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Abstract— A Multiplexed Model Predictive Control (MMPC)
scheme with Quadratic Dissipativity Constraint (QDC) for
interconnected systems is presented in this paper. A central-
ized MMPC is designed for the global system, wherein the
controls of subsystems are updated sequentially to reduce
the computational time. In MMPC, the global state vector
of the interconnected system is required by the optimization.
The QDC is converted into an enforced stability constraint
for the MMPC as an alternative to the terminal constraint
and terminal cost in this approach. The nominal recursive
feasibility for the global system and the iterative feasibility for
the local subsystems are obtained via set operations on the
invariant sets. The admissible sets for the control inputs are
obtained and employed in this approach for the QDC-based
stability constraint. The set operations are speed up by multiple
magnitudes thanks to the implementation of multiplexed inputs
in MMPC. Numerical simulations with Automatic Generation
Control (AGC) in power systems having tie-lines demonstrate
the theoretical development.

I. INTRODUCTION

Multiplexed Model Predictive Control (MMPC) was ini-
tially introduced to facilitate fast and distributed applications
[1]. The computational complexity of a traditional MPC
problem tends to vary as O((m × Nu)

3) [2], [3], where
m is the number of control inputs, and Nu is the horizon
length. If a given MPC problem has the smallest possible
update interval of T seconds, MMPC will update “only one
control variable at a time, to exploit the reduced complexity,
and to update successive inputs at intervals smaller than T ,
typically T/m” [1]. There are thus m updates within each
updating interval T . The distinct feature of MMPC rests on
the sequential updates for the control input vector, which
sets it apart from a decentralized MPC in a similar manner to
the differences between the Jacobi and Gauss-Seidel iterative
algorithms for inverting a matrix [4], as indicated in [1].
MMPCs have been successfully implemented in FPGA and
applied to a variety of problems such as thermal processing in
semiconductor manufacturing [5], vehicle suspension control
[6], jet engine control [7], and airplane control [8]. An
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extension of MMPC called channel-hopping MMPC can be
found in [9].

In this paper, the Quadratic Dissipativity Constraint
(QDC), introduced previously in [10], is applied to the
MMPC of interconnected systems, as an alternative to ter-
minal cost and terminal state constraint. The complexity of
online computations for the QDC in MMPC is reduced by
using multiplexed inputs which have smaller vector sizes
than the entire control vector. Furthermore, The QDC leads to
a constraint on the current-time control only, rather than over
the control horizon. This further reduces the computational
complexity. We will show in Section IV-B that the so-called
local one-step admissible control set is an invariant set,
and its corresponding invariant set with respect to predictive
states belongs to the family of dynamic terminal constraint
sets [11] for a local subsystem taking inter-subsystem in-
teractions into account. The smaller size multiplexed inputs
in MMPC will also help reduce the computation for a local
one-step admissible control set.

Figure 1 depicts the position of MMPC in a typical
interconnected system, in which there are m subsystems Si,
i = 1 . . .m, physically interconnected in a fixed connection
topology. The MMPC computes the control vector ui for
each subsystem Si at every time step. The computation can
be distributed to the m subsystems, provided that the sub-
controllers can communicate with each other. The complete
input vector [uT1 , . . . , u

T
m]T is thus updated sequentially in

m time steps. The whole process is periodic, with period m
time steps.

Fig. 1. Block diagram of an interconnected system with MMPC.

Within this set up, the state vectors of subsystems are
collected by the MMPC via communication links. We assume
that the data sent through the communication channels are
perfect without sporadic data losses or delays. The question
of robustness to data losses is the subject of other work.

In this paper, MMPC is formulated without a specially
chosen terminal cost or terminal constraint, which were
used in previous developments of MMPC ([1], [2], [8]), but
replaces them with the QDC. For the recursive feasibility of
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MMPC, invariant sets [12] and set operations (of Minkowski
sum and Pontryagin difference) will be used in this work.
These set operations make use of the available information
data of state and interaction vectors at every time step. The
one-step admissible control set is derived from the maximal
output admissible set [13], before being combined with the
QDC-based stability constraint for MMPC. The recursive
feasibility in the face of hard constraints is thus guaranteed
with the one-step admissible control sets for both the global
system and local subsystems.

The rest of the paper is organized as follows. The system
and control models are provided in Section 2. The QDC-
based stability constraint and the traditional MPC are also
presented in this section. The MMPC optimization problem
is outlined in Section 3. We show in this section that the
QDC-based stability constraint is easily fit to the MMPC
optimization. Section 4 is reserved for the recursive fea-
sibility condition that is derived from the one-step admis-
sible multiplexed-control sets. The stability condition for
constrained systems is also presented in this section. An
illustrative example is given in Section 5. Section 6 concludes
this paper.

II. PRELIMINARIES

A. Notation

Upper and lower case letters denote matrices and column
vectors, respectively. (.)T denotes the transpose. ∥u∥2 is the
ℓ2−norm of vector u. ∥x∥2

Q
is xTQx, Q < 0. In the discrete

time domain, the time index is denoted by k, k ∈ Z.

B. System model

Consider an interconnected system Σ consisting of m
subsystems, each denoted as Si, i = 1, . . . ,m and has a
discrete-time state space model of the form:

Si :

{
xi(k + 1) = Aixi(k) +Biui(k) + Eivi(k),

wi(k) = Fixi(k),
(1)

where xi(k) ∈ Rni , ui(k) ∈ Rhi , vi(k) ∈ Rpi and
wi(k) ∈ Rqi are the state, control input, interactive input
and interactive output vectors, respectively. The constraints
∥ui(k)∥22 ≤ ηi, ∥xi(k)∥22 ≤ ρi, and ∥vi(k)∥22 ≤ θi are
considered.

The input vi(k) of subsystem Si and the output wj(k)
of subsystem Sj , i ̸= j, are connected to each other in an
arbitrary topology. Using the definitions of block-diagonal
matrices AL := diag [Ai]

m
1 , xL := [xT1 . . . x

T
m]T , and

similarly for other matrices, the large-scale system Σ is
obtained in the following:

Σ :

{
xL(k + 1) = (AL + ELHFL)xL(k) +BL u(k),

v(k) = Hw(k),
(2)

with a global coupling matrix H of entries 1 or 0 only.
The following augmented model will be used in the

MMPC optimization:

x(k + 1) = Ax(k) +B△u(k), (3)

where x(k) :=
[
xL(k)
u(k − 1)

]
, A :=

[
AΣ BL

0 I

]
, B :=

[
BL

I

]
,

in which AΣ := AL + ELHFL, x ∈ X = X1 × . . .× Xm,
and △ui(k) := ui(k)− ui(k − 1).

Assumption 1: (Ai, Bi), i = 1 . . .m, and (A,B) are
controllable.

C. Quadratic dissipativity constraint

As in [10], [14], the QDC-based stability constraint is

△u(k)TR△u(k) + 2x(k)TS△u(k) + ψ(k) ≤ 0, (4)

where ψ(k) := x(k)TQx(k)−β ξ(k−1), 0 < β < 1,

and ξ(k) denotes the supply rate ξ(x(k), u(k)), defined as

ξ
(
x(k), u(k)

)
:=

[
x(k)T △u(k)T

] [ Q S
ST R

] [
x(k)
△u(k)

]
.

The multiplier matrices Q,S,R are to be determined from
the stability and recursive feasibility conditions derived in
Section IV. To achieve the closed-loop system stability, it
also requires that the open-loop system Σ is dissipative with
the following dissipation inequality:

V (x(k + 1))−αV (x(k)) ≤ ξ
(
x(k), u(k)

)
, 0 < α < 1. (5)

V (x) = xTPx, P ≻ 0 is considered in this work. The
stability condition for unconstrained systems with QDC is
stated below. The notion of input-and-power-to-state stabi-
lizability (IpSS), defined in [10], is used in this sufficient
stability condition.

Theorem 1: Let ξ(0) > 0 and 0 < α < β < 1. Consider
Σ without control and state constraints. Given x0, any △u(k)
satisfying (4) which have Q,S,R solve the following LMI
optimization, asymptotically stabilizes Σ in IpSS sense:

min
P,Q,S,R

xT0 Px0 (6)

s.t.

P PA PB
∗ αP +Q S

∗ R

 ≻ 0, P ≻ 0, Q ≺ 0, R ≻ 0.

Proof: Refer to [10], realizing that the main LMI is the
dissipative condition for Σ, see, e.g. [15].

III. MULTIPLEXED MODEL PREDICTIVE CONTROL WITH
QUADRATIC DISSIPATIVITY CONSTRAINT

A. Basics of MMPC

In our context, at each time step k MMPC optimizes
the inputs of subsystem Sσ(k), where the indexing function
σ(k) = (k mod m)+ 1

(
i.e. the vector ui, i = σ(k)

)
, over

a prediction horizon. At the next time step k+1, it optimizes
the inputs of subsystem σ(k+1). Since σ(k) is periodic, with
period m, all of the inputs will have been optimized after m
time steps, and the cycle of optimization re-commences. This
is illustrated in Figure 2, in which the inputs being optimized
are shown in bold font.

In each MMPC optimization, the global state vector x(k)
is used. Those elements of u which are not being optimized,
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Fig. 2. Sequential control updates in MMPC with m step cycle.

namely uj(k) with j ∈ {σ(k) + νm} for positive integer ν,
are either known from past measurements, or are assumed
to take the values most recently planned for them by other
optimizations. For MMPC of interconnected systems, the
state vector x(k) of Σ is known via the communication
links between the local subsystems and the controller, while
the multiplexed input ui is the control vector of a local
subsystem Si. The patterns of control moves are illustrated
in Figure 3.

Fig. 3. Patterns of input moves for conventional MPC (left), and for MMPC
(right).

Since the MMPC will update the m input vectors of Σ
one at a time, (3) is recast for MMPC as follows:

x(k + 1) = Ax(k) + B̃(k)△ũ(k), (7)

where △ũ(k) := △uσ(k)(k), B̃(k) := Bσ(k).
In the following, the MMPC optimization is formulated

without the terminal penalty function that is needed to satisfy
the stability condition stated in Theorem 1, equation (6), in
[2], neither the terminal constraint. The QDC-based stability
constraint is employed instead to guarantee the stability of
the closed-loop system.

B. MMPC algorithm with QDC
At each time step k, assume that all “planned” subsystem

control vectors △ũk+ℓ|k−1, ℓ ̸= 0,m, 2m, . . . , are known
to the MMPC. MMPC will only optimize over inputs to
the subsystem about to be moved at each time step. MMPC
solves the following finite-time constrained linear periodic
control problem [2]:

min Jk =
N−1∑
ℓ=0

∥xTk+ℓ|k∥
2
X
+ ∥△ũTk+ℓ|k∥

2
U
, (8a)

w.r.t. △ũk+ℓ|k, (ℓ = 0,m, 2m, . . . , N − 1) (8b)

s.t. △ũk+ℓ|k+uσ(k+ℓ)|k−1 ∈ Uσ(k+ℓ), (ℓ = 0,m, . . . , N−1)
(8c)

xk+ℓ|k ∈ X, (ℓ = 1, 2, . . . , N − 1) (8d)

xk+ℓ+1|k = Axk+ℓ|k +Bσ(k+ℓ)△ũk+ℓ|k, (8e)

△ũk+ℓ|k = △ũk+ℓ|k−1, (ℓ ̸= 0,m, 2m, . . . , N − 1), (8f)

△ũTk|kR△ũk|k + 2xTk|kS△ũk|k + ψk ≤ 0, (8g)

where xk|k = x(k) and ψk, R, S, are as defined in (4).
The MMPC procedure is provided below for clarity.
Algorithm 1 (MMPC with QDC-based stability constraint)

Initialization: Set k ≡ k0. Initialize u(0) by solving Problem
(8) over all decision variables △ũk+ℓ|k, ℓ = 0, 1, . . . , N − 1,
respecting only constraints (8c)-(8e).

1) Apply control move △uσ(k),k = △ũk|k.
2) Store planned moves △ũk+j|k, j = m, 2m, . . . , Nu,

where Nu = (m− 1)m.
3) Pause for one time step, increment k, obtain new

measurement xk.
4) Solve problem (8), respecting all constraints in (8).
5) Go to step 1.
Remark 1: The stability constraint (8g) with dynamic

multiplier matrices Q,S,R will be updated at each time
step k using the LMIs derived in the stability and recur-
sive feasibility conditions. Theses conditions ensure that the
ellipsoidal constraint (8g) w.r.t. △ũk|k will intersect the ball
of control constraint ∥ui∥ ≤ ηi and satisfy the one-step
admissible control condition derived in Section IV.

IV. RECURSIVE FEASIBILITY WITH INVARIANT SETS

In the design of standard MPCs, the state trajectory beyond
the predictive horizon should belong to a terminal constraint
set, which is positively invariant set, denoted as Xf, [16],
to guarantee the recursive feasibility of MPC. For state
feedback, the terminal constraint set is often chosen as the
maximal output admissible set, O∞ [17] of the closed-loop
system of the form x(k + 1) = (A+BKf )x(k), where
the control law △u = Kf x is the optimal controller for
the unconstrained infinite horizon problem, which is the
standard linear quadratic (LQ) problem. The state vector is
the output vector herein. On the ground of the maximal
output admissible set Xf, the initial feasible set is then
computed.

The set Xr is the initial feasible set w.r.t Xf for system
x(k+1) = A(k)+B△u(k), with constraints x ∈ X, △u ∈
U△ [18], if and only if there exists an admissible control
law that will drive the state of the system into Xf in N steps
or less from Xr, while keeping the evolution of x inside X,
i.e.

Xr :=
{
x(k) ∈ X| ∃ {△u(k) ∈ U△}N−1

k=0 :

{x(k) ∈ X}N−1
k=0 and x(N) ∈ Xf

}
. (9)

The above initial feasible set Xr is determined by com-
puting backward from the terminal constraint set Xf using
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set operations. The representation of Xr versus Xf with
Minkowski sum for discrete-time systems can be found in
[19]. The constrained optimization of MPC is then recur-
sively feasible (for all time k ≥ 0) if and only if the initial
state x(0) belongs to the initial feasible set Xr.

The existing results presented in this section are applied
to the determination of the recursive feasibility condition
of an MMPC applying the QDC-based stability constraint.
The nominally recursive feasibility condition stipulates the
containment of the global one-step admissible control set
inside the global initial feasible set.

A. Global recursive feasibility

The global one-step admissible control set is firstly de-
fined. Denote U := U1 × . . .× Um.

Definition 1: Given the current state x(k) ∈ Xr and the
past control u(k − 1), the one-step admissible control set V
is defined as

V
(
x(k)

)
:= {u(k) ∈ U|Ax(k) +B△u(k) ∈ Xr} . (10)

This global set is, however, applicable for the standard
MPC. For MMPC, we need to consider the multiplexed
inputs separately. In what follow, the subscript (k) denotes
the time index.

Global one-step admissible multiplexed-control set:
In a multiplexed control space, denote the ellipsoid defined

by the stability constraint (11) w.r.t. subsystem control vector
ui as Wi, i ∈ {1, 2, . . . ,m}.

△ui(k)TRi(k)△ui(k) + 2xi(k)
TSi(k)△ui(k) + ψi(k) ≤ 0,

(11)
where ψi(k) := xi(k)

TQi(k)xi(k)−βi ξi(k−1), 0 < βi < 1,

in which, ξi(k) denotes ξ(xi(k), ui(k)) of the form

ξ(xi(k), ui(k)) :=

[
xi(k)
△ui(k)

]T [
Qi(k) Si(k)

∗ Ri(k)

] [
xi(k)
△ui(k)

]
.

The Cartesian product of W1×. . .×Wm is then denoted as
W, which is an ellipsoid determined by (4) w.r.t. the global
control vector △u having the multiplier matrices Q,S,R of
block diagonal type.

According to the MPC literature [16], the nominal recur-
sive feasibility of the closed-loop Σ, subject to x ∈ X,
is achieved whenever x(k) ∈ Xr for every time step k.
Therefore, the global recursive feasibility is obtained here
by having W a subset of V, assuming x0 ∈ Xr. The global
set V is not applicable for MMPC, nonetheless.

For MMPC, it is possible to elaborate further with the
global one-step admissible multiplexed-control set, defined
next. For clarity, rewrite (7) as

x(k + 1) = Ax(k)−Bu(k − 1) +B[i]ui(k) +B[j]u[j](k),

where u[j] is the stacking vector of all planned control moves
uj(k), j ̸= i. Denote the sum of known components as
xi,[j] := Ax(k)−Bu(k − 1) +B[j]u[j](k). The global one-
step admissible multiplexed-control set is then defined as

Vi

(
x(k)

)
:=

{
ui(k) ∈ Ui|xi,[j] +B[i]ui(k) ∈ Xr

}
. (12)

It is apparently that V ⊆ V1× . . .×Vm, but not reversely,
since Vi is computed from a known value of a planned
control move uj , j ̸= i, but not a set of uj . This means
that the local state constraint satisfaction (xi(k+1) ∈ Xi) at
the next time step k + 1 may not be obtained by having
ui(k) ∈ Vi

(
x(k)

)
alone. It is, therefore, necessary to

have the iterative feasibility condition derived in the next
subsection.

Remark 2: Vi can be calculated in Matlab by the follow-
ing two steps using the range function in MPT toolbox [20]:

Vtemp := {d ∈ Rn|Hdd 6 fd} , (dummy polytope)
= range

(
Xr, In,−Ax(k) +Bu(k − 1) +B[j]u[j](k)

)
and subsequently, Vi = {ui ∈ Rmi |Hiui 6 fi} , where
Hi = HdB[i], fi = fd, in which (Hd, fd) and (Hi, fi) are
the H-representation of the respective polytopes.

B. Local iterative feasibility

It is assumed that the interactive input vi(k) is known
to the local subsystem Si. For the local state constraint
satisfaction at the next time step (i.e. xi(k + 1) ∈ Xi

whenever xi(k) ∈ Xi), it additionally requires that ui(k)
belongs to the local one-step admissible control set of Si,
taking the neighboring interactions into account. The one-
step admissible control set of Si is an invariant set of ui,
denoted as Bi, such that for the known xi(k) and vi(k) and
all ui ∈ Bi, we always have xi(k + 1) ∈ Xi, i.e.

Bi := {ui(k) ∈ Ui| [Aixi(k) + Eivi(k)] +Bi△ui(k) ∈ Xi}
(13)

Bi is determined by using two steps similar to those in
computing V, but for a subsystem Si.

C. Recursive feasibility for MMPC

For the feasibility of the multiplexed input ui(k), it is
apparently that we need the condition of

Wi ∩ Bi ∩ Vi ̸= ∅, (14)

and this is achievable by two separate conditions of

Wi ⊆ Bi ̸= ∅ and Wi ∩ Vi ̸= ∅.

In this work, we obtain the condition of Wi ⊆ Bi by
re-computing the multiplier matrices Qi(k), Si(k), Ri(k), as
stated in Theorem 2. The second condition is an assumption.

Assumption 2: Wi ∩ Vi ̸= ∅.

This assumption is reasonable, as it is inferred by the
controllability of the constrained Si. In order to derive the
LMI condition for Wi ⊆ Bi, we need to use an ellipsoidal
Bi instead of a polytope. Denote the maximum ellipsoid
inscribed in the polytope Bi as Ei,

Ei := {ui | (ui − ei)
TEi(ui − ei) 6 1}. (15)

The ellipsoid Ei can be easily found from the above
polytope of Hiui 6 fi. Then, the recursive feasibility of
MMPC is achieved by having Wi ⊆ Ei.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 54th IEEE Conference on Decision and Control.
Received March 24, 2015.



D. Stability condition for constrained system

In the following theorem, the matrix P of the storage func-
tion V (x) = xTPx is computed as in an LQR problem using
Riccati equation. It is thus known in below LMI optimiza-
tions. Since the dynamic multiplier matrices Q(k), S(k), R(k)

are used instead of the static Q,S,R, their initial values will
be determined from the dissipative condition for the open-
loop system Σ.

Assume that Q(1) = diag[Qi(1)]
m
1 , S(1) = diag[Ri(1)]

m
1 ,

R(1) = diag[Ri(1)]
m
1 are computed from solving (6) with P

fixed, ξi(0) > 0.

Theorem 2: Let 0 < α < 1 0 < βi < 1, β = maxmi=1 βi,
and α

β < 1. Suppose that whenever ξ(k−1) ≤ 0, the following
online LMI optimizations are feasible for i = 1 . . .m:

max
Qi(k),Si(k),Ri(k),λi>0

xTi(k)Qi(k)xi(k) (16)[
ATPA− αP −Q(k) ATPB − S(k)

∗ BTPB −R(k)

]
≺ 0, (17)

[
Ri(k) − λiEi(k) ST

i(k)xi(k) + λie
T
i(k)Ei(k)

∗ ψi(k) − λi
(
eTi(k)Ei(k)ei(k) − 1

)] 4 0,

(18)
where Q(k) = diag[Qj(k)]

m
1 , R(k) = diag[Rj(k)]

m
1 ,

S(k) = diag[Sj(k)]
m
1 , in which

Qj(k) = Qj(k−1), Sj(k) = Sj(k−1), Rj(k) = Rj(k−1),

if j ̸= i, j ∈ {1, 2, . . . ,m}, and

ψi(k) = xTi(k)Qi(k)xi(k) − βi ξi(k−1);

Then any m multiplexed controls ui(k) ∈ Wi that employ
the resultant Qi(k), Si(k), Ri(k), i = 1 . . .m, asymptotically
stabilize the constrained Σ, and further, Wi ⊆ Bi.

Proof: The proof is similar to those in [10], plus the
condition for Wi ⊆ Ei which is cast in LMI in (18). Refer
to Appendix A for the full proof.

On the ground of this stability condition, the MMPC op-
timization with recursive feasibility and stability constraints
are as follows:

min Jk =
N−1∑
ℓ=0

∥xTk+ℓ|k∥
2
X
+ ∥△ũTk+ℓ|k∥

2
U
, (19a)

w.r.t. △ũk+ℓ|k, (ℓ = 0,m, 2m, . . . , N − 1) (19b)

s.t. △ũk+ℓ|k+uσ(k+ℓ)|k−1 ∈ Uσ(k+ℓ), (ℓ = 0,m, . . . , N−1)
(19c)

△ũk+ℓ|k + uσ(k+ℓ)|k−1 ∈ Vσ(k+ℓ), (ℓ = 0,m, . . . , N − 1)
(19d)

x̃k+ℓ|k ∈ X, (ℓ = 1, . . . , N − 1) (19e)

xk+ℓ+1|k = Axk+ℓ|k +Bσ(k+ℓ)△ũk+ℓ|k, (19f)

△ũk+ℓ|k = △ũk+ℓ|k−1, (ℓ ̸= 0,m, 2m, . . . , N −1), (19g)

△ũTk|kR(k)△ũk|k + 2xTk|kS(k)△ũk|k + ψ(k) ≤ 0. (19h)

Only one constraint (19d), which represents the local
iterative feasibility condition of ui ∈ Vi, has been added to
the MMPC optimization problem (8). The stability constraint
(19h) is the implementation of ui ∈ Wi. It is feasible (as
Wi ⊆ Ei ⊆ Bi) by using the multiplier matrices provided
from Theorem 2. The MMPC algorithm is now summarized
below.

Algorithm 2 (MMPC with QDC-based stability constraint
and feasibility constraint)

Initialization: Determine Xf, then Xr. Set k ≡ 0 and
ξ(0) > 0. Compute P , then Q(1), S(1), R(1) by solving
(6). Solve (19) over all decision variables △ũk+ℓ|k, for
ℓ = 0, 1, . . . , N − 1, respecting only constraints (19c) and
(19e)-(19f).

1) Apply control move △uσ(k),k = △ũk|k.
2) Store planned moves △ũk+j|k, j = m, 2m, . . ..
3) Pause for one time step, increment k, obtain new

measurement xk.
4) Find Vi and Ei.
5) Solve (16) for Q(k), S(k), R(k).
6) Solve (19) for ũk, respecting all constraints.
7) Go to step 1.

E. Computational Efficiency

Thanks to MMPC, the computational time is reduced in
two ways in the above algorithm.

• The vector size for computing the one-step admissible
control set V is now reduced to mi from mi × m,
corresponding to the index number σ(k + ℓ) of the
multiplexed-step in the MMPC. The computational bur-
den for the set operation is thus reduced.

• Similarly, the QDC-based stability constraint at each
multiplexed-step is now a constraint w.r.t ui of size
mi, corresponding to the index number σ(k + ℓ) of
the multiplexed-step in the MMPC, instead of u of size
mi×m. Further, this constraint is on the current control
vector only ui(k), thus requires much less computations
than the constraint on the global state vector at the end
of the predictive horizon, x(k +N) ∈ Xf.

• For ui having only one element, i.e. a scalar variable,
the computation is further simplified since Ei ≡ Bi,
and is a line segment. The computational cost of find-
ing Vi, Bi and the matrices Q,S,R will be reduced
significantly.

V. ILLUSTRATIVE EXAMPLE

A text-book example of Automatic Generation Control
in a multi-area power system is numerically simulated in
this illustrative example for MMPC. Small signal models
of multi-machine power systems are used in this AGC
problem [21]. In the state equations, all variables are in
small-variation incremental forms. The manipulated variable
is the electrical output power reference ∆Prefi of the local
generator. The state vector consist of angular frequency ∆ωi,
mechanical power ∆Pmechi , steam valve position ∆Zvi ,
and the total tie-line power ∆Ptiei . The coupling variables
are the negative angular frequency −∆ωℓ and tie-line
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power ∆Ptieiℓ of all νi respective neighbours. The power
flowing across a transmission line is modeled using the
DC load flow (i.e. linear) method shown in Chapter 6 of [21].

Electro-mechanical state equations:

d∆ωi

dt
+

1

Mi
Di∆ωi +

1

Mi
∆Ptiei −

1

Mi
∆Pmechi = −

1

Mi
∆PLi

,

d∆Pmechi

dt
+

1

Tchi

∆Pmechi −
1

Tchi

∆Zvi = 0,

d∆Zvi

dt
+

1

TGi

∆Zvi −
1

TGi

∆Prefi +
1

RiTGi

∆ωi = 0,

d∆Ptiei

dt
=

∑
ℓ∈{νi}

Ttieiℓ (∆ωi −∆ωℓ),

for νi neighbors, νi = νiin + νiout ,

∆Ptiei =

νi∑
ℓ=1

∆Ptieiℓ , ∆Ptieiℓ = −∆Ptieℓi ,
d∆PLi

dt
= 0.

Nomenclature:
• ω : Angular frequency of rotating mass
• M : Angular momentum
• D : percentage change in load

percentage change in frequency
• Pmech : Mechanical power
• PL : Non-frequency sensitive load
• Tch : Charging time constant of the prime mover
• Zv : Steam valve position
• Pref : Load reference set point
• R : Inverse of governor net gain. R affects the

change on the output power for a given change
in frequency.

• TG : Governor time constant
• Ptie : Sum of tie-line power flows at an area
• Ttie : Tie-line stiffness coefficient,

Ttie = 377× 1/Xtie for a 60-Hz system.
• ν : Number of neighbors.

The state space model is then obtained by using parameter
values in [22], [23]. The control constraints of ηi = 0.5, i =
1, 2, 3, 4 are imposed on respective subsystems. The weight-
ing matrices of X1 = diag{1, 0.1, 0.1}, X2 = X3 = X4 =
diag{10, 10, 0.1, 0.1}, U1 = U2 = U3 = U4 = = diag{1} are
chosen. The QDC coefficients β1 = β2 = β3 = β4 = 0.9999
are deployed. The control and state trends from the numerical
simulations in Matlab are provided in Figure 4, showing
a stabilizability of MMPC with QDC-based stability con-
straint. The control performance here approximately matches
those from a traditional MPC via QDC in previous work.
The process of computing Vi,Bi,Ei is shortened by around
six seconds (Matlab running on PC with Intel Xeon CPU
3.2 GHz, 16.0 GB RAM) for a sixty step simulation, or
approximately 0.1 seconds for every computational step,
compared with 0.5 seconds per step when standard MPC
is used instead of MMPC, namely a saving of about 20%,
conservatively.

VI. CONCLUSION

An MMPC scheme for interconnected systems has been
presented. The Quadratic Dissipativity Constraint (QDC)
is been employed in the input-and-power-to-state stability
condition for the global system. The one-step admissible
control sets are derived from the maximal output admissible
set for the global system via set operations. The recursive
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Fig. 4. AGC of a Four-Area Power Systems with MMPC and
QDC-based Stability Constraint.

feasibility to hard constraints is guaranteed with the one-
step admissible multiplexed-control sets applying to the
MMPC optimization together with the QDC-based stability
constraint. The computational cost of MMPC is reduced
thanks to the QDC-based stability constraint, while that of
the set operation is reduced by employing the multiplexed
inputs of MMPC.
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