26 research outputs found

    Multiplex lexical networks reveal patterns in early word acquisition in children

    Get PDF
    Network models of language have provided a way of linking cognitive processes to language structure. However, current approaches focus only on one linguistic relationship at a time, missing the complex multi-relational nature of language. In this work, we overcome this limitation by modelling the mental lexicon of English-speaking toddlers as a multiplex lexical network, i.e. a multi-layered network where N = 529 words/nodes are connected according to four relationship: (i) free association, (ii) feature sharing, (iii) co-occurrence, and (iv) phonological similarity. We investigate the topology of the resulting multiplex and then proceed to evaluate single layers and the full multiplex structure on their ability to predict empirically observed age of acquisition data of English speaking toddlers. We find that the multiplex topology is an important proxy of the cognitive processes of acquisition, capable of capturing emergent lexicon structure. In fact, we show that the multiplex structure is fundamentally more powerful than individual layers in predicting the ordering with which words are acquired. Furthermore, multiplex analysis allows for a quantification of distinct phases of lexical acquisition in early learners: while initially all the multiplex layers contribute to word learning, after about month 23 free associations take the lead in driving word acquisition

    Filling gaps in early word learning

    Get PDF
    Years of research has shown that children do not learn words at random, but in distinct patterns. Why do we observe the patterns that we do? By using network science and investigating the words that children don’t learn, researchers have potentially uncovered a general property of word learning as a process of gap forming and filling

    Distance entropy cartography characterises centrality in complex networks

    Full text link
    We introduce distance entropy as a measure of homogeneity in the distribution of path lengths between a given node and its neighbours in a complex network. Distance entropy defines a new centrality measure whose properties are investigated for a variety of synthetic network models. By coupling distance entropy information with closeness centrality, we introduce a network cartography which allows one to reduce the degeneracy of ranking based on closeness alone. We apply this methodology to the empirical multiplex lexical network encoding the linguistic relationships known to English speaking toddlers. We show that the distance entropy cartography better predicts how children learn words compared to closeness centrality. Our results highlight the importance of distance entropy for gaining insights from distance patterns in complex networks.Comment: 11 page

    Bots increase exposure to negative and inflammatory content in online social systems

    Full text link
    Societies are complex systems which tend to polarize into sub-groups of individuals with dramatically opposite perspectives. This phenomenon is reflected -- and often amplified -- in online social networks where, however, humans are no more the only players, and co-exist alongside with social bots, i.e., software-controlled accounts. Analyzing large-scale social data collected during the Catalan referendum for independence on October 1, 2017, consisting of nearly 4 millions Twitter posts generated by almost 1 million users, we identify the two polarized groups of Independentists and Constitutionalists and quantify the structural and emotional roles played by social bots. We show that bots act from peripheral areas of the social system to target influential humans of both groups, bombarding Independentists with violent contents, increasing their exposure to negative and inflammatory narratives and exacerbating social conflict online. Our findings stress the importance of developing countermeasures to unmask these forms of automated social manipulation.Comment: 8 pages, 5 figure

    Growing Networks – Modelling the Growth of Word Association Networks for Hungarian and English

    Get PDF
    In the new era of information and communication technology, the representation of information is of increasing importance. Knowing how words are connected to each other in the mind and what processes facilitate the creation of connections could result in better optimized applications, e.g. in computer aided education or in search engines. This paper models the growth process of a word association database with an algorithm. We present the network structure of word associations for an agglutinative language and compare it with the network of English word associations. Using the real-world data so obtained, we create a model that reproduces the main features of the observed growth process and show the evolution of the network. The model describes the growth of the word association data as a mixture of a topic based process and a random process. The model makes it possible to gain insight into the overall processes which are responsible for creating an interconnected mental lexicon

    Forma mentis networks reconstruct how Italian high schoolers and international STEM experts perceive teachers, students, scientists, and school

    Full text link
    This study investigates how students and researchers shape their knowledge and perception of educational topics. The mindset or forma mentis of 159 Italian high school students and of 59 international researchers in STEM are reconstructed through forma mentis networks, i.e., cognitive networks of concepts connected by free associations and enriched with sentiment labels. The layout of conceptual associations between positively/negatively/neutrally perceived concepts is informative on how people build their own mental constructs or beliefs about specific topics. Researchers displayed mixed positive/neutral mental representations of ``teacher'', ``student'' and, ``scientist''. Students' conceptual associations of ``scientist'' were highly positive and largely non-stereotypical, although links about the ``mad scientist'' stereotype persisted. Students perceived ``teacher'' as a complex figure, associated with positive aspects like mentoring/knowledge transmission but also to negative sides revolving around testing and grading. ``School'' elicited stronger differences between the two groups. In the students' mindset, ``school'' was surrounded by a negative emotional aura or set of associations, indicating an anxious perception of the school setting, mixing scholastic concepts, anxiety-eliciting words, STEM disciplines like maths and physics, and exam-related notions. Researchers' positive stance of ``school'' included concepts of fun, friendship, and personal growth instead. Along the perspective of Education Research, the above results are discussed as quantitative evidence for test- and STEM anxiety co-occurring in the way Italian students perceive education places and their actors. Detecting these patterns in student populations through forma mentis networks offers new, simple to gather yet detailed knowledge for future data-informed intervention policies and action research.Comment: 12 Pages, 5 Figure

    Feature-rich multiplex lexical networks reveal mental strategies of early language learning

    Get PDF
    Knowledge in the human mind exhibits a dualistic vector/network nature. Modelling words as vectors is key to natural language processing, whereas networks of word associations can map the nature of semantic memory. We reconcile these paradigms—fragmented across linguistics, psychology and computer science—by introducing FEature-Rich MUltiplex LEXical (FERMULEX) networks. This novel framework merges structural similarities in networks and vector features of words, which can be combined or explored independently. Similarities model heterogenous word associations across semantic/syntactic/phonological aspects of knowledge. Words are enriched with multi-dimensional feature embeddings including frequency, age of acquisition, length and polysemy. These aspects enable unprecedented explorations of cognitive knowledge. Through CHILDES data, we use FERMULEX networks to model normative language acquisition by 1000 toddlers between 18 and 30 months. Similarities and embeddings capture word homophily via conformity, which measures assortative mixing via distance and features. Conformity unearths a language kernel of frequent/polysemous/short nouns and verbs key for basic sentence production, supporting recent evidence of children’s syntactic constructs emerging at 30 months. This kernel is invisible to network core-detection and feature-only clustering: It emerges from the dual vector/network nature of words. Our quantitative analysis reveals two key strategies in early word learning. Modelling word acquisition as random walks on FERMULEX topology, we highlight non-uniform filling of communicative developmental inventories (CDIs). Biased random walkers lead to accurate (75%), precise (55%) and partially well-recalled (34%) predictions of early word learning in CDIs, providing quantitative support to previous empirical findings and developmental theories

    Concept networks of students’ knowledge of relationships between physics concepts : finding key concepts and their epistemic support

    Get PDF
    Abstract Concept maps, which are network-like visualisations of the inter-linkages between concepts, are used in teaching and learning as representations of students’ understanding of conceptual knowledge and its relational structure. In science education, research on the uses of concept maps has focused much attention on finding methods to identify key concepts that are of the most importance either in supporting or being supported by other concepts in the network. Here we propose a method based on network analysis to examine students’ representations of the relational structure of physics concepts in the form of concept maps. We suggest how the key concepts and their epistemic support can be identified through focusing on the pathways along which the information is passed from one node to another. Towards this end, concept maps are analysed as directed and weighted networks, where nodes are concepts and links represent different types of connections between concepts, and where each link is assumed to provide epistemic support to the node it is connected to. The notion of key concept can then be operationalised through the directed flow of information from one node to another in terms of communicability between the nodes, separately for out-going and in-coming weighted links. Here we analyse a collated concept network based on a sample of 12 original concept maps constructed by university students. We show that communicability is a simple and reliable way to identify the key concepts and examine their epistemic justification within the collated network. The communicabilities of the key nodes in the collated network are compared with communicabilities averaged over the set of 12 individual concept maps. The comparison shows the collated network contains an extensive set of key concepts with good epistemic support. Every individual networks contain a sub-set of these key concepts but with a limited overlap of the sub-sets with other individual networks. The epistemically well substantiated knowledge is thus sparsely distributed over the 12 individual networks

    Forma mentis networks map how nursing and engineering students enhance their mindsets about innovation and health during professional growth

    Get PDF
    Reconstructing a "forma mentis", a mindset, and its changes, means capturing how individuals perceive topics, trends and experiences over time. To this aim we use forma mentis networks (FMNs), which enable direct, microscopic access to how individuals conceptually perceive knowledge and sentiment around a topic, providing richer contextual information than machine learning. FMNs build cognitive representations of stances through psycholinguistic tools like conceptual associations from semantic memory (free associations, i.e., one concept eliciting another) and affect norms (valence, i.e., how attractive a concept is). We test FMNs by investigating how Norwegian nursing and engineering students perceived innovation and health before and after a 2-month research project in e-health. We built and analysed FMNs by six individuals, based on 75 cues about innovation and health, and leading to 1,000 associations between 730 concepts. We repeated this procedure before and after the project. When investigating changes over time, individual FMNs highlighted drastic improvements in all students' stances towards "teamwork", "collaboration", "engineering" and "future", indicating the acquisition and strengthening of a positive belief about innovation. Nursing students improved their perception of "robots" and "technology" and related them to the future of nursing. A group-level analysis related these changes to the emergence, during the project, of conceptual associations about openness towards multidisciplinary collaboration, and a positive, leadershiporiented group dynamics. The whole group identified "mathematics" and "coding" as highly relevant concepts after the project. When investigating persistent associations, characterising the core of students' mindsets, network distance entropy and closeness identified as pivotal in the students' mindsets concepts related to "personal well-being", "professional growth" and "teamwork". This result aligns with and extends previous studies reporting the relevance of teamwork and personal well-being for Norwegian healthcare professionals, also within the novel e-health sector. Our analysis indicates that forma mentis networks are powerful proxies for detecting individual- and grouplevel mindset changes due to professional growth. FMNs open new scenarios for datainformed, multidisciplinary interventions aimed at professional training in innovation.publishedVersio
    corecore