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Abstract 
This paper proposes a new family of multiplier-less discrete 

cosine and sine transforms called the SOPOT DCTs and DSTs. 
The fast algorithm of Wang [lo] is used to parameterize all the 
DCTs and DSTs in terms of certain (2x2) matrices, which are then 
converted to SOPOT representation using a method previously 
proposed by the authors [7]. The forward and inverse transforms 
can be implemented with the same set of SOPOT coefficients. A 
random search algorithm is also proposed to search for these 
SOPOT coefficients. Experimental results show that the (2x2) 
basic matrix can be implemented, on the average, in 6 to 12 
additions. The proposed algorithms therefore require only 
O(Nlog, N) additions, which is veIy attractive for VLSI 
implementation. Using these SOPOT DCTsDSTs, a family of 
SOPOT Lapped Transforms (LT) is also developed. They have 
similar coding gains but much lower complexity than their real- 
valued counterparts. 

I. INTRODUCTION 
Discrete Cosine and Sine transforms (DCTs and DSTs) are 

frequently used in signal and image processing applications. For 
example, the DCT-11, which is usually referred to as the DCT, is 
commonly used in image, video and audio coding. The four types 
of DCTs (DSTs) are also useful in implementing the lapped 
transforms [4,5] and the cosine modulated filter banks (CMFB) [ 1- 
31. Recently, there is a considerable interest in designing filter 
banks with low arithmetic complexity. Filter banks using integer 
coefficients [I], and the sum-of-powers-of-two (SOPOT) 
representation [6, 71 were proposed. One important problem with 
integer CMFB and integer lapped transform [8] is that it is very 
difficult to design orthogonal integer matrices which resemble the 
various sinusoidal transforms when the size of that transform 
increases. Up to now, only integer DCT-IV up to order 8 has been 
reported. In order to overcome this difficulty, the authors have 
recently proposed a multiplier-less DCT-IV for the implementation 
of the conventional CMFB [7], which is based on the SOPOT 
representation. Multiplier-less DCT-IV up to 1024 and higher can 
be designed. In this paper, we further generalize this technique to 
cover the four types of DSTs and DCTs. The fast decomposition 
algorithm of Wang [lo] is used to parameterize all the DCTs and 
DSTs in terms of a set of basic (2x2) matrices. These matrices, 
which are closely related to the (2x2) rotation matrix, are then 
converted into SOPOT representation using the method we have 
introduced in [7]. This allows us to implement both the forward 
and inverse transforms with the same set of SOPOT coefficients. 
Moreover, as the proposed SOPOT DCTs and DSTs are derived 
from the fast algorithms of Wang [lo], it only requires O ( N  log, N )  
additions and the implementation of O(Nlog,  N )  (2x2) basic 
matrices as mentioned earlier,- where N is the length of the 
transforms. As each (2x2) basic matrix can be implemented, on the 
average, in 6 to 12 additions, the proposed multiplier-less 
transforms require only O ( N l o g ,  N) additions, which is very 
attractive for VLSI implementation. Using these SOPOT 
DCTsIDSTs, a family of SOPOT Lapped Transforms is also 
developed. They have similar coding gains but lower 
implementation complexity than their real-valued counterparts. It 
should be noted that another (8x8) multiplier-less DCT-11, called 
binDCT, can also be obtained from the Gauss-Jordan factorization 

and the lifting structure [9]. Our approach differs from [9] in that 
it is based on the fast DCTDST algorithms of Wang which can be 
generalized to different types of sinusoidal transforms with 
different transform lengths. Moreover, the parameterization is 
based on a rotation-like (2x2) matrix, which is expected to have 
better numerical properties, especially when the transform size is 
large. The approach described here can also be generalized to 
design SOPOT approximation to discrete Fourier transform (DFT) 
and discrete Hartley transform (DHT) [15]. 

This paper is organized as follows: Sections I1 and 111 are 
devoted to the definition of the four types of DCTs and DSTs, and 
their fast algorithms. The proposed SOPOT DCTs and DSTs are 
discussed in Section IV followed by several design examples in 
Section V. Finally, conclusions are drawn in section VI. 

11. THE SINUSOIDAL TRANSFORMS: DCT AND DST 
According to Wang [lo], there are four different types of 

discrete cosine transforms (DCT) and discrete sine transforms 
(DST). These transforms have been developed at various times by 
Ahmed et al [ll], Kitajima [12], Jain [13] and Kekre and Solanki 
[14]. The definitions of the DCTs and DSTs are given as follows, 
A. Four types of DCT Matrices 

[C:+,l,m = c o s ( h r l  N)} , (2.la) 

[C{L,n = -{~~cos(k(n+ 1/2)n/N)}, (2.lb) 

(2.lc) 

k,n=0,1, ..., N. 

k , n  =0,1, ..., N-1. 

[CfL." = ={E, cos(n(k + 1/2)n/ N)} , 
k,n =0,1,._., N -1. 

[C.:Vl," = J 2 7 N { c o s ( ( k + 1 / 2 ) ( n + 1 / 2 ) 7 r / N ) } ,  (2. Id) 

k,n  =0,1. ..., N-1. 

B. Four types of DST Matrices 

[S,!,-,l," = f i { s in (knn /  N)} , 

[ S { l , n  = ~ { ~ ~ s i n ( k ( n - l / 2 ) 7 r l N ) ) ,  (2.2b) 

(2.2c) 

(2.2a) 

k , n  = 1,2 ,..., N - 1 .  

k,n=1,2 ,..., N. 

[Sfl,. = ={E" sin(n(k - 1/2)7r/ N)} , 
k,n=1,2 ,._., N. 

[Sri," = f i { s in ( (k  +1/2)(n+1/2)7r/N)}, (2.2d) 

k , n =  0.1 ,..., N -1. 

E, is equal to 1 1 6  for i = 0,N and 1 otherwise. The 
superscripts and subscripts represent respectively the type and the 
size of the transforms. Also, let X f ( k )  , K=Z to ZV, and x ( n )  be 
the type K cosine transformed and the input sequences, 
respectively. For simplicity, it is assumed that the scaling factors 
are absorbed into X : ( k )  or x(n)  so that E, and E, are taken as 
unity in the subsequent development. We now summarize the 
decompositions for the various DCTs and DSTs to construct their 
multiplier-less transmations. 
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111. DECOMPOSITION OF DCTs and DSTs 
- DCT-I 

From the definition of DCT-I [lo], it can be shown that, for N 
an even number, its even and odd parts can be decomposed as 

+(-1) '~(N12),  m k  ( N / t ) - l  

Xi-'(2k) = x [ x ( n ) + x ( N  -n)]cos- 
";10 0'12) 

m(2k + 1) ( N  /2)-1 

Xi-'(2k + 1) = z [ x ( n )  - x(N - n)]cos 
"-0 (Nl2)  ' 

where k =0,1, ..., Nl2-1.  (3-1) 
Therefore, an DCT-I can be computed by a DCT-I and a DCT-I11 
of lower order. (3-1) can be written more compactly as the 
following matrix representation 

(3-2) 
where PN+I is a permutation matrix that accomplishes the 
permutation of the even and odd indexed parts, 

I N / ,  J N / *  

A,,, =L[ & 1. and I ,  and J ,  are order N 

I N 1 2  - J N , ,  

identity and exchange matrices, respectively. 
DCT-11 and DCT-I11 

into an (Nl2)-point DCT-I1 and DCT-IV. 

c,!d+l = PN+I(c,!d/2+1 @CY/2)AN+I  3 

Jz 

Similarly, a DCT-I1 with an even length N can be decomposed 

(3-3a) n(2n + 1)k ( N I Z b l  

Xi-'' (2k) = c [x (n )  + x(N - n  COS 
"30 2(N/2)  ' 

( N  I21-1 n(2n + l)(k + 1) Xi-'' (2k + 1) = [x(n)  - x(N - n - I)]COS 
"30 2(N/2)  ' 

where k = 0.1 ...., (N 12) - 1. (3-3b) 
In matrix notation, (3-3) reads 

c," = P,(C,"/~  @C,",JB,,  (3-4) 

where PN is a permutation matrix that accomplishes the 
permutation of the even and odd indexed parts and 

B, = [ lNi2 J N ' 2  1. The decomposition for DCT-I11 can be 
' N l Z  - J N / Z  

obtained by observing that DCT-I11 and DCT-I1 are inverses of 
each other. It then follows from (3-4) that 

(3-5) c; = [c,"p' = B;(C;,2 eC; /*)P' .  

DCT-IV 
To obtain the decomposition for DCT-IV 

N-l 

( k )  = Cx(n)cos  z(2n+1)(2k+1), k=0,1, ..., N - 1 .  (3-6) 
"30 4N 

Let's define the following sequences 
YN ( k )  = Xs-'" (k)c0sq5~ + Xi-'" (N - k  -l)sin@, , 

Y,(N - k  -1) = Xi-'" (k)sinq5, - Xh-" (N - k  -l)cos@, , 

(3-7a) 

(3-7b) 
where k=0,1, ..., N-1 and 4, = z ( 2 k + 1 ) / 4 N .  It can be shown 

[ 101 that X:-" ( k )  can be expressed in terms of Y ,  ( k )  as follows 

X$-'" ( k )  = YN (k)cos@, + Y ,  (N - k -1)sinbk , 

Xi-'" (N - k - 1) = Y ,  (k)sinb, - Y ,  (N - k - 1) cos4, , 

(3-Sa) 

(3-8b) 
where k = 0,l.. . ., N - 1 . Y ,  ( k )  can be computed via DCT-I11 and 
DST-I11 of lower order as follows, 

1 z  
2 N  

N/Z+I 

Y ,  ( k )  = x(0) + [x(2n - 1) + x(2n)]cos(k + -)(2n)- , (3-1 la) 
,#=I 

YN (N - k - 1) = (-l)k x(N - 1) 
N I 2 4  1 jr , (3-11b) + C [x(2n - 1) - x(2n)lsin(k + -)(2n)-- 

"-1 2 N  
The order-N12 DCT-111 and DST-III can furthur be decomposed 

into DST-N and DST-IV of lower order. In matrix notation, we 
have 

c; = TN (CZ, @ s;,)B, , (3-12) 

r R , / 4 N  1 
where T, = 

R 3 / 4 N  

I 
1 1, and B ,  = [:::: cosrn  s inrn  

s i n r z  -cosrn R, =[ 
Similar decompositions can be derived for the DSTs, and are 
omitted here due to page limitation. 

Tv. MULTIPLIER-LESS DISCRETE SINUSOIDAL 
TRANSFORMS 

The main difficulty in constructing a multiplier-less 
transformation is that the coefficients of the matrix transformation 
and its inverse cannot in general be expressed in terms of SOPOT 
coefficients. Let's consider the following simple matrix in (3-12) 

Re =[case s ine]  
sine -cos8 

If cos0 and s in0 are expressed directly in terms of SOPOT 

coefficients, say a and p .  The inverse of Ze = 

ii,' =- . As a and p are SOPOT coefficients, 

the term - cannot in general be expressed as SOPOT 

coefficient. The basic idea of the proposed multiplier-less 
sinusoidal transforms is based on the following factorization of the 
matrix R, and its inverse. 

J z i F  

(4-lb) 

Since these factorizations of RB and R;' involve the same set 
of coefficients, i.e. s in6 and tan(0/2), they can be directly 
quantized to SOPOT coefficients as follows 

Re J S, =[' o -"I[ -1 a, ']I[' 1 0 -1 "1 ' (4-2) 

where a, and p, are respectively SOPOT approximaticm to 
sin 6 and tan@/ 2) . These Coefficients are represented as 

a, = 2~~2~ '  where a, E {-l,l}and bk E {-r ,__., -l,O,l,... r}, (4.3) 

r is the range of the coefficients and t is the number of terms being 
used in each coefficient. Replacing R, in the fast sinusoidal 
transform algorithms in Section 111, the desired multiplier-less 
sinusoidal transforms can be obtained. Length N = 2" DCT-11, - 
111, -IV, and length N = 2" + 1 DCT-I can be generated where m 
is a positive integer. Similar SOPOT DSTs can be generated The 
remaining problem is to search for the SOPOT coefficients such 
that certain criteria are minimized subject to a given 
implementation complexity. For example, in signal coding 
applications, the coding gain of the transform can be used :is the 
criterion for minimization. For multiplier-less digital filters 

k = l  

11- 14 



employing SOPOT coefficients, the total number of terms in the 
SOPOT coefficients is usually used as a measure of its 
implementation complexity. It can be seen that this is a 
combinatorial optimization problem. In this paper, a random 
search algorithm is used to perform this discrete optimization. 
More precisely, a random vector with all its elements bounded by 
+1 is first multiplied by a scaling factor s, and is added to the 
parameter vector containing the real-value of a, and PE.  It is 
then quantized to the nearest SOPOT coefficients. The objective 
function is then evaluated for this SOPOT canddate. The one with 
the best performance at a given number of additions is recorded. 
The search continues until the maximum allowed number of trials 
is exceeded. The scale factor controls the size of the neighborhood 
to be searched. A number of solutions with different tradeoffs 
between implementation complexity and performance are then 
obtained. For the DCTs and DSTs, the mean squared error between 
the impulse responses of the candidate vector and the real-valued 
transform is used as the performance measurement. Also, when the 
number of channels, in the power of two, being more than about 64, 
all the transformation can be calculated using the early mentioned 
decomposition. The previous generated lower order DCTs/ DSTs 
can be used to reduce the searching time. 

V. DESIGN EXAMPLES 
We now present some design examples for the DCTs and 

DSTs. 
SOPOT DCT-I. 11. I n  and IV 

Table 1 shows the parameters of the proposed SOPOT DCT-I, - 
11, -111 and -1V with m = 4 . It can be seen that the multiplication 
with the SOPOT coefficients a, and can be implemented, on 
the average, as approximately 2 additions per coefficient. The 
frequency responses of an 8-channel SOPOT DCT-I1 and an 64- 
channel SOPOT DCT-IV are plotted in figure 2 and 3, respectively. 
The coding gain performance and the implementation complexity 
of the proposed SOPOT DCTs and their real-valued counterparts 
are further compared in table 2. It can be seen that the SOPOT 
DCTs have similar coding gains as their real-valued counterparts. 

Re 
RI14 

R~~~ 
R114 

ae Pe 
20 - 2-2 - 2-5 
2" - 2-2 - 2-5 

2" - 2-2 - 2-5 

2-1 - 2-3 + 2-5 
2-1 - 24 - 2-5 + 2-7 

2-1 - 24 - 2-5 + 2-7 

Table la. Coefficients of the 17-channel SOPOT DCT-I 

Table lb. Coefficients of the 16-channel SOPOT DCT-I1 and DC T-111 

2- -2-  2- -2- 

2- -2- -2- 2- - 2- + 2- 

Table IC.  Coefficients of the 16-channel SOPOT DCT-lV 

SOPOT LAPPED TRANSFORMS 
As mentioned earlier, one of the applications of the proposed 

SOPOT DCTs/DSTs is to implement multiplier-less lapped 
transform and CMFB. In this section, we shall present several 
design examples on SOPOT Lapped Transforms. Further results 
on the design of different types of SOPOT CMFB will be reported 
elsewhere. Figure 1 shows the general structure of an M-channel 
Lapped Transform (LT) with M = 8 . The M-channel LT is an M- 
channel perfect reconstruction filter bank with filter length 2M. 
The proposed SOPOT Lapped Transform (LT) is obtained by 
replacing the C i  , Ci,, and S,",, with their SOPOT counterparts 
obtained in the previous sub-section. 

Xln) 

Figure 1 .  Flow graph of %channel LT. 

In designing the SOPOT LT, we have used the coding gain as 
the performance measure. 

1 

M ( f f A k  Bk)'lM ' 
G =  (5-1) 

N - I N 4  1 N-1 

J=o I=o J=O 

where A, = ~ ~ h , ( j ) h , ( i ) p " - ' l a n d  B, = - z g ' ( .  k J ) '  

h, (n )  and g, (n )  are the impulse responses of the k-th analysis and 
synthesis filters of length N. Here the input is assumed to be a first- 
order auto-regressive process with correlation coefficient 
p = 0.95 . 

The coding gains of Lapped Transform (LT) and the proposed 
SOPOT LT are given in table 3. It can be seen that the coding gains 
of the SOPOT LTs are very close to their real-valued counterparts. 
However, only about two additions are required to implement each 
multiplication in the SOPOT LT. As another illustration, the 
frequency response of an 8-channel SOPOT LT is given in Figure 
4. 

VI. CONCLUSIONS 
A new family of multiplier-less discrete cosine and sine 

transforms called the SOPOT DCTs and DSTs is presented. They 
are derived from the fast algorithms of Wang [lo] by 
parameterizing all the DCTs and DSTs in terms of certain (2x2) 
matrices. Using a method previously proposed by the authors [7], 
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these (2x2) matrices are then converted to SOPOT representation. 
The forward and inverse transforms can then be implemented with 
the same set of SOPOT coefficients. A random search algorithm is 
also proposed to search for these SOPOT coefficients. 
Experimental ‘results show that the (2x2) matrix can be 
implemented, on the average, in 6 to 12 additions. The proposed 
algorithms therefore require only O(Nlog2 N) additions, which is 
very attractive for VLSI implementation. Using these SOPOT 
DCTdDSTs, a family of SOPOT Lapped Transforms (LT) is also 
developed. They have similar coding gains but much lower 
complexity than their real-valued counterparts. 
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Figure 3. Frequency Response of 64thannel SOPOT DCT-IV. 
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Figure 4. Frequency Response of 8-channel SOPOT LT 

channel 

channel 

channel 

channel 

channel 
129- 

channel 
Table 2. 

DCT-I 
3.00 (4) 

2.88 (8) 

2.94 (18) 

3.50 (40) 

3.27 (86) 

3.10 (180) 

The average 1 

4- 
channel 

8- 
channel 

16- 
channel 

32- 
channel 
64- 

channel 
128- 

channel 

DCT-I1 & III 
3.00 (4) 

2.80 (10) 

2.95 (22) 

3.07 (46) 

2.95 (94) 

2.89 (190) 

niber of SOPOT temis i 

DCT-N , 

2.67 (6) 

1.75 (12) 

3.00 (24) 

2.85 (48) 

2.84 (96) 

2.95 (94) 

d nuniber o i  
parameters represented in SOPOT inside the brackets of the 
discrete cosine nansfomi (DCT) type-I. 11. I11 and N .  

Gain of Gain of Average no. of 

8-channel 9.2189 
16-channel 9.7593 9.7556 2.86 
32-channel 9.9729 9.9408 3.02 (92) 

10.050 1 2.95 (188) 

Figure 2. Frequency Response of 8-channel SOPOT Dcr-II. 11- 16 

I 128-channel I 10.0847 I 10.0819 1 2.91 (474)- 
Table 3. Coding gains of LOT and multiplier-less LT and its 

~~ 

corresponding average nuniber of SOPOT temis pel- 
coefficient. The number of parameters (ao and b(,) i!; 
shown in the brackets 


