13 research outputs found

    Multiplier-less discrete sinusoidal and lapped transforms using sum-of-powers-of-two (SOPOT) coefficients

    Get PDF
    This paper proposes a new family of multiplier-less discrete cosine and sine transforms called the SOPOT DCTs and DSTs. The fast algorithm of Wang [10] is used to parameterize all the DCTs and DSTs in terms of certain (2×2) matrices, which are then converted to SOPOT representation using a method previously proposed by the authors [7]. The forward and inverse transforms can be implemented with the same set of SOPOT coefficients. A random search algorithm is also proposed to search for these SOPOT coefficients. Experimental results show that the (2×2) basic matrix can be implemented, on the average, in 6 to 12 additions. The proposed algorithms therefore require only O(N log2N) additions, which is very attractive for VLSI implementation. Using these SOPOT DCTs/DSTs, a family of SOPOT Lapped Transforms (LT) is also developed. They have similar coding gains but much lower complexity than their real-valued counterparts.published_or_final_versio

    Evolutionary design of digital VLSI hardware

    Get PDF

    Dual-DCT-Lifting-Based Lapped Transform with Improved Reversible Symmetric Extension

    Get PDF
    We present a lifting-based lapped transform (L-LT) and a reversible symmetric extension (RSE) in the boundary processing for more effective lossy-to-lossless image coding of data with various qualities from only one piece of lossless compressed data. The proposed dual-DCT-lifting-based LT (D2L-LT) parallel processes two identical LTs and consists of 1-D and 2-D DCT-liftings which allow the direct use of a DCT matrix in each lifting coefficient. Since the DCT-lifting can utilize any existing DCT software or hardware, it has great potential for elegant implementations that are dependent on the architecture and DCT algorithm used. In addition, we present an improved RSE (IRSE) that works by recalculating the boundary processing and solves the boundary problem that the DCT-lifting-based L-LT (DL-LT) has. We show that D2L-LT with IRSE mostly outperforms conventional L-LTs in lossy-to-lossless image coding
    corecore