2,136 research outputs found

    Principles of Neuromorphic Photonics

    Full text link
    In an age overrun with information, the ability to process reams of data has become crucial. The demand for data will continue to grow as smart gadgets multiply and become increasingly integrated into our daily lives. Next-generation industries in artificial intelligence services and high-performance computing are so far supported by microelectronic platforms. These data-intensive enterprises rely on continual improvements in hardware. Their prospects are running up against a stark reality: conventional one-size-fits-all solutions offered by digital electronics can no longer satisfy this need, as Moore's law (exponential hardware scaling), interconnection density, and the von Neumann architecture reach their limits. With its superior speed and reconfigurability, analog photonics can provide some relief to these problems; however, complex applications of analog photonics have remained largely unexplored due to the absence of a robust photonic integration industry. Recently, the landscape for commercially-manufacturable photonic chips has been changing rapidly and now promises to achieve economies of scale previously enjoyed solely by microelectronics. The scientific community has set out to build bridges between the domains of photonic device physics and neural networks, giving rise to the field of \emph{neuromorphic photonics}. This article reviews the recent progress in integrated neuromorphic photonics. We provide an overview of neuromorphic computing, discuss the associated technology (microelectronic and photonic) platforms and compare their metric performance. We discuss photonic neural network approaches and challenges for integrated neuromorphic photonic processors while providing an in-depth description of photonic neurons and a candidate interconnection architecture. We conclude with a future outlook of neuro-inspired photonic processing.Comment: 28 pages, 19 figure

    Advanced manned space flight simulation and training: An investigation of simulation host computer system concepts

    Get PDF
    The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power

    Quantitative multiplexing with nano-self-assemblies in SERS.

    Get PDF
    Multiplexed or simultaneous detection of multiple analytes is a valuable tool in many analytical applications. However, complications caused by the presence of interfering compounds in a sample form a major drawback in existing molecular sensor technologies, particularly in multi-analyte systems. Although separating analytes through extraction or chromatography can partially address the problem of interferents, there remains a need for developing direct observational tools capable of multiplexing that can be applied in situ. Surface-enhanced Raman Spectroscopy (SERS) is an optical molecular finger-printing technique that has the ability to resolve analytes from within mixtures. SERS has attracted much attention for its potential in multiplexed sensing but it has been limited in its quantitative abilities. Here, we report a facile supramolecular SERS-based method for quantitative multiplex analysis of small organic molecules in aqueous environments such as human urine.The authors thank Ms. Anna Andreou for the 1H-NMR measurements and acknowledge funding from Walters-Kundert Trust, EPSRC (EP/K028510/1, EP/G060649/1, EP/H007024/1, ERC LINASS 320503), an ERC starting investigator grant (ASPiRe 240629), EU CUBiHOLE grant. S.K. thanks Krebs Memorial Scholarship (The Biochemical Society) and Cambridge Commonwealth Trust for funding.This is the final version of the article. It first appeared from NPG via http://dx.doi.org/10.1038/srep0678

    Psychopower and Ordinary Madness: Reticulated Dividuals in Cognitive Capitalism

    Get PDF
    Despite the seemingly neutral vantage of using nature for widely-distributed computational purposes, neither post-biological nor post-humanist teleology simply concludes with the real "end of nature" as entailed in the loss of the specific ontological status embedded in the identifier "natural." As evinced by the ecological crises of the Anthropocene—of which the 2019 Brazil Amazon rainforest fires are only the most recent—our epoch has transfixed the “natural order" and imposed entropic artificial integration, producing living species that become “anoetic,” made to serve as automated exosomatic residues, or digital flecks. I further develop Gilles Deleuze’s description of control societies to upturn Foucauldian biopower, replacing its spacio-temporal bounds with the exographic excesses in psycho-power; culling and further detailing Bernard Stiegler’s framework of transindividuation and hyper-control, I examine how becoming-subject is predictively facilitated within cognitive capitalism and what Alexander Galloway terms “deep digitality.” Despite the loss of material vestiges qua virtualization—which I seek to trace in an historical review of industrialization to postindustrialization—the drive-based and reticulated "internet of things" facilitates a closed loop from within the brain to the outside environment, such that the aperture of thought is mediated and compressed. The human brain, understood through its material constitution, is susceptible to total datafication’s laminated process of “becoming-mnemotechnical,” and, as neuroplasticity is now a valid description for deep-learning and neural nets, we are privy to the rebirth of the once-discounted metaphor of the “cybernetic brain.” Probing algorithmic governmentality while posing noetic dreaming as both technical and pharmacological, I seek to analyze how spirit is blithely confounded with machine-thinking’s gelatinous cognition, as prosthetic organ-adaptation becomes probabilistically molded, networked, and agentially inflected (rather than simply externalized)
    • …
    corecore