinatorials are formed for the network ``Stuttgart 
Central'' and for each minimal combinatorial simplex, the distances are computed 
from the univariate polynomials (3). Each combinatorial minimal subset results in 3 
distances thus giving rise to a total of ( 3 35× ) 105 scattered distances. The computed 
scattered distances iS  link the known points 1,...,iP i n=  to the unknown point 

1( )P K . 
Step 2: (nonlinear error propagation to determine the dispersion matrix Σ ): 
In this step, the dispersion matrix Σ  is sought. This is achieved via the nonlinear 
error propagation law/variance-covariance propagation for each of the combinatorial 
sets 1,..., 35j =  above. The closed form observational equations for the first 
combinatorial subset 1j =  are written algebraically as in (1) where 
, {1,2, 3},ijS i j i j∈ ≠  are the distances between known GPS stations of the test 

network ``Stuttgart Central'', {1,2, 3}kx k ∈  are the unknown distances from the 
unknown GPS point E3P ∈  to the known GPS stations E3 1,2, 3iP i∈ =  and 
, {1,2, 3},ij i j i jψ ∈ ≠  are the space angles derived from the observable of type 

horizontal and vertical directions to the unknown point E3P ∈  from the known GPS 
stations E3 1,2, 3iP i∈ =  respectively. With [4, Eq. 8], the Jacobi matrices are given 
as 



J L AWANGE  AND  Y FUKUDA 

 105

 

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

x

f f f
x x x
f f f
x x x
f f f
x x x

 ∂ ∂ ∂ 
 ∂ ∂ ∂ 
 ∂ ∂ ∂ =  
∂ ∂ ∂ 
 
 ∂ ∂ ∂ 
 ∂ ∂ ∂  

J  (7) 

and 

 

1 1 1 1 1 1

12 23 31 12 23 31

2 2 2 2 2 2

12 23 31 12 23 31

3 3 3 3 3 3

12 23 31 12 23 31

.y

f f f f f f
S S S
f f f f f f
S S S
f f f f f f
S S S

ψ ψ ψ

ψ ψ ψ

ψ ψ ψ

 ∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ ∂ =  
∂ ∂ ∂ ∂ ∂ ∂ 
 
 ∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ ∂  

J  (8) 

The values 1 2 3{ , , }x x x  appearing in the Jacobi matrix xJ  are obtained from the 
closed form solution of the first combinatorial set in step 1 and the partial derivative 
of the space angles , {1,2, 3},ij i j i jψ ∈ ≠  derived from the observable of type 
horizontal and vertical directions. 
Step 3:  (rigorous adjustment of the combinatorial solution points in a polyhedron): 
Once the 105 combinatorial solution points in a polyhedron have been obtained in 
step 1, they are finally adjusted using the linear Gauss-Markov model [4, Eq. 15], 
with the dispersion matrix Σ  obtained via the error propagation law or 
variance-covariance propagation in step 2. Expressing each of the 105 scattered 
distances as 

 {1,2, 3, 4,5,6,7}, {1,2, 3, 4,5,6,7,..., 35},j j
i i iS S i jε= + ∈ =  (9) 

and placing the scattered distances j
iS  in the vector of observation y , the 

coefficients of the unknown seven distances iS  of the network forming the 
coefficient matrix A  and ξ  comprising the vector of unknowns iS , the adjusted 
solution is obtained via [4, Eq. 15] and the dispersion of the estimated parameters 
through [4 Eq. 16]. 

     Step 4: From the 7 adjusted distances in step 3 above, 35 positional combinatorials 
are formed using (4) and solved for { , , }X Y Z  in close form using (5) and (6) as 
discussed in [5]. 
Step 5: (error propagation to determine the dispersion matrix Σ ):  
The variance-covariance matrix is computed for each of the combinatorial sets 
1,..., 35j =  using error propagation as discussed in [6, step 2, pp.392-393].  

Step 6: (rigorous adjustment of the combinatorial solution points in a polyhedron): 
For each of the 35 computed coordinates of point 1K  in Figure 2 in step 2, the 
observation equations are written as 

 

, {1,..., 35}

, {1,..., 35}

, {1,..., 35}.

j J
X

j J
Y

j J
Z

X X J

Y Y J

Z Z J

ε

ε

ε

 = + ∈

 = + ∈
 = + ∈

 (10) 

With the values { , , }j j jX Y Z  treated as pseudo-observation and placed in the vector of 
observation y , the coefficients of the unknown position { , , }X Y Z  being placed in 
the coefficient matrix A  and ξ  comprising the vector of unknowns { , , }X Y Z . The 
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solution is obtained via [4, Eq. 15] and the dispersion of the estimated parameters 
through [4, Eq. 16]. 

Example 
Using the data of [4, Table 1] and the observational space angles for the network [e.g., 
8], the computed position of point 1K  in the experiment using the resultant 
optimization approach are given in Table 1 with the deviations of the resultant 
optimization solutions from the true GPS value given in Table 2. 
In Figures 3 the deviation of the computed scatter of the distance Haussmanstr.- 1K  
around their adjusted values are presented, while in Figure 4, the plot of the adjusted 
distances biases from those derived from GPS coordinates are plotted. The numbers in 
the X-axis of Figure 4 represent distances as follows; Haussmanstr.-K1 (1), 
Schlossplatz-K1 (2), Dach FH-K1 (3), Dach LVM-K1 (4), Liederhalle-K1 (5), 
Lindenmuseum-K1 (6) and Eduardpfeiffer-K1 (7). Figure 5 indicates the plot of the 
combinatorial scatter in position { }•  around the adjusted (barycentric) values { }∗ . 
 

Table 1: Position of station K1 computed by Gauss-Jacobi combinatorial algorithm 
Exp 
No. 

( )X m  ( )Y m  ( )Z m  ( )X mσ  ( )Y mσ  ( )Z mσ  

1 4157066.1121 671429.6694 4774879.3697 0.00005 0.00001 0.00005 
 
 

Table 2: Deviation of the computed position of K1 from the real measured GPS value 
Exp. 
No. 

( )X m∆  ( )Y m∆  ( )Z m∆  

 -0.0005 -0.0039 0.0007 

 

Fig. 3: Deviation of the scatter solutions of the distance Haussmanstr.-K1 from barycentric value 

CONCLUSION 
 
For problems that require the solution of over-determined three-dimensional 
intersection, and whose initial starting values may not be known such as in 
Photogrammetry, the resultant optimization offers an alternative approach provided the 
full information of the underlying observations are taken into consideration via the 
nonlinear variance-covariance/error propagation. The advantage of the resultant  
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optimization in solving this problem is that no starting values, linearization or 
iterations is required as is the case with other procedures. Outlying combinations and 
observations are also identifiable. With high processing computers currently available, 
the issue of many combinatorials formed as a result of large observations is immaterial 
nor is the computing time. Routines are written that repeatedly execute the desired task 
once the statement that executes the combination has been written. 
 

 

Fig. 4: Deviation of the 7-adjusted distances from real measured values 

 

Fig. 5: Scatter of combinatorial solutions 
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