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Abstract

We give the first exact determinantal formula for the resultant of an unmixed sparse system of four
Laurent polynomials in three variables with arbitrary support. This follows earlier work by the author
on exact formulas for bivariate systems and also uses the exterior algebra techniques of Eisenbud and
Schreyer.Along thewaywewill prove an interesting newvanishing theorem for the sheaf cohomology
of divisors on toric varieties. Thiswill also allowus to describe some supports in four ormore variables
for which determinantal formulas for the resultant exist.
© 2004 Elsevier B.V. All rights reserved.

MSC:14M25; 13P99

1. Introduction

The resultant ofn+1 polynomialsf1, . . . , fn+1 in n variables is a single polynomial in
the coefficients of thefi which vanishes when thefi have a common root. The resultant can
therefore be used to eliminaten variables fromn+ 1 equations. Originally resultants were
defined for generic polynomials of fixed total degrees. More recently asparse resultant
has been defined which exploits the monomial structure of the given polynomials. The
foundational work was laid by Kapranov et al.[11]. Sparse resultants are discussed in depth
in the book[9].
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Formally, letf1, f2, . . . , fn+1 ∈ C[x1, x−1
1 , . . . , xn, x

−1
n ] be polynomials with the same

Newton polytopeQ. LetA=Q ∩ Zn. We will assume thatA affinely generatesZn.
We can write

fi =
∑
�∈A

Ci�x
�.

We will treat the coefficientsCi� as independent variables throughout.

Definition 1. TheA-resultantresA(f1, . . . , fn+1) is the irreducible polynomial in the ring
Z[Ci�], unique up to sign, which vanishes wheneverf1, . . . , fn have a common root in
(C∗)n.

The problem of finding explicit formulas for resultants, and their cousins the discrimi-
nants, dates back to the 19th century with the work of Cayley, Sylvester, Bézout and others.
With the recent increase in computing power there has been a renewed interest in computing
resultants and new applications in fields such as computer graphics, machine vision, robotic
inverse kinematics, and molecular structure[7,13,14].
Even in very small examples, the resultant can have millions of terms. Therefore most

authors have looked for amore compact representation.A determinantal formula, following
the classical formulas of Sylvester and Bézout, writes the resultant as the determinant of a
matrix whose entries are easily computable polynomials of low degree. In the dense case,
when all the polynomials have the same degree, determinantal formulas are known when
n=1,2, or 3 and for a very few cases in more variables. In the sparse case,n=1 is the same
as the dense case and there are the classical Sylvester and Bézout formulas, determinantal
formulas forn= 2 were found by the author in[12]. This paper gives a new exact formula
whenn= 3.
Given any lattice polytopeQ, letD1, . . . , Ds denote the facets (codimension 1 faces) of

Q.Givena subsetI={i1, . . . , ik}of {1, . . . , s}, letDI={Di1, . . . , Dik }be the corresponding
subset of facets. LetDI be the set of facets ofQ not inDI .Q−DI will refer to the set of
all points inQ but not on any facet onDI . More generally,kQ−DI is the set of all points
in the Minkowski sum ofk copies ofQ but not on any of the facets corresponding toDI .
Finally, given a setS ⊂ Rn let l(S) = S ∩ Zn be the set oflattice points inS. The main
theorem is as follows:

Theorem 2. Let f1, f2, f3, f4 ∈ C[x1, x2, x3, x−1
1 , x−1

2 , x−1
3 ] be four polynomials with

common Newton polytopeQ ⊂ R3. SupposeA = Q ∩ Z3 affinely generatesZ3. Pick
a proper collection of the facets of Q, DI = (Di1, . . . , Dik ), such that the union of the
facets inDI is homeomorphic to a disk. There is a determinantal formula for the resultant
resA(f1, f2, f3, f4) of the following block form:(

B L

L̃ 0

)
.

The rows of B and L are indexed by the points inl(2Q−DI ). The columns of B and̃L are
indexed byl(2Q − DI ). The rows ofL̃ are indexed by four copies ofl(Q − DI ), and the
columns of L are indexed by four copies ofl(Q−DI ).



A. Khetan / Journal of Pure and Applied Algebra 198 (2005) 237–256 239

The entries of B are of Bézout type and are polynomials of degree4 in the coefficients
Ci�. The entries of L and̃L are of Sylvester type, thus linear in theCi�.

We will see how the entries ofB can be filled in using a free resolution over an exterior
algebra. Both the proof and the construction are based on techniques developed byEisenbud
and Schreyer, which have been adapted for sparse resultants (toric varieties).
The paper is organized as follows. Section 2 discusses the background on toric vari-

eties, exterior algebras, and the Tate resolution of Eisenbud–Schreyer. Section 3 uses these
techniques along with some sheaf cohomology vanishing results to prove Theorem 2. In
particular, Section 3 contains a new vanishing result for certain divisors on any projec-
tive toric variety. Section 4 shows how to actually construct the resultant matrix and gives
some examples. Finally, Section 5 gives a different combinatorial perspective on the re-
sultant matrix in terms of the Ehrhart polynomial and analyzes the size of the resultant
matrix.

2. Notation and background

2.1. Toric varieties and Chow forms

Given a polytopeQ ⊂ Rn and associatedA =Q ∩ Zn, letN = |A|. The toric variety
XA ⊂ PN−1 is definedas theZarioki closureof theset(x�1 : · · · : x�N )where�i rangesover
the elements ofAandx ∈ (C∗)n. It has dimensionn. In terms ofXA, the polynomialsfi are
hyperplane sections. The system(f1, f2, . . . , fn+1) defines a codimensionn+1 plane. The
set of all codimensionn+1 planes meetingXA defines a hypersurface in the Grasmannian
G(n+1, N). TheA-resultant is identified with the equation of this hypersurface, also called
theChow formof XA.

Proposition 3. The resultantresA(f1, . . . , fn+1)=0 if and only if the hyperplanesfi have
a common intersection onXA.

Let�Q be the normal fan ofQwith�Q(1)={�1, . . . , �s} the inner normals to the facets.
There is an associated normal toric varietyX�Q (see[8, Chapter1]). AssumingA affinely
spansZn,X�Q is the normalization ofXA. This is essentially Proposition 4.9 in Chapter 5
of [9]. The results below are standard and can be found in[8].

Proposition 4. The�i are in 1-1 correspondence with the torus invariant primeWeil divi-
sors onX�Q . LetDi denote the divisor corresponding to�i , andO(Di) the corresponding
rank 1 reflexive sheaf onX�Q .

In the Introduction and in the statement of Theorem 2,Di denoted a facet ofQ. This facet
will be identified with the corresponding prime divisor, also denotedDi , as defined above.

Given a general divisorD = ∑
aiDi on X�Q , we will denote byOXA(D) or, when

there is no confusion justO(D), the push-forward of the sheafOX�Q
(D) ontoXA via

the normalization map. The linear equivalence classes of divisors are computed by the



240 A. Khetan / Journal of Pure and Applied Algebra 198 (2005) 237–256

following exact sequence:

0 −→ Zn
div−→ Zs

[·]−→ClX −→ 0,

where div(u)= (〈u, �1〉, . . . , 〈u, �s , 〉) andClX is the cokernel of this map. Given a divisor
D ∈ Zs we let[D] be the image ofD in ClX.
There is a nice combinatorial description of the global sectionsH 0(XA,O(D)).A divisor

D = ∑
aiDi determines a convex polytopePD = {m ∈ Rn : 〈m, �i〉� − ai}. For

any polytopeP, let SP denote theC vector space with basis the lattice points inP, i.e.,
SP = C{P ∩ Zn}.

Proposition 5.

H 0(XA,O(D))�SPD .

If we start with a polytopeQ, then it determines an ample divisor on the toric variety
X�Q . Write

Q= {m ∈ Rn 〈m, �i〉� − ai, i = 1, . . . , s}
for somea1, . . . , as ∈ Z. Let DQ = ∑

aiDi be the corresponding divisor. IfXA is the
(possibly non-normal) toric variety above defined by the lattice points inQ, then the push-
forward ofDQ yields the very ample divisor corresponding to the embedding ofXA into
PN−1. OnX�Q ,DQ will always be ample but not necessarily very ample. One final useful
fact is that the sheafO(−∑s

i=1Di) is the canonical sheaf on the Cohen–Macaulay variety
X�Q . This will be needed when we apply Serre duality below.

2.2. Exterior algebra and the Tate resolution

Eisenbud and Schreyer[6] have developed some powerful machinery to compute Chow
forms using resolutions over an exterior algebra. SupposeX ⊂ PN−1 is a variety of dimen-
sionn. We are interested in the finding the Chow form ofX.
TheambientprojectivespaceP=PN−1 has thegradedcoordinate ringR=C[X1, . . . , XN ].

If we letWbe theC vector space spanned by theXi , (identified with the degree 1 part ofR),
thenP is the projectivizationP(W). The ringR can also be identified with the symmetric
algebra Sym(W).
Now letV =W ∗, the dual vector space, with a corresponding dual basise1, . . . eN . We

will consider theexterior algebraE =∧
V , also a graded algebra where the generatorsei

have degree−1. We will use the standard notationE(k) to refer the rank 1 freeE-module
generated in degree−k.
For any coherent sheafF on P, there is an associated exact complex of graded free

E-modules, called theTate resolution, denotedT (F). The terms ofT (F) can be written
in terms of the vector spaces of sheaf cohomology of twists ofF. Namely, we have

T e(F)= ⊕[Hj(F(e − j))
⊗

C
E(j − e)]. (1)

Heree is any positive integer. In particular, this complex is infinite in both directions,
although the terms themselves are finite dimensional freeE-modules.
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Now suppose thatF is supported onX. Recall that the Chow form ofX, also called
theX-resultant and denoted resX, is the defining equation of the set of codimensionn +
1-planes meetingX. Such a plane is specified by an + 1 dimensional subspaceWf =
C{f1, . . . , fn+1} ⊂ W . LetG be the Grasmannian of codimensionn+ 1-planes onP. Let
T be the tautological bundle onG, that is to say the fiber at the point corresponding tof is
justWf . There is a functor,Un+1 from freeE-modules to vector bundles onG which sends
E(p) to∧pT.
This functor when applied to the Tate resolution gives afinitecomplex of vector bundles

onG, Un+1(T (F)) that is fiberwise a finite complex ofC vector spaces.

Theorem 6[6].

det(Un+1(T (F)))= resrank(F)
X .

This is a determinant of a complex, which in general can be computed as a certain
alternating product of determinants. We will be most interested in the special case where
the complex in question has only two terms

0 −→ A
�−→B −→ 0.

In this case, the determinant of the complex is just the determinant of the matrix of the
map�. Sheaves whose Tate resolutions yield such two term complexes for the Chow form
are calledweakly Ulrich. Determinantal formulas for the resultant correspond to finding a
weakly Ulrich sheaf of rank 1 on the toric varietyXA.

Let M = ⊕
i∈NH

0(F(i)). This is a gradedR-module. Thelinear strandof the Tate
resolution is the subcomplex defined by the termsMe ⊗ E(−e). The maps in the linear
strand are completely canonical:

�e : Me ⊗ E(−e) → Me+1 ⊗ E(−e − 1),

m⊗ 1 �→
N∑
i=1

m ·Xi ⊗ ei .

An extremely important fact is that for large enoughe, anything larger than theregularityof
M, all the higher cohomology vanishes and only the linear strand remains. For a definition
and discussion on regularity see[1].
This suggests an algorithm to compute terms of the Tate resolution:

(1) GivenF computeM.
(2) Picke = reg(M)+ 1 and compute�e.
(3) Start computing a free resolution of�e overE.

Note: As a consequence we can read off the cohomology of twists ofF as graded pieces
of this resolution. As Eisenbud et al.[4] point out, in many cases this is the most efficient
known way to compute sheaf cohomology.
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3. Proof of Theorem 2

Suppose we are givenf1, f2, f3, f4 with common Newton polytopeQ ⊂ R3. To apply
the exterior algebra construction we takeW = SQ, theC vector space with basis the lattice
points inQ, andV = S∗

Q. The corresponding projective space isP= P(W)�PN−1, and
the exterior algebra isE =∧

V . Lety1, . . . , yN denote the basis ofSQ ande1, . . . , eN the
corresponding dual basis ofE.
We now show how Theorem 2 reduces to showing that an appropriate push-forward of a

Weil divisor class ontoXA is a weakly Ulrich sheaf. This will require proving that certain
cohomology groups vanish.
Let I ⊂ {1, . . . , s}, thought of as a subset of the facets. LetDI =∑

i∈I Di andDI =∑
i /∈I Di be formal sums of the corresponding divisors. The divisors we will be interested

in are of the formkDQ −DI wherek ∈ Z.
As in the statement of Theorem 2, we pick a proper subsetI ⊂ {1, . . . , s} such that the

union of the facets inDI is homeomorphic to a disk. In Section 4, while describing the
algorithmic construction of the matrix of 2, we also show how to pick suchDI as a partial
shelling of the facets ofQ. We will consider the sheafF=O(2DQ−DI ). As before this is
a divisor on the normal toric varietyX�Q pushed forward ontoXA. The main fact we will
need is the following cohomology vanishing theorem. For simplicity, and when there is no
confusion, we will often writeHi(O(D)) instead ofHi(XA,O(D)).

Theorem 7. LetX=XA be a projective toric variety of dimension n arising fromapolytope
Q with corresponding ample divisorDQ. LetDI be a proper subset of the facets such that
the unions of the facets inDI is a topological manifold with no reduced homology. Then

H 0(O(kDQ −DI )�SkQ−DI ,
H i(O(kDQ −DI )�0,
Hn(O(kDQ −DI )�S∗

−kQ−DI ,
i = 1, . . . , n− 1

for all k ∈ Z.

In the caseQ is a 3-polytope the only 2-manifold with no reduced homology is the disk.
The proof is postponed until Section 3.1. But note that plugging this into the description of
the Tate resolution usingF(k)= O((k + 2)D −DI ) gives us:

Corollary 8. The Tate resolution ofF has terms

T e(F)�S∗
(1−e)Q−DI ⊗ E(3− e) for e <− 1,

T −1(F)�S∗
2Q−DI ⊗ E(4)⊕ SQ−DI ⊗ E(1),

T 0(F)�S∗
Q−DI ⊗ E(3)⊕ S2Q−DI ⊗ E,

T e(F)�S(e+2)Q−DI ⊗ E(−e) for e >0.

Finally, to get the Chow form we need to apply the functorU4 which sendsE(p) to
∧pT. But,T is a vector bundle of rank 4, so by the above proposition onlyT −1(F) and
T 0(F) survive the application ofU4. Therefore,F is weakly Ulrich and the matrix of the
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resulting two term complex is exactly the matrix of Theorem 2 which we restate here in the
language of this section.

Corollary 9. The resultant off1, . . . , f4 is the determinant of the two term complex below:

S2Q−DI
*

S2Q−DI
SQ−DI

*SQ−DI

4 3

01

0 0B

L

LT T

TT

∼

Theorem 7 can be used to give exact determinantal formulas for resultants in dimension
4 and above for some cases of polytopes.

Theorem 10. LetQ ⊂ R4 be a polytope such thatA=Q∩ Z4 affinely spansZ4. There is
a determinantal formula forResA if Q has no interior points and there is some facetDi of
Q with no relative interior points.

Proof. TakeF = O(2DQ −Di). Going through the Tate resolution machinery using our
vanishing theorem, we get a three term complex whose left most term isS∗

Q−Di . The points

here are exactly the interior points ofQ together with the relative interior points ofDi . So
under the given hypothesis, this term is zero and we have a two term complex.�

In the case ofXQ = P4 we recover the formulas for resultants of 5 homogeneous poly-
nomials of degree less than or equal to 3. We can make a similar statement in dimension 5
and higher but the hypotheses get stricter.

Theorem 11. LetQ ⊂ Rn andA=Q∩Zn affinely spansZn for n�5.Letk1=⌊n+1
2

⌋−2
and k2 = ⌈

n+1
2

⌉ − 2. There is a determinantal formula forresA if there is a collection
of facetsDI of Q forming a manifold without homology such thatk1Q andk2Q have no
interior lattice points, DI has no relative interior lattice points ink2Q andDI has no
relative interior points ink1Q.

Proof. TakeF=O(
⌊
n+1
2

⌋
Q−DI ). The result follows from the Theorem 7 and counting

lattice points. �

For example whenn = 5 andQ is the coordinate simplex we recover the determinantal
formula for 6 homogeneous polynomials of degree 2. Forn = 6 or greater we only get a
resultant formula ford = 1. It would be interesting to classify all polytopes of arbitrary
shape satisfying these conditions. It may be that there is only be a finite list forn = 6 or
greater.
We do not claim that these theorems generate all determinantal resultant formulas. For

example, by Proposition 2.6 of[6] if Q1 andQ2 (of any dimension) have resultant formulas
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with sheavesF1 andF2, thenF1 ⊗F2 will give a determinantal formula forQ1 ×Q2.
In any case polytopes satisfying Theorem 11 together with all products of such polynomials
is at least a start towards classifying exact resultant formulas in higher dimension.

3.1. Cohomology vanishing

In this section we will prove Theorem 7. So we will need to compute the cohomology of
O(kDQ −DI ) for all k ∈ Z. We already know the global sectionsH 0(XA,O(·)). The next
proposition shows how to compute the top cohomologyHn(XA,O(·)).

Proposition 12. LetQ ⊂ Rn be a lattice polytope of dimension n with facetsD1, . . . , Ds
andA = Q ∩ Zn affinely generatingZn. LetXA be the corresponding toric variety, and
D =∑

aiDi a Weil divisor on the normalizationX�Q which pushes forward as before to
a sheaf onXA. Then

Hn(XA,O(D))�H 0

(
XA,O

(
−D −

s∑
i=1

Di

))∗
.

Proof. As per our earlier discussion all of the cohomology can be computed on the as-
sociated normal toric varietyX = X�Q . This is Cohen–Macaulay with dualizing sheaf
�X=O(−∑s

i=1Di). If Dwere Cartier the statement would follow immediately from Serre
duality. In the general Weil divisor case we have to be a little bit more careful. So we
compute

Hn(X,O(D))∗�Hom(O(D),�X)

�Hom

(
O(D),Hom

(
O

(
s∑
i=1

Di

)
,OX

))

�Hom

(
O(D)⊗ O

(
s∑
i=1

Di

)
,OX

)

�Hom

(
OX,

(
O(D)⊗ O

(
s∑
i=1

Di

))∗)

�H 0

(
X,

(
O(D)⊗ O

(
s∑
i=1

Di

))∗)
.

The first isomorphism is Serre duality. The second uses that Weil divisors are reflexive
sheaves andHom(O(D),OX)�O(D)∗�O(−D). The third and fourth steps are by the
adjointness ofHom and⊗, and the last step is the definition of global sections. Finally, by
Corollary 2.1 in[10], the dual of any coherent sheaf is reflexive. So,(

O(D)⊗ O

(
s∑
i=1

DI

))∗
�

(
O(D)⊗ O

(
s∑
i=1

DI

))∗∗∗
.
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However(O(D) ⊗ O(E))∗∗ is always isomorphic toO(D + E) even ifD andE are not
locally free. Hence we get(

O(D)⊗ O

(
s∑
i=1

DI

))∗
�O

(
−D −

s∑
i=1

Di

)
,

as desired. �

It remains to show that the “middle cohomology” always vanishes under the given condi-
tions. The proof is broken up into three parts, showingHi(O(kDQ−DI ))=0 whenk >0,
k = 0, andk <0. The first two follow fairly easily from results of Musta¸tă [5,15]. The case
k <0 requires more work and will be quite interesting in its own right.

Proposition 13. Let Q be a polytope andXA the toric variety as in Proposition12.LetDI
be the sum of any collection of facets as before. Hi(O(kDQ −DI )) = 0 for all i >0 and
all k >0.

Proof. SincekDQ is ample, this is just[15, Corollary 2.5(iii)]. �

In general, the cohomology of all divisors can be grouped into a single objectHi∗(OX)
which has aZs fine grading

Hi∗(OX)=
⊕

p
H i∗(OX)p.

wherep ∈ Zs .
The cohomology of a particular divisor class[D] can now be recovered as

Hi(OX(D))=
∑
p

H i∗(OX)p

where the sum is over allp such that
[∑

piDi
]= [D].

The next lemma can be viewed as a reformulation of a result of[15] yielding a topological
formula for computing these graded pieces. It shows that in the case of a projective toric
variety sheaf cohomology can be computed in terms of the ordinary homology of pure cell
complexes.

Lemma 14. Letp ∈ Zs . LetJ = neg(p) ⊂ {1, . . . , s} be the set of coordinates for which
p is strictly negative. Let|DJ | be the topological space consisting of the union of all the
facetsDj with j ∈ J of the polytope Q of X.

Hi∗(OX)p�H̃ i−1(|DJ |).
The latter is the ordinary reduced cohomology of|DJ |.

Proof. Let YJ be the union of all cones in the fan� having all edges in the complement of
J. Theorem 2.7 in[5] shows that fori�1:

Hi∗(OX)d�H̃ i−1(Rn\YJ ).
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The latter is isomorphic tõHi−1(Sn−1\Sn−1∩YJ ) (excision) which is further isomorphic to
H̃n−i−1(S

n−1∩YJ ) by topologicalAlexander duality. This is a subcomplex of the boundary
complex of a polytope polar dual toQ. The combinatorial Alexander dual is the set of faces
of Qwhose dual is not inYI . But this is precisely all of those faces ofQ contained in some
facetDI . The underlying topological space is|DI |. So, by combinatorialAlexander duality:

H̃n−i−1(S
n−1 ∩ YJ )�H̃ i−1(|DJ |).

as desired. �

We now tackle the casek = 0, the proof of this next proposition was given to me in a
personal communication with Mircea Musta¸tă.

Proposition 15. If the union of the collection of facets inDI is non-empty and homologi-
cally trivial, thenHi(O(−DI ))= 0 for all i. More generally,Hi(O(−DI ))�H̃ i−1(|DI |).

Proof (Due to Musta¸tă). H 0(O(−DI )) = 0 as the corresponding polytope is empty. Let
pI be such that(pI )i = −1 if i ∈ I and(pI )i = 0, otherwise. Clearly, neg(pI ) = I and∑
(pI )iDi = −DI . By Lemma 14,Hi∗(OX)pI = H̃ i−1(|DI |).
We now show that ifq is such that

[∑
qiDi

]=[−DI ], butq �= pI , thenHi∗(OX)q=0 for
all i. Indeed, by linear equivalenceq=pI +div(u), for someu ∈ Zd �= 0. LetJ =neg(q).
It is clear that

J = {i|〈u, �i〉<0 or 〈u, �i〉 = 0 andi ∈ I }.

Now the above implies there is a hyperplaneH ⊂ Rs which separates the edges of�Q
indexed byJ andJ . By [5, Proposition 2.6]this forcesHi∗(OX)q = 0 for i�1. �

To complete the proof of Theorem 7 we need to consider the casek <0. This will require
a new vanishing theorem which has intrinsic interest. Therefore, we state it in somewhat
more generality than necessary.

Theorem 16. Let X be a projective toric variety of dimension n, and D a nef and big line
bundle on X. LetDI =∑

i∈I Di be a sum of prime torus invariant divisors. If the union of
the facetsDi of Q withi ∈ I is a topological manifold with boundary thenHi(X,O(−D−
DI ))= 0 for all 0� i < n.

Proposition 3.3 in[15] states that the fan ofX refines the normal fan ofPD andO(D) is
the pull-back of an ample divisor, thus we can reduce to the case thatD is ample.
Theorem 7 gives general vanishing conditions for allk ∈ Z but the results in this section

show that the vanishing theorem can be refined using different hypotheses for different
cases of the integerk. Whenk >0, all higher cohomology vanishes for any subsetDI .
Whenk = 0 we need the toplogical space|DI | to have no reduced homology in which
case all cohomology vanishes. Finally fork <0, when|DI | is a manifold, all cohomology
vanishes except at the top.
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Proof. By the remark above assume thatD is ample. As before we will need to compute
Hi∗(OX)p for

∑
piDi linearly equivalent to−D−DI . LetpI be defined as in the proof of

Proposition 15. Anyp as above is of the formq − pI where
∑
qiDi is linearly equivalent

to−D. WriteD =∑
aiDi , in which caseqi = 〈u, �i〉 − ai for someu ∈ Zn.

Therefore,

neg(q)= {i|〈u, �i〉<ai}
and

neg(p)= neg(q) ∪ {i|〈u, �i〉 = ai and i ∈ I }
Let J ′ = neg(q) andJ = neg(p) with |DJ ′ | and|DJ | the corresponding unions of facets.
SinceD is an ample divisor,Hi(O(−D))=0 for i < n, derived for example by Proposition
13andSerre duality.Weneed to show that under thegivenhypothesesHi(O(−D−DI ))=0.
We already know by Lemma 14̃Hi(|DJ ′ |)= 0 for i < n− 1, but we will need to prove that
H̃ i(|DJ |)= 0.
We have three cases foru:
Case1 〈u, �i〉<ai for all i : Equivalently,−u ∈ int(PD). In this case|DJ | is the entire

boundary ofPD which is ann− 1 sphere and only has reduced homology at the top.
Case2 〈u, �i〉�ai for all i and 〈u, �i〉 = ai for some i: This means that−u is on the

boundary ofPD. SinceD is ample,PD has the same normal fan asQ and so has parallel
faces toQ. The set of all facetsDj for which 〈u, �j 〉 = aj cuts out a facef of Q. Moreover,
since−D is Cartier there is a corresponding function�−D on the fan�, defined to beai on
the rays�i and extended linearly in each cone. Since the linear functional〈u, ·〉 agrees with
�−D on a spanning set of the cone corresponding tof it agrees with�−D on all of this cone.
Therefore,〈u, �i〉 = ai for all facetsDi containingf and so|D′

J | is the union of all facets
of Q not containingf. If f is not a face of a facet inDI then none of theDj containingf are
part ofDI , in which case neg(p)= neg(q) and thereforeHi(|DJ |)=Hi(|DJ ′ |).

Next, assume thatf is a face of some facet inDI . The facetsDI define a cell complex, also
denotedDI , realizing the manifold|DI |. The starst(f ) is the union of all of the relatively
open faces ofDI that havef as a face and the linklk(f ) is st(f )− st(f ).
The key observation is that|DJ |= |DJ ′ | ∪ st(f ) andlk(f )=|DJ ′ | ∩ st(f ). So, we have

a Mayer–Vietoris sequence

· · · → H̃ a−1(lk(f )) → H̃ a(|DJ |) → H̃ a(st(f ))⊕ H̃ a(|DJ ′ |) → · · · .
We know thatst(f ) is contractible (it is star shaped!) and from aboveH̃ a(|DJ ′ |) = 0 for
a <n − 1. It remains to show that̃Ha−1(lk(f )) = 0 for a <n − 1. This is where we use
that|DI | is a manifold.
Start with the cell complexDI and perform a stellar subdivision at the facef. This induces

a subdivision ofDI , which we callDfI , with a new vertexvf corresponding to the facef.

Furthermore the star and linkst(vf ) andlk(vf ) in D
f
I are the same asst(f ) andlk(f ) in

DI . So it now suffices to show that̃Ha−1(lk(vf ))= 0 for a <n− 1.
Since|DI | is a manifold with boundary, the local cohomology of|DI | atvf ,Ha

vf
(|DI |),

vanishes fora �= n − 1 if vf is an interior point of|DI |, and for alla if vf is on the
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boundary.This local cohomology can also be computed from the triangulation as the relative
cohomologyHi(st(vf ), lk(vf )). The long exact sequence in relative cohomology yields:

· · · → H̃ a−1(st(vf )) → H̃ a−1(lk(vf )) → Ha(st(vf ), lk(vf )) → · · · .

Sincest(vf ) is contractible,Ha(st(vf ), lk(vf ))�H̃ a−1(lk(vf )) = 0 for a <n − 1 as
desired.
Case3 〈u, �i〉>ai for some i: In this case−u is outside the polytopePD. A point p in

PD is visiblefrom−u if the straight line fromp to−umeetsPD first in p. It is easy to see
that if a visible pointp is in the relative interior of a facef then the whole face is visible and
any subface of a visible face is visible. Therefore visibility is a property of whole faces. A
facef of PD will be calleddegenerateif −u is in the affine span off. In particularPD itself
is a degenerate face.A face is invisible if it is not visible or degenerate.Any facet containing
an invisible face must be invisible or degenerate and if every facet containing some facef
is degenerate thenf itself is degenerate. Clearly, a facetf is visible if and only if−u is on
the opposite side off asPD. Therefore,DJ ′ is the set of invisible facets.DJ is the union of
D′
J with some degenerate facets. So it will suffice to prove the following proposition taking

P = PD andv = −u.

Proposition 17. LetP ⊂ Rn be a polytope of any dimension. If v is any point in the affine
span of P but outside of P, then the union of the invisible facets of P together with any
collection of degenerate faces is homologically trivial.

Proof. Weproceed by induction on the number of degenerate faces and the dimension ofP.
If f is a degenerate face ofP, so thatv is in the affine span off, we can talk about the visible,
invisible, and degenerate faces off regarded as a polytope in its own right. It is immediate
from the definitions that a face off is visible (invisible, degenerate) if and only if it visible
(invisible, degenerate) as a face ofP.
To apply the induction we need to show that the intersection of a degenerate facef with

the union of the invisible facets and some degenerate faces ofP is precisely the union of
the invisible facets off and some degenerate subfaces.
We first consider the intersection of a degenerate facef with the union of the invisible

facets ofP. Any invisible facet off is an invisible face ofP and hence contained in an
invisible facet ofP. For the converse, letH be the affine span off. Supposef ′ is a face off
contained in an invisible facetF of P. Sinceu is on the same side ofF asP, it is on the same
side of the intersection ofF andH asf. In particular there must be some facet off containing
f ′ invisible fromu. Hence, the union of the invisible facets ofP intersectsf precisely in the
union of its invisible facets.
Next let f be the intersection of two degenerate faces. LetH be the intersection of the

corresponding two affine spans. SoH contains bothv andf and moreoverH ∩ P = f . Let
H ′ be the affine span off, a subspace ofH. Each facet ofP defines a half-space containing
P. The intersection of all of these half-spaces for the facets containingf is the convex hull
of P andH ′. Intersecting withH yields justH ′. One can instead take all of the opposite
half-spaces and it remains true that the intersection withH isH ′. Now if none of these facets
are invisible fromv, thenv lies in all of the opposite half spaces as above, which means
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thatv lies inH ′ and thusf is degenerate. In conclusion, the intersection of two degenerate
faces must either be degenerate or contained in an invisible facet.
We can now proceed with the induction on the number of degenerate faces. LetP0 be

the union of all the invisible facets ofP. This has no reduced cohomology since it is the
negative support of a negative ample divisor as before and therefore has no cohomology
below H̃ n−1. Sincev is outside ofP there is at least one visible facet and so the set of
invisible facets is not the wholen− 1-sphere.Therefore,̃Hn−1 is also 0.
Assume now thatPi , the union ofP0 with i degenerate faces, is cohomologically trivial.

Let f be a new degenerate face. The Mayer–Vietoris sequence gives us:

· · · → H̃ a−1(f ∩ Pi) → H̃ a(f ∪ Pi) → H̃ a(f )⊕ H̃ a(Pi) → · · · .
As f itself is contractible andPi is homologically trivial by induction, it suffices to show
thatf ∩ Pi is homologically trivial. However, the above arguments show thatv is in the
affine span off andf ∩ Pi is a union of all of the invisible facets off and some degenerate
faces off. Therefore, its cohomology vanishes by induction on dimension. The base case is
whenP is one dimensional, in which case forv in the line containingP but not inP, there
is exactly one invisible facet (a single point) and no degenerate facets.�

Note, that this proposition, and hence all of Case 3, holds for arbitraryDI and does not
use thatDI is a manifold. Theorem 7 is an easy consequence of all of the above results.�

4. Constructing the resultant matrix

4.1. Partial shellings

In this section we show how to choose theDi to form a topological ball (disk in dimen-
sion 2). Of course one can always choose a single facet forDi , but as we shall see this does
not usually yield the smallest matrices.

Definition 18. An ordering of the facetsD1, . . . , Ds of ann-dimensional polytopeQ, is
called a shelling if fori=2, . . . , s, (D1∪· · ·∪Di−1)∩Di isn−2 dimensional and is itself
the union of an initial sequence of facets (codimension 2 faces inQ) of a shelling ofDi .
A partial shellingis a proper sequence of facets, sayD1, . . . , Dt with 1� t < s, satisfying
the same property above.

WhenQhas dimension 2, a partial shelling is the same as a connected set of edges. In our
setting, whereQhas dimension 3, being a partial shelling simplymeans that the intersection
of eachDi with the union of the previousDj is a connected set of edges ofDi .

Proposition 19. Let Q be a polytope of dimension3.The space|DI | is homeomorphic to
a disk if and only if the facets inDI can be arranged into a partial shelling of the boundary
of Q.

Proof. It is a standard result that any partial shelling of the boundary of a polytope is
homemorphic to a ball. In the case of a 3-dimensional polytope it is actually a consequence
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of the Jordan curve theorem. Conversely, every topological disk is shellable in dimension
two. This last statement fails in dimension three and higher.�

It is very easy to actually construct partial shellings for polytopes. A simple algorithm
is to pass to the polar polytopeQ◦ of Q. Facets ofQ correspond to vertices ofQ◦. Next,
pick a generic vector inRn. This will induce a linear functional onQ◦ which by genericity
induces a linear order on the vertices. One can show that any initial segment of this linear
ordering corresponds to a partial shelling of the facets ofQ. Shellings arising this way are
called line shellings.

4.2. Filling in entries

To actually construct our resultant formula we need to fill in the entries of the matrices
B, L, andL̃. We saw above how these arise from a map in a Tate resolution. Therefore, we
must compute appropriate terms and maps in the Tate resolution following the algorithm in
Section 2.2 adapted to this situation.

Algorithm 1. (1) Pick a partial shellingDI . As we shall see in the next section, in order
to get a smaller matrix we should pickDI to have as many boundary points as possible.
(2)Compute the lattice points in3Q−DI and4Q−DI , respectively.
(3)Construct the linear map�2 : S3Q−DI ⊗E → S4Q−DI ⊗E. In light of Theorem 8

this is precisely the differentialT 1(F) → T 2(F).
Recall thatyi represents a basis element ofSQ hence a point inA=Q∩Z3.So, for every

basis element m ofS3Q−DI , let the multiplicative notationm · yi denote the basis element
ofS4Q−DI obtained by adding the two points. This can of course be extended linearly to all
of S3Q−DI . Now the map�2 is explicitly defined by�2(m⊗ 1)=∑N

i=1 (myi ⊗ ei).
(4)Compute two steps of a graded minimal free resolution, over E, of the cokernel of�2.

T −1 �0−→ T 0 �1−→ T 1 �2−→ T 2.

Since this minimal free resolution is precisely the Tate resolution, the map we are interested
in is�0. LetM0 be the correspondingmatrix over E. The entries of this matrix will be either
linear or of degree4.
(5)Apply the functorU4 to�0, and thereforeM0.This is done by replacing each degree4

term of the formei1ei2ei3ei4 by the“bracket variable” [i1i2i3i4] which represents the4× 4
determinant:

det



C1i1 C1i2 C1i3 C1i4
C2i1 C2i2 C2i3 C2i4
C3i1 C3i2 C3i3 C3i4
C4i1 C4i2 C4i3 C4i4


 .

HereCij is the coefficients offi corresponding to the monomial representing the point
yj ∈ A. These entries make up the submatrix B from Theorem2.The remaining rows and
columns have linear entries, and correspond to L andL̃.Replace each such row(or column)
by4 rows(or columns). The entryei is replaced byC1i in the first copy, C2i in the second
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Fig. 1. Newton polytope of Example 20.

copy, and so on. This procedure is illustrated in the examples below. It is a consequence of
Lemma4.2 in [12]. This results in a matrix M which is precisely the matrix of Theorem2.

Step 4 above requires computing part of a graded minimal resolution over the exterior
algebra. This can be done using Gröbner bases but may be quite time consuming. On the
other hand this computation needs only be done once to compute the resultant of any system
with a fixed support. Onemight hope to eliminate the expensiveGröbner basis computations
by finding explicit formulas for the non-trivial maps in the resolution. This was done for
the two-dimensional resultant in[12] but remains open in the three-dimensional case.

4.3. Examples

Example 20. Consider the multilinear system:

f1 = C11 + C12x + C13y + C14z+ C15xy + C16xz+ C17yz+ C18xyz,

f2 = C21 + C22x + C23y + C24z+ C25xy + C26xz+ C27yz+ C28xyz,

f3 = C31 + C32x + C33y + C34z+ C35xy + C36xz+ C37yz+ C38xyz,

f4 = C41 + C42x + C43y + C44z+ C45xy + C46xz+ C47yz+ C48xyz.

The Newton polytopeQ of this system is the unit cube inFig. 1. In order to apply the
resultant algorithm we must choose a partial shelling. So, for example, we can pick the
left, front, and, right faces as shown. Nowl(Q − DI ) and, by symmetry,l(Q − DI ) are
empty whilel(2Q − DI ) consists of the 6 monomials{xy, xyz, xy2, xyz2, xy2z, xy2z2},
andl(2Q−DI ) consists of the 6 monomials{z, xz, yz, xz, xyz, x2yz}. By Theorem 2 the
resultant is the determinant of a 6× 6 pure Bézout matrix. To explicitly compute it, we
construct the linear mapS2Q−DI ⊗ E(1) → S3Q−DI ⊗ E and compute one step of a free
resolution overE. The matrix turns out to be the one shown in Table1 .
Note that the size of the matrix depends heavily on the choice of the partial shelling. If,

on the other hand, we were to chooseDI to consist of the left, front, and top facets, then
#l(Q−DI )= #l(Q−DI )= 1, and #l(2Q−DI )= #l(2Q−DI )= 8. Hence, the matrix
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Table 1
Resultant matrix for Example 20


[1234] [1236] − [1245] [1237] [1256] [1238] + [1257] [1258]

[1346] − [1247] [2346] − [1248] [2347] − [1367] −[2456] − [1268] [2348] − [1368] −[1568] − [2458]
−[1267] − [1456] −[1567] − [2457]

[1345] [2345] − [1356] −[1357] −[2356] −[2357] − [1358] −[2358]

[1467] [2467] + [1468] [3467] [2468] [3468] − [4567] −[4568]

[1457] + [1348] [1368] + [2348] [1378] − [3457] [2368] − [2567] [1578] + [2378] [2578] − [3568]
+[2457] − [1567] +[3458] − [3567]

−[1478] −[1678] − [2478] −[3478] −[2678] [4578] − [3678] [5678]




from Theorem 2 would be a 12× 12 matrix with an 8× 8 blockB, a 8× 4 blockL, a 4× 8
block L̃, and a 4× 4 block of zeroes.
If instead we tried the top and bottom facets, not homeomorphic to a disk, we would

still havel(Q−DI ) andl(Q−DI ) empty. However, this timel(2Q−DI ) would consist
of 9 points, whilel(2Q − DI ) would have only 3 points. A closer look at the vanishing
theorems shows that we can still get a 9× 9 square resultant matrix as there is only other
non-vanishing cohomology termH 1(O(−DI )) = H̃0(|DI |) = C tensored with

∧2T, a
vector bundle of rank 6. Indeed one can show in general that if|DI | is a disjoint union of
disks we still get an exact matrix formula.

Example 21. Our next example is the following system:

f1 = C11 + C12x + C13y + C14z+ C15x
−1 + C16y

−1 + C17z
−1,

f2 = C21 + C22x + C23y + C24z+ C25x
−1 + C26y

−1 + C27z
−1,

f3 = C31 + C32x + C33y + C34z+ C35x
−1 + C36y

−1 + C37z
−1,

f4 = C41 + C42x + C43y + C44z+ C45x
−1 + C46y

−1 + C47z
−1.

The Newton polytopeQ is the octahedron ofFig. 2. As our set of facets (partial shelling)
we choose thex, y, z facet and the three other facets adjoined to it by an edge. The chosen
facets are shaded in the figure. Now we can see that there are 10 points inl(2Q − DI )

and also by symmetry inl(2Q −DI ). There is a single point inl(Q −DI ) (respectively,
l(Q − DI ). By Theorem 2 the resultant is therefore the determinant of a 14× 14 matrix
shown in Table2 . This matrix was found following the algorithm of Section 4.2 by starting
with the mapS3DQ−DI ⊗ E(1) → S4DQ−DI ⊗ E and computing a free resolution.
If wewere to chooseanon-partial shelling suchas two facetsmeetingat a single point then

the corresponding resultant complex would have non-trivial middle cohomology. Indeed,
H 2(−D − DI ) = H 2(−2D − DI ) = C. |DI | is still homologically trivial but it is not a
disk. The complex arising from the Tate resolution has three terms.

5. Ehrhart polynomials and sizes of resultant matrices

The results of Section 3 show that the determinant of the matrix of Theorem 2 is the
resultant. In particular, it must be square and the degree of its determinant is equal to that
of the resultant. In this section, we give an alternate combinatorial proof of these facts. This
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Fig. 2. Newton polytope of Example 21.

Table 2
Resultant matrix for Example 21


0 0 0 0 0 0 0 [2345] [2346] [2347] C11 C21 C31 C41
0 0 0 0 0 0 0 0 0 0 C12 C22 C32 C42
0 0 0 0 0 0 0 0 0 0 C13 C23 C33 C43
0 0 0 0 0 0 0 0 0 0 C14 C24 C34 C44
0 −[2356] −[2357] 0 0 0 0 [1235] 0 0 C15 C25 C35 C45
0 −[2456] 0 [2467] 0 0 0 0 −[1246] 0 C16 C26 C36 C46
0 0 [3457] [3467] 0 0 0 0 0 [1347] C17 C27 C37 C47

−[2567] [1256] 0 0 0 0 0 −[2356] −[2456] 0 0 0 0 0
−[3567] 0 −[1357] 0 0 0 0 −[2357] 0 [3457] 0 0 0 0
−[4567] 0 0 [1467] 0 0 0 0 [2467] [2467] 0 0 0 0
C11 C12 C13 C14 C15 C16 C17 0 0 0 0 0 0 0
C21 C22 C23 C24 C25 C26 C27 0 0 0 0 0 0 0
C31 C32 C33 C34 C35 C36 C37 0 0 0 0 0 0 0
C41 C42 C43 C44 C45 C46 C47 0 0 0 0 0 0 0




will also allow us to analyze the size of the resultant matrix in order to choose the smallest
matrices.
Consider the Hilbert function ofXA, which turns out to be an honest polynomialp(x)

where the valuep(k), for k ∈ N, counts the number of lattice points in the polytopekQ.
This polynomial is associated to the polytopeQ and is called theEhrhart polynomialofQ.
There is a very pretty duality theorem involving Ehrhart polynomials. See[8] for details.

Proposition 22. Let Q be a lattice polytope of dimension n with Ehrhart polynomial p.
Then, (−1)np(−k) is the number of interior lattice points in kQ.

Given a collection of facetsDI we are interested in counting the number of lattice points
in kQ−DI .A result of Stanley[16] extends Ehrhart polynomials and duality in this setting.

Proposition 23 (Stanley[16, Proposition 8.2]). Let Q be a lattice polytope of dimension n,
andDI a collection of facets. Suppose|DI | is homeomorphic to a manifold. Then, there is
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a polynomialpI of degree n, such thatpI (k) for k >0 is the number of points inkQ−DI ,
(−1)npI (−k) for k >0 is the number of lattice points inkQ−DI ,andpI (0)=1−�(|DI |).
Here, �(|DI |) is the Euler characteristic of the manifold|DI |. In particular, if |DI | is a
disk, thenpI (0)= 0.

The differencep(k)−pI (k), the number of lattice points on the facetsDI in kQ, is itself
a polynomial of degree(n− 1).
Going back to resultants, we consider the two term complex appearing in Corollary 9

S2Q−DI
*

S2Q−DI
SQ−DI

*SQ−DI

4 3

01

0B

L

LT T

TT

∼

LetpI (k) be the Ehrhart polynomial ofkQ−DI . This is a cubic polynomial, thus the fourth
difference is 0. In particular:

pI (2)− 4pI (1)+ 6pI (0)− 4pI (−1)+ pI (−2)= 0.

Since|DI | homeomorphic to a disk,pI (0)=0, and the equation can be rewritten aspI (2)−
4pI (−1) = −pI (−2) + 4pI (1). Indentifying the dimension of the terms in the diagram
above using Proposition 23, this says precisely that the matrix is square.
The total degree is computed by taking 4#l(Q−DI ) entries fromL, 4#l(Q−DI ) entries

from L̃ and #l(2Q−DI )−4#l(Q−DI ) entries fromB. The entries ofL andL̃ are of degree
1, while those ofB are of degree 4. So the total degree is 4pI (1)− 4pI (−1)+ 4(pI (2)−
4pI (1)) = 4(pI (2) − 3pI (1) + 3pI (0) − pI (−1)). This is 4 times the third difference of
pI which is the same as 4 times 3! times the leading coefficient ofpI . This is the same as
the leading coefficient of the Ehrhart poynomial ofQwhich is just the Euclidean volume.
Hence, the degree in question is 4 times the normalized volume which is also the degree of
the resultant.
This leads to a technique to analyze the size of the resultant matrices. The Ehrhart poly-

nomial ofQ is of the formp(x)=Ax3 +Bx2 +Cx + 1. The leading termA is the degree
of the toric varietyXA divided by 3!, which is the Euclidian volume ofQ. Moreoverp(1)
is the number of lattice points inQ, andp(−1) is the negative of the number of interior
points. So the number of boundary points inQ isp(1)+p(−1)=A+B+C+1−A+B−
C + 1= 2B + 2. LetBQ = 2B + 2 denote this number. Next, for any partial shellingDI ,
we write the corresponding quadratic Ehrhart polynomial asqI (x) = ax2 + bx + 1. This
time q(−1) is equal to the number of relative interior points, so the number of boundary
points isq(1) − q(−1) = a + b + 1− a + b − 1= 2b. LetBI = 2b denote this number.



A. Khetan / Journal of Pure and Applied Algebra 198 (2005) 237–256 255

TakingpI (x)= p(x)− qI (x) as above, then the total size of the resultant matrix is

pI (2)− 4pI (−1)= p(2)− qI (2)− 4p(−1)+ 4qI (−1)

= 8A+ 4B + 2C + 1− (4a + 2b + 1)− 4(−A+ B − C + 1)

+ 4(a − b + 1)

= 12A+ 6C − 6b.

Let iQ = −p(−1) = A − B + C − 1 be the total number of interior points ofQ. So
C = iQ + 1+ B − A. Hence, we can rewrite the above as:

12A+ 6C − 6b = 12A+ 6(iQ + B − A+ 1)− 6b

= 6A+ 3(2B + 2− 2b)+ 6iQ
= V + 3(BQ − BI )+ 6iQ.

Here,V denotes the normalized volume ofQ which is 6 times the Euclidian volumeA.
Therefore, in order to minimize the size of the matrix we must maximizeBI which is the
number of relative boundary points of the union of the facetsDI . This gives an obvious
lower bound ofV for the size of the resultant matrix. A more sophisticated argument would
give an upper bound of 3V wheniQ is at least 1.

6. Conclusion

In this article we showed how the resultant of an unmixed system in three variables with
arbitrary support canbecomputedas thedeterminant of amatrix.Combinedwith theauthors
earlier results[12], we have now generalized the formulas for the resultant of homogeneous
systems in dimensions 2 and 3. However, it is still unknown how to make the dimension 3
formula completely explicit instead of in terms of a free resolution as presented here.
For dimension 4 and higher, no general exact formula is known.We do give some special

cases, although still without an explicit closed form formula, and it would be nice to finish
this classification. A second approach is to allow complexes with more than two terms,
yielding resultant formulas with extraneous factors. In the case of projective spaces[2] and
products of projective spaces[3] the extraneous factors have been identified. It is still open
how to do this for general toric varieties.
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[15] M. Mustaţă, Vanishing theorems on toric varieties, Tohoku Math. J. (2) 54 (3) (2002) 451–470.
[16] R.P. Stanley, Combinatorial reciprocity theorems, Adv. Math. 14 (1974) 194–253.


	Exact matrix formula for the unmixed resultantin three variables
	Introduction
	Notation and background
	Toric varieties and Chow forms
	Exterior algebra and the Tate resolution

	Proof of Theorem 2
	Cohomology vanishing

	Constructing the resultant matrix
	Partial shellings
	Filling in entries
	Examples

	Ehrhart polynomials and sizes of resultant matrices
	Conclusion
	References


