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Abstract

We give the first exact determinantal formula for the resultant of an unmixed sparse system of four
Laurent polynomials in three variables with arbitrary support. This follows earlier work by the author
on exact formulas for bivariate systems and also uses the exterior algebra techniques of Eisenbud and
Schreyer. Along the way we will prove an interesting new vanishing theorem for the sheaf cohomology
of divisors on toric varieties. This will also allow us to describe some supports in four or more variables
for which determinantal formulas for the resultant exist.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The resultant of: + 1 polynomialsfi, ..., f,+1 inn variables is a single polynomial in
the coefficients of the; which vanishes when thg have a common root. The resultant can
therefore be used to eliminatevariables fromn + 1 equations. Originally resultants were
defined for generic polynomials of fixed total degrees. More recensigaase resultant
has been defined which exploits the monomial structure of the given polynomials. The
foundational work was laid by Kapranov etHl1]. Sparse resultants are discussed in depth
in the book[9].
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Formally, letf1, f2, ..., fn+1 € Clx1, xl‘l, ey X, x;l] be polynomials with the same

Newton polytopeQ. Let A = Q N Z". We will assume thatt affinely generateg”.
We can write

fi=)_ Cix".

aeA

We will treat the coefficient€’;,, as independent variables throughout.

Definition 1. The A-resultantresy (f1, ..., fu+1) is the irreducible polynomial in the ring
Z[C;y], unigue up to sign, which vanishes wheneyer.. ., f, have a common root in
(€H".

The problem of finding explicit formulas for resultants, and their cousins the discrimi-
nants, dates back to the 19th century with the work of Cayley, Sylvester, Bézout and others.
With the recent increase in computing power there has been a renewed interestin computing
resultants and new applications in fields such as computer graphics, machine vision, robotic
inverse kinematics, and molecular structf#g 3,14]

Even in very small examples, the resultant can have millions of terms. Therefore most
authors have looked for a more compact representation. A determinantal formula, following
the classical formulas of Sylvester and Bézout, writes the resultant as the determinant of a
matrix whose entries are easily computable polynomials of low degree. In the dense case,
when all the polynomials have the same degree, determinantal formulas are known when
n=1, 2, or 3and for a very few cases in more variables. In the sparsercadds the same
as the dense case and there are the classical Sylvester and Bézout formulas, determinantal
formulas forn = 2 were found by the author {12]. This paper gives a new exact formula
whenn = 3.

Given any lattice polytop®), let D1, ..., D, denote the facets (codimension 1 faces) of
Q. Givenasubsdt={iy, ..., it} of {1, ..., s}, letD;={D;,, ..., D;,} be the corresponding
subset of facets. LaD; be the set of facets @ not in D;. O — D; will refer to the set of
all points inQ but not on any facet o®;. More generallyk Q — Dy is the set of all points
in the Minkowski sum ok copies ofQ but not on any of the facets correspondingg.

Finally, given a sef§ c R" letl(S) = S N Z" be the set ofattice points inS. The main
theorem is as follows:

Theorem 2. Let f1, f2, f3, fa € Clx1, x2, x3, x1 -, x5 %, x5 -] be four polynomials with
common Newton polytop@ c R>. Supposed = Q N Z° affinely generateZ>. Pick

a proper collection of the facets of, @; = (D;,, ..., D;,), such that the union of the
facets inD; is homeomorphic to a disk. There is a determinantal formula for the resultant
ress(f1, f2, f3, f4) of the following block form

(7 5)

The rows of B and L are indexed by the pointé@Q — D;). The columns of B anfl are
indexed by (2Q — Dy). The rows ofL are indexed by four copies 6fQ — D;), and the
columns of L are indexed by four copied P — Dy).
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The entries of B are of Bézout type and are polynomials of degneehe coefficients
C;y. The entries of L and. are of Sylvester typ¢hus linear in theC;,.

We will see how the entries & can be filled in using a free resolution over an exterior
algebra. Both the proof and the construction are based on techniques developed by Eisenbud
and Schreyer, which have been adapted for sparse resultants (toric varieties).

The paper is organized as follows. Section 2 discusses the background on toric vari-
eties, exterior algebras, and the Tate resolution of Eisenbud—Schreyer. Section 3 uses these
techniques along with some sheaf cohomology vanishing results to prove Theorem 2. In
particular, Section 3 contains a new vanishing result for certain divisors on any projec-
tive toric variety. Section 4 shows how to actually construct the resultant matrix and gives
some examples. Finally, Section 5 gives a different combinatorial perspective on the re-
sultant matrix in terms of the Ehrhart polynomial and analyzes the size of the resultant
matrix.

2. Notation and background
2.1. Toric varieties and Chow forms

Given a polytopeQ C R" and associated = Q N Z", let N = |A|. Thetoric variety
X4 c PN~Lisdefined as the Zarioki closure ofthe 6ett . ... . x*V)wherex; ranges over
the elements odiandx € (C*)". It has dimensiom. In terms ofX 4, the polynomialsf; are
hyperplane sections. The systéfa, fo, ..., f,+1) defines a codimensiont+ 1 plane. The
set of all codimension + 1 planes meeting 4 defines a hypersurface in the Grasmannian
G(n+1, N). TheA-resultant is identified with the equation of this hypersurface, also called
the Chow formof X 4.

Proposition 3. The resultantesy (f1, ..., fn+1) =0ifand only if the hyperplaneg have
a common intersection akiy4.

Let 2o be the normal fan o with X o (1) ={n4, .. ., #,} the inner normals to the facets.
There is an associated normal toric variéty,, (see[8, Chapterl). AssumingA affinely
spansZ”, X5, is the normalization ok 4. This is essentially Proposition 4.9 in Chapter 5
of [9]. The results below are standard and can be fourid]in

Proposition 4. They; are in 1-1 correspondence with the torus invariant prime Weil divi-
sors onXy,,. LetD; denote the divisor corresponding#g, and ¢(D;) the corresponding
rank 1 reflexive sheaf oKy ,.

In the Introduction and in the statement of Theorerm2denoted a facet . This facet

will be identified with the corresponding prime divisor, also dendigdas defined above.
Given a general divisoD = > a; D; on X5,, We will denote by, (D) or, when

there is no confusion just/(D), the push-forward of the sheéﬁng (D) onto X4 via

the normalization map. The linear equivalence classes of divisors are computed by the
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following exact sequence:
0z ™z ey o

where diu) = ((u, 111), - ... (u, 1, )) andClx is the cokernel of this map. Given a divisor
D € 7° we let[ D] be the image oD in Cl.

There is a nice combinatorial description of the global sectiéP&X 4, ¢(D)). A divisor
D =3 a;D; determines a convex polytopep, = {m € R* : (m,n;)> — a;}. For
any polytopeP, let Sp denote theC vector space with basis the lattice pointsHni.e.,
Sp=C{PNZ"}.

Proposition 5.

H(X 4, (D))= Sp,,.

If we start with a polytopeQ, then it determines an ample divisor on the toric variety
XZQ- Write

Q={m€Rn <m7’1i>>_aia i=17‘~'as}

for someay, ..., a; € Z. Let Dy =) a; D; be the corresponding divisor. K 4 is the
(possibly non-normal) toric variety above defined by the lattice poing tten the push-
forward of D yields the very ample divisor corresponding to the embedding ofnto
P¥=1 0On X3,, Do will always be ample but not necessarily very ample. One final useful
fact is that the sheaf(—) _:_, D;) is the canonical sheaf on the Cohen—Macaulay variety
Xz, This will be needed when we apply Serre duality below.

2.2. Exterior algebra and the Tate resolution

Eisenbud and Schreyf8] have developed some powerful machinery to compute Chow
forms using resolutions over an exterior algebra. SupposeP" ~1 is a variety of dimen-
sionn. We are interested in the finding the Chow formxof

The ambient projective spaBe-P" ~ has the graded coordinate riRg=C[ X1, . .., Xy].

If we letW be theC vector space spanned by thig (identified with the degree 1 part Bj,
thenP is the projectivizatiod®(W). The ringR can also be identified with the symmetric
algebra Symw).

Now let V = W*, the dual vector space, with a corresponding dual basis . ey. We
will consider theexterior algebrak = A\ V, also a graded algebra where the generators
have degree-1. We will use the standard notatidi(k) to refer the rank 1 fre€-module
generated in degreek.

For any coherent shea# on P, there is an associated exact complex of graded free
E-modules, called th&ate resolutiondenotedrl’ (#). The terms off (%) can be written
in terms of the vector spaces of sheaf cohomology of twistg oNamely, we have

T(F) = @lH (F (e — Q) EG — o). (1)

Here e is any positive integer. In particular, this complex is infinite in both directions,
although the terms themselves are finite dimensionalEreedules.
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Now suppose tha¥ is supported orX. Recall that the Chow form oX, also called
the X-resultant and denoted rgsis the defining equation of the set of codimensio#s
1-planes meetingX. Such a plane is specified bynat 1 dimensional subspad&; =
C{f1, ..., fa+1} C W. Let G be the Grasmannian of codimensior- 1-planes orP. Let
7 be the tautological bundle @B, that is to say the fiber at the point correspondingjiso
justW,. There is a functor/, 1 from freeE-modules to vector bundles @which sends
E(p)toAPT.

This functor when applied to the Tate resolution givéisie complex of vector bundles
onG, U,11(T (%)) that is fiberwise a finite complex @&f vector spaces.

Theorem 6[6].
det(U, +1(T (#))) = reg?”k(f)'

This is a determinant of a complex, which in general can be computed as a certain
alternating product of determinants. We will be most interested in the special case where
the complex in question has only two terms

O—>A—\P>B—>O.

In this case, the determinant of the complex is just the determinant of the matrix of the
map¥. Sheaves whose Tate resolutions yield such two term complexes for the Chow form
are calledveakly Ulrich Determinantal formulas for the resultant correspond to finding a
weakly Ulrich sheaf of rank 1 on the toric variekyy .

Let M = @ieNHo(ﬁ(i)). This is a graded?-module. Thelinear strandof the Tate
resolution is the subcomplex defined by the tetfis® E(—e). The maps in the linear
strand are completely canonical:

o Me® E(—e) > Mo11® E(—e — 1),
N

m®1|—>Zm~X,~®ei.
i=1

An extremely important fact is that for large enowglanything larger than thregularity of
M, all the higher cohomology vanishes and only the linear strand remains. For a definition
and discussion on regularity sgig.

This suggests an algorithm to compute terms of the Tate resolution:

(1) GivenZ computeM.
(2) Picke =reg(M) + 1 and compute,.
(3) Start computing a free resolution ¢f overE.

Note As a consequence we can read off the cohomology of twis#% a graded pieces
of this resolution. As Eisenbud et §] point out, in many cases this is the most efficient
known way to compute sheaf cohomology.
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3. Proof of Theorem 2

Suppose we are givefi, fo, fa, f2 with common Newton polytop® c R3. To apply
the exterior algebra construction we talke= Sp, theC vector space with basis the lattice
points inQ, andV = S*Q. The corresponding projective spacePis= P(W)~P"~1, and
the exterior algebraif = /\ V. Lety1, ..., yy denote the basis d&fp andey, ..., ey the
corresponding dual basis Bf

We now show how Theorem 2 reduces to showing that an appropriate push-forward of a
Weil divisor class ontdX 4 is a weakly Ulrich sheaf. This will require proving that certain
cohomology groups vanish.

Let/ C {1,...,s}, thought of as a subset of the facets. Dgt=>",_, D; andD; =
>_i¢1 Di be formal sums of the corresponding divisors. The divisors we will be interested
in are of the formkD o — D; wherek € Z.

As in the statement of Theorem 2, we pick a proper subset{l, ..., s} such that the
union of the facets irD; is homeomorphic to a disk. In Section 4, while describing the
algorithmic construction of the matrix of 2, we also show how to pick sDglas a partial
shelling of the facets d@. We will consider the sheaf = /(2D — Dy). As before this is
a divisor on the normal toric variety >, pushed forward ont& 4. The main fact we will
need is the following cohomology vanishing theorem. For simplicity, and when there is no
confusion, we will often write? (0(D)) instead ofH! (X 4, ((D)).

Theorem 7. LetX =X 4 be a projective toric variety of dimension n arising from a polytope
Q with corresponding ample divisd. Let D; be a proper subset of the facets such that
the unions of the facets iB; is a topological manifold with no reduced homology. Then

H(O(Dg — D) =Skg-p;.
H(O(kDg — D) =0, i=1...,n—1

n ) ~ Q¥
H"(O(kDg = D) =5*, , .

forall k € Z.

In the cas&) is a 3-polytope the only 2-manifold with no reduced homology is the disk.
The proof is postponed until Section 3.1. But note that plugging this into the description of
the Tate resolution using (k) = O((k + 2)D — Dy) gives us:

Corollary 8. The Tate resolution of* has terms

Te(f];);Sz‘l_E)Q_D—I REB—e) fore<-—1,

T YF)=S;, 5 @ E(4) @ So-p, ® E(D),
T9(F) =5) 5 ®EQ)® S20-p, @ E,
T(F) =Set+20-p; @ E(—e) for e > 0.
Finally, to get the Chow form we need to apply the fundtar which sendsE(p) to

AP T . But, 7 is a vector bundle of rank 4, so by the above proposition @hiy(#) and
T9(%) survive the application df/s. Therefore, 7 is weakly Ulrich and the matrix of the
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resulting two term complex is exactly the matrix of Theorem 2 which we restate here in the
language of this section.

Corollary 9. Theresultant off1, ..., fais the determinant of the two term complex below
4__F 37
So5 @ N7 —S%p @ N7
o—— @ B ®——0
la‘ L Or
So-p, @NT —Sqp, @ N7

Theorem 7 can be used to give exact determinantal formulas for resultants in dimension
4 and above for some cases of polytopes.

Theorem 10. Let 0 ¢ R* be a polytope such that = Q N 7* affinely spanZ*. There is
a determinantal formula foRes 4 if Q has no interior points and there is some faggtof
Q with no relative interior points

Proof. Take# = (/(2Dy — D;). Going through the Tate resolution machinery using our
vanishing theorem, we get a three term complex whose left most teﬁzn_%. The points

here are exactly the interior points Qftogether with the relative interior points &f;. So
under the given hypothesis, this term is zero and we have a two term complex.

In the case oKy = P* we recover the formulas for resultants of 5 homogeneous poly-
nomials of degree less than or equal to 3. We can make a similar statement in dimension 5
and higher but the hypotheses get stricter.

Theorem 11. LetQ ¢ R" andA = QN Z" affinely spang” for n >5.Letk; = L”—’glj -2

andkp = [”—J2“1'| — 2. There is a determinantal formula foes, if there is a collection
of facetsD; of Q forming a manifold without homology such tha andk,Q have no
interior lattice points D; has no relative interior lattice points ik Q and D; has no
relative interior points ink1 Q.

Proof. TakeZ = @(L”—szlj 0 — Dy). The result follows from the Theorem 7 and counting
lattice points. [J

For example when = 5 andQ is the coordinate simplex we recover the determinantal
formula for 6 homogeneous polynomials of degree 2./Fer 6 or greater we only get a
resultant formula foe = 1. It would be interesting to classify all polytopes of arbitrary
shape satisfying these conditions. It may be that there is only be a finite list=8 or
greater.

We do not claim that these theorems generate all determinantal resultant formulas. For
example, by Proposition 2.6 {8] if Q1 andQ> (of any dimension) have resultant formulas
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with sheaves7 ; and.7 ,, thenZ 1 ® 7, will give a determinantal formula fo@1 x Qo.
In any case polytopes satisfying Theorem 11 together with all products of such polynomials
is at least a start towards classifying exact resultant formulas in higher dimension.

3.1. Cohomology vanishing

In this section we will prove Theorem 7. So we will need to compute the cohomology of
O(kDg — Dy) forall k € Z. We already know the global sectiof®(X 4, O(-)). The next
proposition shows how to compute the top cohomolagy(X 4, O(-)).

Proposition 12. Let 0 ¢ R”" be a lattice polytope of dimension n with facéts, ..., D;
and A = Q N 7" affinely generatingZ”. Let X4 be the corresponding toric varigtand

D =) a;D; a Weil divisor on the normalizationQ which pushes forward as before to
a sheaf onX 4. Then

H™(X 4, @(D));H()(XA, 16 (—D - Z D,-)) .
i=1

Proof. As per our earlier discussion all of the cohomology can be computed on the as-
sociated normal toric varietX = Xy,. This is Cohen-Macaulay with dualizing sheaf
wx =0(=Y"]_4 D;). If Dwere Cartier the statement would follow immediately from Serre
duality. In the general Weil divisor case we have to be a little bit more careful. So we
compute

H"(X, O(D))* ~Hom(0(D), wx)

~ Hom ((D(D) Hom ((O ( D;

;Hom(@(D)@@( ,-),@x>

=1

~ 7

~ HO (X, ((9(1)) ® 0 ( Di)> ) )
i=1

The first isomorphism is Serre duality. The second uses that Weil divisors are reflexive
sheaves and?om (0(D), Ox) =0 (D)* =~ (O(—D). The third and fourth steps are by the
adjointness of#om and®, and the last step is the definition of global sections. Finally, by
Corollary 2.1 in[10], the dual of any coherent sheaf is reflexive. So,

(amoe (520 ~(moc(5:0)
i=1 i=1

@
\~-/
S

>
S~—
SNS——
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However(((D) ® O(E))** is always isomorphic t&@(D + E) even ifD andE are not
locally free. Hence we get

famoe (520 ¢ (o-3:).
i=1 =1

as desired. O

It remains to show that the “middle cohomology” always vanishes under the given condi-
tions. The proof is broken up into three parts, shomﬂﬁg@(kDQ — Dy))=0whenk > 0,
k =0, andk < 0. The first two follow fairly easily from results of Mugt5,15]. The case
k < 0 requires more work and will be quite interesting in its own right.

Proposition 13. Let Q be a polytope anil 4 the toric variety as in Propositiof2. Let D;
be the sum of any collection of facets as beféf&((¢(kDy — D;)) = 0for all i >0 and
all k> 0.

Proof. SincekDg is ample, this is justl5, Corollary 2.5(iii)] [

In general, the cohomology of all divisors can be grouped into a single objgcty)
which has &° fine grading

Hi(Ox) = EBPHMX),,.

wherep € 7°.
The cohomology of a particular divisor clalg3] can now be recovered as

H' (Ox (D))= H.(Ox),
P
where the sum is over glisuch tha{}" p; D;] = [D].

The nextlemma can be viewed as a reformulation of a res[&df/ielding a topological
formula for computing these graded pieces. It shows that in the case of a projective toric
variety sheaf cohomology can be computed in terms of the ordinary homology of pure cell
complexes.

Lemma 14. Letp € Z°. LetJ =nedgp) C {1, ..., s} be the set of coordinates for which
p is strictly negative. LetD,| be the topological space consisting of the union of all the
facetsD; with j e J of the polytope Q of X

H(Ox),=~H'(Dy)).

The latter is the ordinary reduced cohomology Bf; |.

Proof. LetY; be the union of all cones in the fanhaving all edges in the complement of
J. Theorem 2.7 if5] shows that for > 1:

HA(Ox)g=HYR"\Y)).
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The latter is isomorphic t&' ~1(s"~1\s"~1NY;) (excision) which is further isomorphic to
H,_i_1(5"~1nY;) by topological Alexander duality. This is a subcomplex of the boundary
complex of a polytope polar dual ©@. The combinatorial Alexander dual is the set of faces
of Qwhose dual is not ifY;. But this is precisely all of those faces@fcontained in some
facetD;. The underlying topological space B, |. So, by combinatorial Alexander duality:

Hy_i—(S" PNy =HX(Dy)).
as desired. O

We now tackle the case= 0, the proof of this next proposition was given to me in a
personal communication with Mircea Mutda,

Proposition 15. If the union of the collection of facets By is non-empty and homologi-
cally trivial, then H ((/(—D;)) = O for all i. More generally H: (O(—D;))~ H'~1(|D;|).

Proof (Due to Must&). H°(O(—D;)) = 0 as the corresponding polytope is empty. Let
p1 be such thatp,); = —1if i € I and(p;); = 0, otherwise. Clearly, nég,) = / and
>(p1);Di = —D;. By Lemma 14H}(Ux),, = H' (| Dy)).

We now show that ifjis such thaf}" ¢; D; | =[—D;], butg # p;, thenH.(0x), =0 for
alli. Indeed, by linear equivalenge= p; + div(u), for someu € Z¢ # 0. LetJ =negq).
Itis clear that

J={il{u,n;) <0 or(u,n;)=0 andi € I}.

Now the above implies there is a hyperplaieC R’ which separates the edgesdf
indexed byJ andJ. By [5, Proposition 2.6this forcesH, (Ux), =0fori>1. [

To complete the proof of Theorem 7 we need to consider theikcas® This will require
a new vanishing theorem which has intrinsic interest. Therefore, we state it in somewhat
more generality than necessary.

Theorem 16. Let X be a projective toric variety of dimensionand D a nef and big line
bundle on X. LeD; =} ;_; D; be a sum of prime torus invariant divisors. If the union of
the facetsD; of Q withi e Iis a topological manifold with boundary thei (X, (—D —
D)) =0forall 0<i <n.

Proposition 3.3 iff15] states that the fan of refines the normal fan a?p and((D) is
the pull-back of an ample divisor, thus we can reduce to the casBtissample.

Theorem 7 gives general vanishing conditions fokadl Z but the results in this section
show that the vanishing theorem can be refined using different hypotheses for different
cases of the integde Whenk > 0, all higher cohomology vanishes for any subB®gt
Whenk = 0 we need the toplogical spa¢tB;| to have no reduced homology in which
case all cohomology vanishes. Finally fox 0, when|Dy| is a manifold, all cohomology
vanishes except at the top.
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Proof. By the remark above assume tliais ample. As before we will need to compute
H;’(@X)p for Y p; D; linearly equivalent te-D — D;. Let p; be defined as in the proof of
Proposition 15. Any as above is of the formp — p; where)_ g¢; D; is linearly equivalent
to —D. Write D = a; D;, in which casey; = (u, ;) — a; for someu € 7".

Therefore,

nedq) = {il{u, n;) <a;}
and
negp) =negq) U {i|(u,n;) =a; andi € I}

Let J' = nedgq) andJ = neq p) with |D,/| and|D,| the corresponding unions of facets.
SinceD is an ample divisorH’ (((— D)) =0 fori < n, derived for example by Proposition
13 and Serre duality. We need to show that under the given hypotHégéé— D — D;))=0.
We already know by Lemma 18 (|D ) =0fori <n — 1, but we will need to prove that
H'(ID,|)=0.

We have three cases for

Casel (u, n;) <a; for all i: Equivalently,—u € int(Pp). In this casgD;/| is the entire
boundary ofPp which is ann — 1 sphere and only has reduced homology at the top.

Case2 (u, n;) <a; for all i and (u, ;) = a; for some i This means that-u is on the
boundary ofPp. SinceD is ample,Pp has the same normal fan &and so has parallel
faces toQ. The set of all facet® ; for which (u, ;) = a; cuts out a facéof Q. Moreover,
since—D is Cartier there is a corresponding functign,, on the fanX, defined to be; on
the rays;; and extended linearly in each cone. Since the linear functiana)l agrees with
W _ p on aspanning set of the cone correspondirfgttagrees withjs_ ,, on all of this cone.
Therefore,(u, n;) = a; for all facetsD; containingf and so| D/, | is the union of all facets
of Q not containing'. If fis not a face of a facet il; then none of thé; containingf are
part of D;, in which case neg) = negq) and therefore?’(|Dy|) = H (| D).

Next, assume théis a face of some facet if;. The facetd; define a cell complex, also
denotedD;, realizing the manifoldD;|. The stasz(f) is the union of all of the relatively
open faces oD; that have as a face and the link( f) is st(f) — st(f).

The key observation is théb ;| =|D /| Ust(f) andlk(f)=|D | Nst(f). So, we have
a Mayer—Vietoris sequence

o= HLk(f) — H(IDy ) — H(st(f) ® H*(IDy/) — -

We know thatsz(f) is contractible (it is star shaped!) and from abd¥&(| D, |) = O for
a <n — 1. It remains to show tha#®~1(lk(f)) = 0 fora <n — 1. This is where we use
that|Dy| is a manifold.

Start with the cell comple®; and perform a stellar subdivision at the féicehis induces
a subdivision ofD;, which we caIID{, with a new vertex s corresponding to the fade
Furthermore the star and link(v ) andlk(vy) in D,f are the same as(f) andlk(f) in
Dj. So it now suffices to show thaﬂ“—l(lk(vf)) =0fora<n-—1.

Since|D;| is a manifold with boundary, the local cohomology| b | atv, Hgf (|Dy)),
vanishes folu # n — 1 if vy is an interior point ofl D;|, and for alla if v is on the
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boundary. This local cohomology can also be computed from the triangulation as the relative
cohomologyH' (st (vy), lk(vs)). The long exact sequence in relative cohomology yields:

o= HONst(up)) = HO k() — HO(st(vy), Te(vg)) — -

Sincest(vy) is contractible, H¢ (st (vy), k(v y)) ;ﬁ“‘l(lk(vf)) =0fora<n—1as
desired.

Case3 (u, n;) > a; for some i In this case—u is outside the polytop@p. A pointp in
Pp is visiblefrom —u if the straight line fronp to —u meetsP)p, firstin p. It is easy to see
that if a visible poinp is in the relative interior of a facdethen the whole face is visible and
any subface of a visible face is visible. Therefore visibility is a property of whole faces. A
facef of Pp will be calleddegeneraté —u is in the affine span df In particularPp itself
is adegenerate face. A face is invisible if it is not visible or degenerate. Any facet containing
an invisible face must be invisible or degenerate and if every facet containing sonfe face
is degenerate theftself is degenerate. Clearly, a fadas visible if and only if—u is on
the opposite side dfas Pp. Therefore, D, is the set of invisible facetd); is the union of
D', with some degenerate facets. So it will suffice to prove the following proposition taking
P = Ppandv = —u.

Proposition 17. Let P ¢ R" be a polytope of any dimension. If v is any point in the affine
span of P but outside of P, then the union of the invisible facets of P together with any
collection of degenerate faces is homologically trivial

Proof. We proceed by induction on the number of degenerate faces and the dimeriion of
If fis a degenerate face Bf so that is in the affine span df we can talk about the visible,
invisible, and degenerate facesfoégarded as a polytope in its own right. It is immediate
from the definitions that a face 6fs visible (invisible, degenerate) if and only if it visible
(invisible, degenerate) as a facekof

To apply the induction we need to show that the intersection of a degenerafenfiice
the union of the invisible facets and some degenerate facBssoprecisely the union of
the invisible facets of and some degenerate subfaces.

We first consider the intersection of a degenerate fagigh the union of the invisible
facets ofP. Any invisible facet off is an invisible face o and hence contained in an
invisible facet ofP. For the converse, lét be the affine span df Supposef’ is a face off
contained in an invisible fac&of P. Sinceuis on the same side &fasP, itis on the same
side of the intersection ¢f andH asf. In particular there must be some facet obntaining
f/ invisible fromu. Hence, the union of the invisible facetsPintersectd precisely in the
union of its invisible facets.

Next letf be the intersection of two degenerate faces.H.dte the intersection of the
corresponding two affine spans. Baontains bothy andf and moreove N P = f. Let
H'’ be the affine span df a subspace dil. Each facet oP defines a half-space containing
P. The intersection of all of these half-spaces for the facets containéntipe convex hull
of P and H'. Intersecting withH yields justH’. One can instead take all of the opposite
half-spaces and it remains true that the intersectionMith/’. Now if none of these facets
are invisible fromv, thenv lies in all of the opposite half spaces as above, which means
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thatv lies in H' and thud is degenerate. In conclusion, the intersection of two degenerate
faces must either be degenerate or contained in an invisible facet.

We can now proceed with the induction on the number of degenerate face®; bet
the union of all the invisible facets &. This has no reduced cohomology since it is the
negative support of a negative ample divisor as before and therefore has no cohomology
below H”~1. Sincev is outside ofP there is at least one visible facet and so the set of
invisible facets is not the whole — 1-sphere.Thereforéf” 1 is also 0.

Assume now thap;, the union ofPy with i degenerate faces, is cohomologically trivial.
Letf be a new degenerate face. The Mayer—Vietoris sequence gives us:

co > HY N P) > HY(fUP) — HY(f) ® H'(P;) — - -

As f itself is contractible and’; is homologically trivial by induction, it suffices to show
that f N P; is homologically trivial. However, the above arguments show thiatin the

affine span of and f N P; is a union of all of the invisible facets éfand some degenerate
faces off. Therefore, its cohomology vanishes by induction on dimension. The base case is
whenP is one dimensional, in which case foin the line containind? but not inP, there

is exactly one invisible facet (a single point) and no degenerate fadets.

Note, that this proposition, and hence all of Case 3, holds for arbifargnd does not
use thatD; is a manifold. Theorem 7 is an easy consequence of all of the above redllts.

4. Constructing the resultant matrix
4.1. Partial shellings

In this section we show how to choose theto form a topological ball (disk in dimen-
sion 2). Of course one can always choose a single facé#,fdout as we shall see this does
not usually yield the smallest matrices.

Definition 18. An ordering of the facet®;, ..., D, of ann-dimensional polytop®), is
called ashellingiffoi =2, ...,s,(D1U---UD;_1)N D; isn — 2 dimensional and is itself
the union of an initial sequence of facets (codimension 2 fac€y of a shelling ofD;.
A partial shellingis a proper sequence of facets, g2y, ..., D; with 1< < s, satisfying
the same property above.

WhenQ has dimension 2, a partial shelling is the same as a connected set of edges. In our
setting, wher@ has dimension 3, being a partial shelling simply means that the intersection
of eachD; with the union of the previou®; is a connected set of edges/of.

Proposition 19. Let Q be a polytope of dimensi@The spaceD;| is homeomorphic to
a disk if and only if the facets iP; can be arranged into a partial shelling of the boundary

of Q.

Proof. It is a standard result that any partial shelling of the boundary of a polytope is
homemorphic to a ball. In the case of a 3-dimensional polytope it is actually a consequence
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of the Jordan curve theorem. Conversely, every topological disk is shellable in dimension
two. This last statement fails in dimension three and highEr.

It is very easy to actually construct partial shellings for polytopes. A simple algorithm
is to pass to the polar polytopge° of Q. Facets ofQ correspond to vertices @°. Next,
pick a generic vector ifR". This will induce a linear functional o@° which by genericity
induces a linear order on the vertices. One can show that any initial segment of this linear
ordering corresponds to a partial shelling of the face®.dbhellings arising this way are
called line shellings.

4.2. Filling in entries

To actually construct our resultant formula we need to fill in the entries of the matrices
B, L, andL. We saw above how these arise from a map in a Tate resolution. Therefore, we
must compute appropriate terms and maps in the Tate resolution following the algorithm in
Section 2.2 adapted to this situation.

Algorithm 1. (1) Pick a partial shellingD;. As we shall see in the next sectiamorder
to get a smaller matrix we should piglk; to have as many boundary points as possible

(2) Compute the lattice points BQ — D; and4Q — Dy, respectively

(3) Construct the linear mag, : S3p—p, ® E — Sap—p, ® E. Inlight of Theorem 8
this is precisely the differentidl (%) — T2(F).

Recall thaty; represents a basis element$%f hence a point it = QN 73.Sq for every
basis element m dizp_p,, let the multiplicative notatiom: - y; denote the basis element
of S49—p, obtained by adding the two points. This can of course be extended linearly to all
of S3p—p,. Now the mapp, is explicitly defined byp,(m @ 1) = vazl (my; ® e;).

(4) Compute two steps of a graded minimal free resolytimer E of the cokernel of,.

71 %0 70 9y 1 92 g2

Since this minimal free resolution is precisely the Tate resolyti@map we are interested
inis ¢q. Let Mg be the corresponding matrix over E. The entries of this matrix will be either
linear or of degreet.

(5) Apply the functol/4 to ¢, and thereforep. This is done by replacing each degree
term of the forne;, e;,eize;, by thebracket variablé [i1i2izia] which represents thé x 4
determinant

Ciy; Ci, Ci; Cay
C2i1 C2i2 C2i3 C2i4
C3i1 C3i2 C3i3 C3i4
Caiy Caiy Cuaiy Cajy

det

Here C;; is the coefficients of; corresponding to the monomial representing the point
y; € A. These entries make up the submatrix B from ThedeTne remaining rows and
columns have linear entries, and correspond to L anReplace each such rofer column)
by 4 rows (or column$. The entrye; is replaced byCy; in the first copy Co; in the second
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Fig. 1. Newton polytope of Example 20.

copy, and so on. This procedure is illustrated in the examples below. It is a consequence of
Lemma4.2in [12]. This results in a matrix M which is precisely the matrix of Theogem

Step 4 above requires computing part of a graded minimal resolution over the exterior
algebra. This can be done using Grobner bases but may be quite time consuming. On the
other hand this computation needs only be done once to compute the resultant of any system
with a fixed support. One might hope to eliminate the expensive Grébner basis computations
by finding explicit formulas for the non-trivial maps in the resolution. This was done for
the two-dimensional resultant jh2] but remains open in the three-dimensional case.

4.3. Examples

Example 20. Consider the multilinear system:

fi=C11+ C1ox + C13y + C14z + C15xy + C1ex7 + C17yz + C1gxyz,
f2=Co1+ Coox 4 C23y + Casz + Cosxy + Coexz + Co7yz 4 Cagryz,
f3=Cz1+ C32x + C33y + C34z + Cgsxy + Czpxz + C37yz + C3gxyz,
Ja=Ca1+ Caox + Ca3y + Caaz + Casxy + Cagxz + Ca7yz + Cagxyz.

The Newton polytop& of this system is the unit cube iRig. 1 In order to apply the
resultant algorithm we must choose a partial shelling. So, for example, we can pick the
left, front, and, right faces as shown. Né¢Q — D;) and, by symmetryi(Q — D;) are
empty whilel(2Q — D;) consists of the 6 monomialsy, xyz, xy2, xyz2, xy%z, xy%z2},
andl(2Q — Dj) consists of the 6 monomials, xz, yz, x%, xyz, x2yz}. By Theorem 2 the
resultant is the determinant of ax66 pure Bézout matrix. To explicitly compute it, we
construct the linear mafyp_p, ® E(1) — S3p—p, ® E and compute one step of a free
resolution oveE. The matrix turns out to be the one shown in Table

Note that the size of the matrix depends heavily on the choice of the partial shelling. If,
on the other hand, we were to chod3eg to consist of the left, front, and top facets, then
#(Q—D;)=#(Q —D;)=1,and #(20 — D;) =#(2Q0 — D;) = 8. Hence, the matrix
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Table 1
Resultant matrix for Example 20
o [1234 [1236 — [1245 [1237 [125§ [1238 + [1257 [1258 .
[1346 — [1247) [2346 — [1248 [2347 —[1367] —[2456 —[1268 [2348 —[1368 —[1568 — [2458
—[1267 — [1456) —[1567 — [2457]
[1345 [2345 — [1356 —[1357 —[2356 —[2357 — [1358 —[2358
[1467 [2467 + [1468 [3467 [2468 [3468 — [4567] —[4568
[1457 +[1348 [1368 +[2348 [137§ —[3457 [236§ —[2567  [1578 + (237§  [2578 — [3568
+[2457 — [1567 +[3458 — [3567]
L —[1478 —[1678 — [2478 —[3478 —[2678 [4578 — [3678 [5678 .

from Theorem 2 would be a 12 12 matrix with an 8x 8 blockB, a 8 x 4 blockL, a4x 8
block L, and a 4x 4 block of zeroes.

If instead we tried the top and bottom facets, not homeomorphic to a disk, we would
still havel(Q — D;) andl(Q — D;) empty. However, this tim&2Q — D;) would consist
of 9 points, while/(2Q — D;) would have only 3 points. A closer look at the vanishing
theorems shows that we can still get & ® square resultant matrix as there is only other
non-vanishing cohomology terf1(¢(—D;)) = Ho(|D;|) = C tensored with/\zf, a
vector bundle of rank 6. Indeed one can show in general thaifis a disjoint union of
disks we still get an exact matrix formula.

Example 21. Our next example is the following system:

fi=C11+ C12x + C13y + C1az + C1sx L+ C1gy L + C1727L,
f2=C21+ Caox + C23y + Coaz + Cosx ™1 + Copy ™1 + Co7z71,
f3=C31+ C32x + C33y + C3az + Casx 1 + Caey ™1 + Carz 7L,
fa=Ca1+ Capx + Cazy + Caaz + Casx ™1 + Capy ™1 + Cazz7L.

The Newton polytop&) is the octahedron dfig. 2 As our set of facets (partial shelling)

we choose the, y, z facet and the three other facets adjoined to it by an edge. The chosen
facets are shaded in the figure. Now we can see that there are 10 pdi(®inr- D;)

and also by symmetry iN2Q — D;). There is a single point iQ — D;) (respectively,

1(Q — D). By Theorem 2 the resultant is therefore the determinant of a 14 matrix
shown in Table? . This matrix was found following the algorithm of Section 4.2 by starting
with the mapSsp,—p, ® E(1) - Sap,-p, ® E and computing a free resolution.

If we were to choose a non-partial shelling such as two facets meeting at a single point then
the corresponding resultant complex would have non-trivial middle cohomology. Indeed,
H?(—D — D;) = H3(—2D — D;) = C. | Dy| is still homologically trivial but it is not a
disk. The complex arising from the Tate resolution has three terms.

5. Ehrhart polynomials and sizes of resultant matrices
The results of Section 3 show that the determinant of the matrix of Theorem 2 is the

resultant. In particular, it must be square and the degree of its determinant is equal to that
of the resultant. In this section, we give an alternate combinatorial proof of these facts. This
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Fig. 2. Newton polytope of Example 21.

Table 2
Resultant matrix for Example 21
r O 0 0 0 0 0 0 [2345 [2346 [2347 C11 Cp1 C31 Cy417
0 0 0 0 0 0 0 0 0 0 Ci12 Cp2 C32 Cy2
0 0 0 0 0 0 0 0 0 0 Ci13 Cp3 (33 (43
0 0 0 0 0 0 0 0 0 0 C14 Cpq4 C34 Cyg
0 —[2356 —[2357 0 0 0 0 [123§ 0 0 Ci5 Cp5 C35 Cys
0 —[245§ 0 [24677 O 0 0 0 —[124§ 0 Ci16 C26 C36 Cue
0 0 [3457 [34671 O 0 0 0 0 [13471 Cy17 C27 C37 Cyg7
—[2567] [125§ 0 0 0 0 0 —[2356 —[245f 0 0 0 0 0
—[3567 0 —[1357 0 0 0 0 —[2357 0 [34577 O 0 0 0
_[4567 0 0 (1467 0 0 O 0 [2467 (2467 O O 0O O
C11 C12 C13 Cia Ci15 Ci15 C17 0 0 0 0 0 0 0
C21 C22 C23 Coa  Cp5 Czp Co7 0 0 0 6 0 0 0
C31 C32 C33 C3q4 C35 C3p Ca7 0 0 0 6 0 0 ©
L Cm Ca2 Ca3 Caa Cy5 Cap Cay 0 0 0 6 o o0 o

will also allow us to analyze the size of the resultant matrix in order to choose the smallest
matrices.
Consider the Hilbert function oX 4, which turns out to be an honest polynomislx)
where the valuey(k), for k € N, counts the number of lattice points in the polytdyig
This polynomial is associated to the polytdpand is called th&hrhart polynomiabf Q.
There is a very pretty duality theorem involving Ehrhart polynomials.[8kfor details.

Proposition 22. Let Q be a lattice polytope of dimension n with Ehrhart polynomial p.
Then (—1)" p(—k) is the number of interior lattice points in kQ

Given a collection of facet®; we are interested in counting the number of lattice points
inkQ — D;.Aresult of Stanley16] extends Ehrhart polynomials and duality in this setting.

Proposition 23 (Stanley16, Proposition 8.2]. Let Q be a lattice polytope of dimension n
and D; a collection of facets. SuppogB; | is homeomorphic to a manifold. Thehere is
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a polynomialp; of degree psuch thatp; (k) for k > 0 is the number of points ihkQ — Dy,
(—1)" p; (k) for k > Ois the number of lattice points inQ — D;, andp; (0) =1—y(| D).
Here x(|D;|) is the Euler characteristic of the manifold®;|. In particular, if |D;| is a
disk thenp;(0) = 0.

The differencep (k) — p;(k), the number of lattice points on the facélg in kQ, is itself
a polynomial of degreé: — 1).
Going back to resultants, we consider the two term complex appearing in Corollary 9

4 3
Son O NT L S5 o N7
® B &— 50

1 L 0
S0, @7 —>Sqp, @NT

Let p; (k) be the Ehrhart polynomial &Q — D;. This is a cubic polynomial, thus the fourth
difference is 0. In particular:

p1(2) —4p; (L) +6p;(0) —4p; (=1 + p;(—=2) =0.

Since| D;| homeomorphic to a diskg; (0) =0, and the equation can be rewritterpag?2) —
4p;(—=1) = —p;(—2) + 4p; (). Indentifying the dimension of the terms in the diagram
above using Proposition 23, this says precisely that the matrix is square.

The total degree is computed by taking @& — D;) entries fronL, 4#(Q — Dy) entries

from L and #(20 — D;) —4#(Q — D;) entries fronB. The entries of andL are of degree
1, while those oB are of degree 4. So the total degreejg @) — 4p;(—1) + 4(p;(2) —
4p; () =4(p;(2) — 3p; (1) + 3p;(0) — p;(—1)). This is 4 times the third difference of
pr Which is the same as 4 timestBnes the leading coefficient gf;. This is the same as
the leading coefficient of the Ehrhart poynomial@fwvhich is just the Euclidean volume.
Hence, the degree in question is 4 times the normalized volume which is also the degree of
the resultant.

This leads to a technique to analyze the size of the resultant matrices. The Ehrhart poly-
nomial of Q is of the formp(x) = Ax® + Bx? 4 Cx + 1. The leading ternA is the degree
of the toric varietyX 4 divided by 3, which is the Euclidian volume d®. Moreoverp(1)
is the number of lattice points iQ, and p(—1) is the negative of the number of interior
points. So the number of boundary point€is p(1) + p(—1)=A+B+C+1—A+ B —
C+1=2B+ 2. LetBgy = 2B + 2 denote this number. Next, for any partial shelling,
we write the corresponding quadratic Ehrhart polynomiaj@s) = ax? + bx + 1. This
time ¢g(—1) is equal to the number of relative interior points, so the number of boundary
pointsisq(l) —g(-1)=a+b+1—a+ b — 1=2b. Let B = 2b denote this number.
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Taking p; (x) = p(x) — g;(x) as above, then the total size of the resultant matrix is

p1(2) —4p;(=1) = p2) — q1(2) — 4p(=1) +4q;(-1)
=8A+4B+2C+1— (4a+2b+1) —4—-A+B—C+1)
+4a—b+1)
=124 + 6C — 6b.

Letig = —p(=1) = A — B + C — 1 be the total number of interior points . So
C =ip+ 1+ B — A. Hence, we can rewrite the above as:

12A+6C —6b=12A+6(ip+B—-—A+1) —6b
=6A+3(2B +2—2b) + 6ig
=V +3(Bg — By) + 6ig.

Here,V denotes the normalized volume @fwhich is 6 times the Euclidian voluma.
Therefore, in order to minimize the size of the matrix we must maximBizevhich is the
number of relative boundary points of the union of the fadets This gives an obvious
lower bound ol for the size of the resultant matrix. A more sophisticated argument would
give an upper bound ofi8wheni, is at least 1.

6. Conclusion

In this article we showed how the resultant of an unmixed system in three variables with
arbitrary support can be computed as the determinant of a matrix. Combined with the authors
earlier result$12], we have now generalized the formulas for the resultant of homogeneous
systems in dimensions 2 and 3. However, it is still unknown how to make the dimension 3
formula completely explicit instead of in terms of a free resolution as presented here.

For dimension 4 and higher, no general exact formula is known. We do give some special
cases, although still without an explicit closed form formula, and it would be nice to finish
this classification. A second approach is to allow complexes with more than two terms,
yielding resultant formulas with extraneous factors. In the case of projective JRaeesl
products of projective spacd] the extraneous factors have been identified. It is still open
how to do this for general toric varieties.
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