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Abstract
Concept maps, which are network-like visualisations of the inter-linkages between
concepts, are used in teaching and learning as representations of students’
understanding of conceptual knowledge and its relational structure. In science
education, research on the uses of concept maps has focused much attention on
finding methods to identify key concepts that are of the most importance either in
supporting or being supported by other concepts in the network. Here we propose a
method based on network analysis to examine students’ representations of the
relational structure of physics concepts in the form of concept maps. We suggest how
the key concepts and their epistemic support can be identified through focusing on
the pathways along which the information is passed from one node to another.
Towards this end, concept maps are analysed as directed and weighted networks,
where nodes are concepts and links represent different types of connections between
concepts, and where each link is assumed to provide epistemic support to the node it
is connected to. The notion of key concept can then be operationalised through the
directed flow of information from one node to another in terms of communicability
between the nodes, separately for out-going and in-coming weighted links. Here we
analyse a collated concept network based on a sample of 12 original concept maps
constructed by university students. We show that communicability is a simple and
reliable way to identify the key concepts and examine their epistemic justification
within the collated network. The communicabilities of the key nodes in the collated
network are compared with communicabilities averaged over the set of 12 individual
concept maps. The comparison shows the collated network contains an extensive set
of key concepts with good epistemic support. Every individual networks contain a
sub-set of these key concepts but with a limited overlap of the sub-sets with other
individual networks. The epistemically well substantiated knowledge is thus sparsely
distributed over the 12 individual networks.
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Introduction
Learning scientific knowledge requires learning its key concepts and their lexicon: how
these concepts are related, how they can be used with other concepts and how they are
connected as part of a system of other concepts. Scientific knowledge thus forms a sys-
tem of networked concepts, where interconnections between the concepts also have an
essential role in establishing their meaning (Rescher 1979; Kuhn 2000; Hoyningen-Huene
2013). An obvious approach to analysing scientific knowledge is to focus on terms that
stand for the concepts, and on how relationships between the terms emerge on differ-
ent contexts. These relationships form a networked lexicon of terms and names, where
the connections between them derive from contextualised instances of how the terms are
used and how situations are named (Kuhn 2000). In what follows, we refer to such lexical
networks of knowledge simply as concept networks.
The assumption that concept’s meaning is related to the lexical system of terms is sup-

ported by recent advances in understanding how the meaning of ordinary concepts builds
up through interlinked connections (Stella et al. 2017; Vitevich and Castro 2015). Inter-
estingly, according to these studies difficulties and deficiencies in learning the meaning
of words are directly reflected in the relational structure of the lexical networks, espe-
cially in the local and global connectivity of words in the network. The results of these
studies show the importance of the relational connections between words in learning
their meaning and how certain key words play a special role in learning the lexicons
(Stella et al. 2017; Vitevich and Castro 2015).
The structure of the knowledge system affects how concepts are introduced in teaching

scientific knowledge and how they are acquired in formal teaching and learning. In learn-
ing and teaching, too, conceptual knowledge is often approached from the viewpoint of
semantic networks, because all retrieval and inference is based on traversing such net-
works (Chi and Ohlsson 2005). From the viewpoint of semantic networks, the concepts
(or terms corresponding to them) that tend to form clusters of close connections are of
particular interest because concepts within clusters share more similarities than concepts
between clusters (Chi and Ohlsson 2005). In the case of lexicons of ordinary words and
terms, such closeness of concepts has been successfully operationalised and measured by
the closeness centrality, which is found to be indicative of key concepts (Stella et al. 2017;
Vitevich and Castro 2015). This, however, may not be the case in regard to abstract, rela-
tional concepts, where long contiguous (i.e. uninterrupted directed) paths relate concepts
in different clusters to each other, and when experts’ knowledge focuses on these contiguous,
complex paths insteadof simpler locally cohesive connections (Lachner andNückles 2015).
As well, studies on how students represent their understanding of the relatedness of
physics concepts suggest that the most important concepts are the ones connected to
other concepts through many contiguous paths (Koponen and Nousiainen 2013; 2018;
Nousiainen 2013; Nousiainen and Koponen 2017). Such concepts are the key concepts in
the students’ conceptual network and finding them in reliable way is an important and yet
unresolved problem in research that attempts to understand how scientific knowledge is
learned.
In learning and teaching science, from the viewpoint that important aspects of scien-

tific knowledge are captured by the lexical structure of its terms and concepts, concept
maps are obvious choices as a learning tool (Nousiainen 2013; Nesbit and Adesope 2006;
Ingec 2009; Kinchin et al. 2000, 2005). Concepts maps express so-called declarative
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knowledge, which is explicated knowledge, written down or expressed in symbolical form,
e.g. as formulas (Chi and Ohlsson 2005). In this form, concept maps reflect students’
conceptual understanding and are thus also used as tools of assessment and evaluation
in learning (Ruiz-Primo and Shavelson 1996; Nicoll et al. 2001; Liu 2004). Consequently,
many quantitative and qualitative techniques for the analysis of concept maps have been
proposed and tested.
The quantitative methods of concept map analysis are often based on counting the

hierarchical levels and the number of cross-links within a given hierarchical level. Quanti-
tative analysis thus focuses on how concepts are interconnected within the semantic fields
provided by the local connections (Ruiz-Primo and Shavelson 1996; Nicoll et al. 2001; Liu
2004; McClure et al. 1999; vanZele et al. 2004), but it fails to pay proper attention to the
global structure and connectedness of concept maps. The qualitative methods of concept
map evaluation attempt to correct and improve this deficiency of quantitative methods
by paying attention to the global, overall visual appearance of concept maps (Kinchin
et al. 2000, 2005; Liu 2004; Safayeni et al. 2005; Derbentseva et al. 2007). Such qualitative
methods for analysing concept maps have revealed that visually discernible complexity
in the form of spoke-, tree- or web-like features provides valuable information about the
quality of knowledge represented in the concept maps (Kinchin et al. 2000, 2005). How-
ever, the validity and reliability of the qualitative methods are difficult to assess, because
the criteria of being “complex” or “web-like” is based on visual inspection only. One
should also be cautious in accepting the claim that the overall look of concept maps, i.e.
likeness to spokes, trees or webs, has any true bearing on how individual conceptual ele-
ments are supported within the structure. The problems with qualitative analysis are thus
the reverse of the ones with quantitative analysis: while the quantitative approach fails
to capture the global structure, the qualitative approach fails to discern the effect of the
structure on individual nodes.
Recent studies on students’ knowledge of physics concepts, investigated by using con-

cept maps, networks and related techniques, have revealed that students’ declarative
knowledge is structured on a global scale, and is web-like (Koponen and Nousiainen 2013,
2014; Nousiainen 2013) but not hierarchically organised in so simple ways as often
assumed (Ruiz-Primo and Shavelson 1996; Nicoll et al. 2001; McClure et al. 1999; vanZele
et al. 2004). The web-like concept networks drawn by students are tightly connected
locally, having highly clustering cliques but at the same time being globally well connected
through long paths that connect several concepts. The property of clustering, however, is
not indicative of the key concepts but instead appears to be related to how students use
auxiliary concepts. The key concepts, on the other hand, are characterised by long and
contiguous paths to many other concepts in the network; the key concepts communicate
with many other concepts in the network (Koponen and Nousiainen 2013, 2014, 2018;
Nousiainen 2013, Nousiainen and Koponen 2017).
We approach students’ declarative knowledge and its representations as concept

maps from the viewpoint of the cartography of knowledge (Börner 2015; Börner and
Scharnhorst 2009; Chen et al. 2009; Shi et al. 2015), and by using network meth-
ods. The network approach pays attention to interlinked knowledge structures and
thus provides a means to augment traditional methods based on local link-counting
(Koponen and Nousiainen 2013; 2014). Network theory provides several operationali-
sations to measure such global connectivity of nodes and to find the key concepts that
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are globally important in the concept networks. In addition to global connectivity, we
are also interested in how the given concept is connected through directed contiguous
connections to other concepts in the network. Such contiguous directed connections are
associated with the flow of information from one node to another, which is needed to
substantiate the meaning of the concept with the network. Furthermore, the connections
are weighted, where weights are associated with the epistemic strength of the information
flow. These properties of interest are conveniently operationalised in terms of communi-
cability (Estrada and Hatano 2008; Estrada et al. 2012; Estrada 2012; Benzi and Klymko
2013). Communicability allows us to study the in-coming and out-going weighted paths of
the node separately, and how they contribute to the epistemic substantiation of the given
node (concept) itself or provide substantiation to other nodes.
We examine 12 different concept maps constructed by individual students, where

they represent their views of the relationships between concepts in electricity and mag-
netism. First, we discuss how these maps are constructed by students. Based on the
12 individual we construct a collated concept network where all acceptable elements
(121 altogether) and the best substantiated connections (787 altogether) found in the
12 original maps are aggregated. The collated network thus contains the best avail-
able knowledge within the group of 12 students. Here, the target of analysis is this
collated network. Second, we focus on the global roles of the nodes in the collated
network and introduce a method based on communicability of nodes to find the key
concepts that are structurally the most important. The content is discussed to the
extent to determine if such concepts are also relevant from the point of view of con-
tent. Further details of the content and content analysis have been presented elsewhere
(Koponen and Nousiainen 2013; Nousiainen 2013; Nousiainen and Koponen 2017).
Here, we extend our previous study (Koponen and Nousiainen 2018) and provide more
details of the analysis method and also explore to what extent the local connectivity of
nodes determines the communicability. This is done by using an appropriate null-model,
where in- and out degrees and epistemic weight distribution are preserved but links are
shuffled. Third, we now compare the collated network to individual maps constructed
by the students. The comparison is based on the similarity of the key concept sets and
how the sets are shared. This comparison shows how much of the knowledge harboured
within the group of 12 students is actually shared. The comparison provides information
about how much the unshared knowledge provides the potential to improve the learning
if it could be made available to group members.

Methods
The empirical sample studied here consists of 12 concept maps constructed by university
students, where the students present their understanding and views of how physics con-
cepts, in electricity and magnetism, are related. The sample of 12 concept maps contains
N = 121 different concepts, of which about 50-60 appear in each map, as well as
the 787 most acceptable links of which about 150-200 are in a single map. The col-
lated network analysed here aggregates all 121 concepts and 787 best links. Such a
collated network represents the best available collective knowledge within the student
group. The collated network is analysed as a directed, weighted network and its key con-
cepts are identified. The identification of key concepts is based on the communicability
between the nodes, separately for in-coming and out-going links. For comparisons, the
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ensemble of 12 networks, each of which is a substructure of the collated network,
is analysed similarly and the communicabilities of all their nodes averaged over the
set of 12 networks is compared with the communicabilities of nodes in the collated
network.

Empirical sample: Concept maps

The empirical sample was produced during a course of seven weeks’ duration that focused
on questions concerning the conceptual structure of electricity, magnetism and elec-
tromagnetism, in level of first year studies in physics. During the teaching sequence,
the students first produced an initial concept network, and later, after instruction and
group discussions, a final version of the network. Here, only the final versions are con-
sidered because the final stage of the students’ understanding of the relational structure
of concepts is of interest. In constructing the concept maps, students were asked to con-
centrate on their discussions and reflections on the central concepts, laws, models and
experiments they thought important in forming a well-organised and coherent picture of
the topic. The construction of the concept maps was based on special kinds of concept
nodes representing conceptual knowledge. The concept nodes in these networks repre-
sent: quantities, laws, models or experiments. Students were asked to pay attention on
these types of knowledge and if appropriate, mention the type in the written report. Of
these concept nodes, laws are either experimental laws or law-like predictions in spe-
cific situations (derived from a theory), or general laws (e.g. conservation laws) (Koponen
and Nousiainen 2013; Nousiainen 2013). Students were free to introduce any concepts
or conceptual elements they found necessary and were able to substantiate. However, a
preliminary list of about 40 concepts was provided as a prompting, but students were
asked to expand it and discard any item in the list they found not useful. The links in
the network are different procedural relations between nodes (concepts), such as the fol-
lowing: the quantity can be changed, measured or kept constant (in experiments), or
that its value is predicted or used as a parameter (e.g. models). The experiments that
are central in the construction of the concept networks discussed here are the tradi-
tional teaching laboratory experiments, which are quantitative, and where a concept is
operationalised, that is, made measurable through pre-existing concepts. The models
involved in the construction of the concept networks are traditional textbook models
used to introduce new concepts and laws. In constructing the maps, students had to give
in a written report epistemic justification for the relationships between concepts, laws,
models and experiments they represented in their concept maps. The concept networks
and written reports thus contain only such concepts and relational connections that the
students could substantiate (or justify) when they integrated new concepts as part of
the networks.
An example of the 12 concept maps constructed by individual students is shown in

Fig. 1. The concepts, laws, principles and models that appear most often in the maps
are presented in Table 1 and numbered for later reference. In the analysis, we do not
separately examine each student’s concept map in detail but instead agglomerate all 12
individual networks onto a single collated network. However, the individual conceptmaps
are compared to the collated network. This comparison provides a window to the totality
of the relational knowledge that the entire group of 12 students harbours but that none of
them individually possess in its totality.
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Fig. 1 An example of an individual concept map. A concept map constructed by one student, shown
(redrawn for clarity) to illustrate the overall appearance of the maps. The content of the links is not essential
here

Method of qualitative epistemic analysis

The analysis of the concept network is based on the qualitative method first to analyse
the epistemic quality of the content, and on the subsequent quantitative method to anal-
yse how that knowledge is used in the network at a global scale and how it is passed
from one node to another. Qualitative analysis is used in assessing the degree of epis-
temic justification for the knowledge expressed in each single node contained in the maps
and written reports. The qualitative analysis, based on discerning different epistemic
levels, is explained in detail elsewhere (Nousiainen 2013), and only a short summary is
given here. Quantitative analysis operationalises the epistemic support of each node as it
receives support or is supporting other nodes in the network. In that the communicability
(Estrada and Hatano 2008; Estrada et al. 2012; Estrada 2012) of the nodes is central as
a measure of information flow. Consequently, the communicability of nodes is used to

Table 1 Key concepts appearing in students’ concept maps

Concept Concept Concept

1 Electric interaction 51 Gauss’s law 83 Magnetic force

2 Electric charge 55 Ferromagnet 85 Rotational magn. field

8 Coulomb’s law 57 Magnetic interaction 86 Magn. pot. energy

14 Displacement current 59 Magnetic dipole 87 Magnetic field H (t)

15 Electric field lines 63 Magnetic moment (e) 90 Ampere’s circuital law

22 Energy conservation 66 Magnetic flux dens. 91 Magnetic field H

27 Superposition of fields 69 Magnetic flux � 100 Induction law

28 Electric field (e) 71 Magn. flux dens. (e) 109 Rotational electric field

33 Mechanical work 72 Electric current 113 Ampere-Maxwell law

38 Electric potential 74 Biot-Savart expr. 117 Resonance circuit

44 Electric field (t) 82 Ampere-Laplace law 120 Electromagnetic waves

Some concepts appear twice, either defined empirically (e) through experimental operationalisation or theoretically (t) through
deductive rationalisation. The key concepts with numbers given in bold text are epistemically the best supported ones
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identify the key concepts and to find out how they are affected by the epistemic support
deriving from their connection to other nodes.
The epistemic criteria of the validity of knowledge is related to the substantiation (or

justification) of knowledge. Proper substantiation of knowledge can be associated with a
contiguous chain of arguments which are rational and supported by evidence (Rescher
1979; Hoyningen-Huene 2013). The evaluation of the epistemic quality of such argumen-
tation is based here on an epistemic taxonomy consisting of four levels (Nousiainen 2013):
1) Ontology, which uses ontologically correct entities and terms referring to them; 2)
Factual statements such as laws, principles and relations, which are correct and have no
inherent contradictions; 3) Methodological strategies, which contain possible and correct
procedures of setting up experiments and developing models; 4) Justification of knowl-
edge claims, which is systematic, coherent and logically sound. These four epistemic
criteria are tiered. Each knowledge element (node) is scored so that the scoring S from 1
to 4 gives the highest tier on which the epistemic norms are fulfilled. On this basis, each
node is assigned an epistemic strength s = S/Smax with Smax = 4 and where s ∈ [ 0, 1].
Epistemically strong nodes have strengths 0.75 < s < 1, while weak nodes have values
0.0 < s < 0.25. The links are simply taken as they are drawn, and their content is ignored
here. This is due to the fact that the linking words are not as informative as the node
content.

Method of quantitative structural analysis

Following the interpretative analysis of the knowledge content, the strengths s of nodes
contain the relevant information of the quality of the content of every single node. Only
this information is used here to identify the key concepts. In what follows, the strength of
node i is denoted by si, while aij is the link from node i to node j having a value 1 if the link
exists and a value 0 if not. The set of values aij provides the NxN adjacency matrix a of
the network. Because we are interested in how the information is passed from one node
to another, we transform the directed node-weighted network to a directed link-weighted
network. The weights wij of the directed links in the new weighted network are defined
as (Koponen and Nousiainen 2018)

wij = β sβi aij/wmax (1)

where wmax = Max
[{

β sβi
}]

is the maximal weight. All weights are thus normalised and
wij ∈ [ 0, 1]. This definition of weights is motivated by the notion that the directed linkswij
pass supporting information from node i to node j in proportion to the epistemic strength
of the node it originates from. The factor β allows enhanced weighting of strong links so
that for β � 1 only strong links withwij ≈ 1 survive while for β � 1 all links are weighted
equally. The weighted network is now described through the weighted adjacency matrix
Wwith elements [W]ij = wij and allows us to perform the analysis as a weighted, directed
network (Koponen and Nousiainen 2018). The collated network, which is in focus here,
consists of the best substantiated connections with the highest values on wij as resulting
from the connections in 12 individual networks. The collated network contains thus 121
nodes and 787 directed, weighted links.
The objective of the analysis is to find concepts in the network, which have the role of

either feeding information to other nodes or receiving it: nodes which conceptually either
support other nodes or which receive support. This calls for an analysis based on the



Koponen and Nousiainen Applied Network Science  (2018) 3:14 Page 8 of 21

flow of information through all contiguous paths. An obvious candidate of all centrality
measures, then, is the communicability (Estrada and Hatano 2008; Estrada et al. 2012;
Estrada 2012). As its name suggests, the communicability is closely connected to the idea
of communicating between the connected nodes. As such, it is in many ways similar to
Katz -centrality (Estrada 2012; da Costa et al. 2007). Although the analysis and its results
would be very similar using Katz -centrality, here we prefer the communicability because
of its convenient mathematical properties and easy interpretation (Estrada et al. 2012;
Estrada 2012; Benzi and Klymko 2013).
When the networks are described using the weighted adjacency matrix W, it becomes

possible to operationalise the notion of key nodes in passing the epistemic support from
one node to another in terms of the communicability, which pays attention to the walks
between nodes. The communicability between nodes is based on counting a weighted sum
Gpq of walks between nodes p and q, where the weight is given by an inverse of a factorial
of the length of the walk (Estrada and Hatano 2008; Estrada et al. 2012; Estrada 2012)

Gpq = 1 +
[
W1]

pq
1!

+
[
W2]

pq
2!

+
[
W3]

pq
3!

+ ... =
[
eW

]
pq

(2)

The communicabilities of a node v related to out-going (OUT) and in-coming links (IN)
are then defined as the total out-communicability and in-communicability, respectively, as

GOUT(v) =
∑
p�=v

Gvp , GIN(v) =
∑
p�=v

Gpv (3)

The in- and out- communicabilities are simple and robust measures closely related to the
passing of information from node to node in the network. The parameter β allows us
to explore the effect of epistemic weighting on the communicabilities of the nodes and
thus to assess the degree of epistemic substantiation of the knowledge in the concept
networks. By increasing β , the epistemically strongest links are retained while those with
low strength are effectively removed from the networks. At the other limit, where β � 1
all links receive an equal weight. Because we are studying only the relative importance
of concepts, and because link weights remain normalised to the maximum value 1, limit
β � 1 corresponds to a situation where all links are completely justified, i.e., maximal
epistemic justification. For comparison we also calculate the in- and out-strengths DIN
and DOUT of nodes, respectively, defined as (Estrada 2012; da Costa et al. 2007)

DOUT(v) =
∑
p�=v

wvp , DIN(v) =
∑
p�=v

wpv (4)

The in- and out strengths coincides with in- and out degrees of node when β � 1.

Null-model and statistical significance

The analysis of reliability and statistical significance of the results is carried out by
comparing the results of the analysis to results obtained for an appropriate null-model
(Estrada 2012; Kolaczyk 2009). To decide which features and which values of communi-
cability are exceptional, and not determined simply by the in- and out-degree distribution
of nodes, we define the null-model. The null model preserves number of nodes and links,
the direction of links and the distribution of weights of the links, but shuffles all links.
Such a null model is obtained by rewiring all in- and out-going links in the network and
then assigning the weights at random but so that distribution of weights is preserved.
In this study, we use 5000 rewirings to obtain an ensemble of networks to be compared
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with original collated networks. All rewirings are performedwith IGraph software (Csardi
and Nepusz 2006). For the ensemble of rewired networks, we calculate average values
〈O〉 and standard deviations σO of variables O ∈ {DIN,DOUT,GIN,GOUT}. The statisti-
cal significance of the values O is then assessed by calculating the so-called Z-scores (i.e.
standardised value) of variable O defined as (Estrada 2012; Kolaczyk 2009)

Z = O − 〈O〉
σO

(5)

where O is the observable value in the empirical sample. The reliability and statistical sig-
nificance requires that absolute values |Z| of Z-scores are high enough, usually the value
|Z| = 2 taken as a limiting case. Assuming that the variables are normally distributed, Z-
scores |Z| = 2 and |Z| = 3.0 correspond p-values 0.02 and 0.001, respectively. Here, we
have chosen to use |Z| = 2 as a cut-off for statistically significant deviations deserving
special attention.

Similarity

The similarity comparisons of networks requires that the type of similarity in question
is defined. Here we are not interested in local structural similarity, because local struc-
ture itself is not enough in deciding which concepts are the key concepts. Instead, the
similarity comparisons must focus on the communicability of nodes in the network.
The similarity we are interested in here is such that networks, where the same nodes
have high communicabilities, are taken as similar: the more they share the same high
communicability nodes, the more similar they are in all relevant aspects, irrespective
of how the low values of communicabilities are distributed within the remaining nodes.
When link weights are normalised, the “high” value of the communicability is taken to
be those ones which exceed the limiting value 0.50. In a collated network consisting of
121 nodes, roughly 30% of the nodes have a communicability higher than 0.50 and 15%
higher than 0.70. However, a direct comparison based on distributions of communicabil-
ity values and standard similarity measures which pay attention to the whole distribution
e.g. by using Kullback-Leibler divergence (Kolaczyk 2009) is not an option, because
nodes with low values of communicability are not of interest and not relevant to the
similarity.
The comparison of the similarity of two networks g and g’ is based on comparing the

differences of the communicabilities of the shared set of high communicabilities. First, we
select M nodes which are common to both networks and select m < M highest ranking
nodes. Second, we calculate for each node v ∈ {m} the difference between communica-
bilities G(v) and G′(v) corresponding to a node either in g or g’, respectively. Because in
the similarity comparison, the in- and out-communicabilities are treated similarly, IN and
OUT indices are dropped in what follows. Third, we define the relative dissimilarity of
communicability as a ratio r = |G(v) − G′(v)|/(G(v) + G′(v)). The relative dissimilarity
0 < r < 1 takes into account that the effect of the difference depends on the value of G;
for low communicability nodes smaller changes are relevant to deciding the dissimilarity
than for nodes that have higher values of communicabilities. The total similarity S′

g,g of
the networks g and g’ is then defined as

Sg,g′ = 1 − 1
m

∑
v∈m

|G(v) − G′(v)|
G(v) + G′(v)

(6)
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In practice, the exact value of Sg,g′ depends on the number m of the highest ranking
nodes and the number M of nodes which are common, out of which m nodes is picked.
However, in range 10 < M < 30 the results are rather stable, and we use the value that is
the average of the 30% values around the most probable one whenM varies from 10 to 30
and 5 < m < 0.9M. This selection ofm corresponds roughly to relative values of commu-
nicability and strengths in range from 0.5 to 0.8, depending on epistemic weight. Of the
different possible ways to define the similarity, this method proved to be the most stable
and robust. The possible values of Sg,g′ are from 0 to 1 and can be roughly interpreted as
the relative similarity of networks g and g’.

Results
The collated concept network consisting of 12 individual concept maps is shown in Fig. 2,
where node sizes are scaled according to values of the out- and in-communicabilities
GOUT (v) and GIN (v). Results are shown for weak epistemic weighting ( β � 1) and
for epistemic substantiation corresponding to the original concept maps (β = 0). The
key nodes are numbered as explained in Table 1. Other symbols and abbreviations used
throughout the text are provided in Table 2. For weak weighting, all links are equally
weighted and the resulting out- and in-communicabilities correspond to the situation
where all links would be maximally weighted. As Fig. 2 shows, the collated network is
modular and consists of three modules. This modularity, however, emerges from the task
structure. Students discussed separately the tasks of electrostatics, magnetostatics and
electromagnetism.

Communicabilities

Figure 2 shows that the out-and in-communicabilities GOUT (v) and GIN (v) of a given
node v are for many nodes essentially different. The nodes which have high out-
communicability are those which feed information to other nodes and thus are (source)
nodes that support the substantiation of other nodes. The nodes which have high in-
communicability are ones where the information fed by other nodes ends; these are
the strongly supported and substantiated (target) nodes. Nodes in these source and tar-
get groups are central to the network, and are thus the nodes associated with the key
concepts. When epistemic weighting of the network is changed by changing weight
parameter β as given by Eq. 2, the in- and out communicabilities are for some nodes sub-
stantially changed. Varying the weighting allows us to study the epistemic strength of the
substantiation of conceptual knowledge as the collated concept network represents it.
The collated network with weighting β = 10−2 (upper panel of Fig. 2) shows the

case when all links are equally weighted. This case corresponds to the situation where
all links are maximally substantiated and the nodes consequently have maximal in- and
out-communicabilities. Such a network corresponds to what an expert could produce
(provided the set of nodes and links are similar). In this case, the well-substantiated
key concepts with high in-communicability are somewhat equally distributed in all three
modules, with none of the modules dominating. This is a desirable outcome, because
on the basis of content there is no reason to expect that some of the modules should
be more dominant than any other. On the other hand, for out-communicability the
role of one cluster (electromagnetism) is less significant than the role of the two other
modules (electrostatics and magnetostatics). This simply indicates that the two latter
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Fig. 2 Collated concept network. The 12 individual concept networks as collated into a single network.
Nodes are shown in proportion to their out- and in-communicability. In the upper row node weighting is
β = 10−2 and in the lower row β = 0. Note that only the part of the most importance is shown and
marginal parts with auxiliary nodes are cut-off on borders

modules of electro- and magnetostatics are needed to support the knowledge in the first
electromagnetism module.
The collated network with weighting β = 0 (lower panel of Fig. 2) shows the case where

the weighting corresponds the best substantiated nodes as collated from the original 12
concept maps. In comparison to case β = 10−2, a slightly lesser fraction of nodes have
now a high in- and out-communicability. The network is now also clearly divided into
modules of source and target nodes. Many of the high out-communicability source-nodes

Table 2 Summary of symbols and abbreviations used in text and figures

Symbol/Abbreviation Symbol/Abbreviation

W Weighted adjacency matrix DIN Strength, in-coming links

wij Element ij of matrixW DOUT Strength, out-going links

aij Element ij of unweighted adjacency matrix GIN Communicability, in-coming links

β Epistemic weight parameter GOUT Communicability, out-going links

Sg,g′ Similarity of networks g and g′ COLL Collated network

Z Z-scores AVER Averages
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are now found in the module mediating (magnetostatics ) between the other modules of
source nodes (electrostatics and electromagnetism). In one of the source modules (elec-
trostatics) only a few concepts now have the role of key concept, while in the target
module the role of certain concepts as the key concepts is enhanced. In the mediating
module, the changes of nodes in their roles of key concept are not very substantial and
many key concepts retain their roles. The most prominent target-node module is obvi-
ously the electromagnetic module, because concepts in it need to be supported both
electrostatics and magnetostatics concepts. The in- and out communicability quantifies
thus quite naturally the information flows from source to target nodes.
The key concepts are supposedly those ones which receive high enough communicabil-

ities. The histogram in Fig. 3 shows the distribution of communicability of nodes when
epistemic weighting is varied. The histograms show that nodes with “high” values of com-
municability can be taken those ones with in- and out-communicabilities exceeding the
value of 0.5. These nodes are rare, and many of them have anomalously low Z-scores. For
epistemic weight logβ = 2 communicability of nodes 28, 38, 74, 100 109 and 113 have
Z-scores in range − 2.5 < Z < −3.5, while for logβ = 0 only nodes 28, 38, 74 and 109
have equally low Z-scores. Only nodes 57, 85 and 117 have statistically significant positive
Z-scores, having 2.5 < Z < 3.5. For no epistemic weighting with logβ = −2 all key con-
cepts have Z-scores |Z| < 2. These results indicate that while many of the key nodes have
communicability as expected on basis of null-model, yet several of them have a commu-
nicability not determined by local connectivity alone. Particularly clear this is for strong
epistemic weighting. The conclusion that high-communicability nodes are special set of
nodes is supported by examining the correlations between in- and out strengths DIN and
DOUT and corresponding in- and out-communicabilities GIN and GOUT of the nodes.
The ranking based Spearman ρ and Kendall τ non-parametric correlations (Corder and
Foreman 2014) are summarised in Table 3. The correlations show that for β � 1 com-
municabilities of interest are determined by the strength of node (i.e. degree of node),
but for increased demand for epistemic weighting the correlations become weaker. The

Fig. 3 Histograms of distributions of in- and out- communicability. The histograms of values of GIN and GOUT
for the collated network are shown for epistemic weights logβ = −2, 0 and 2 as indicated in figures
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deterioration of correlation shows that the communicability provides essential new infor-
mation of long contiguous paths and how epistemic weighting affect them. Roughly, the
message of Z-scores and correlations is that for students, it is very demanding to maintain
the contiguous, logically ordered chain of connections from source nodes to target nodes,
and that these chains are very often disrupted by failed or poorly established epistemic
substantiation of the connections. This feature comes visible only through examination
of communicabilities and is not available by focusing on local connectivity e.g. in form of
node strengths.

The key concepts

The key concepts and how they change when epistemic weighting is increased are shown
in Fig. 4 as a fingerprint -map (Koponen and Nousiainen 2014). The map shows the key
concepts of high in- or out-communicability as black stripes, and the lesser the communi-
cability is the lighter is the colour of the stripe. The fingerprints reveal that there are about
23 key concepts of which, with increasing epistemic weighting, the number of strongly
substantiated nodes (concepts) diminish and only about 15 remain epistemically strongly
substantiated. The 23 nodes and the 15 most strongly substantiated (in boldface) are: 2,
14, 28, 27, 33 and 38 (for electrostatics, names of the concepts as in Table 1); 55, 57, 59,
63, 66, 71, 74, 82, 83, 85 and 86 (for magnetostatics); and 90, 91, 100, 109, 113, 117 and
120 (for electromagnetism). All these nodes represent concepts which are also central for
the content, abstract and thus widely applicable across different contexts. Importantly,
many of these concepts are general field concept of electricity and magnetism. Therefore,
they are also key concepts in regard to the content.
The set of strongly substantiated nodes for β � 1 represents that part of knowledge for

which the student group is able to provide a proper epistemic justification. As is seen by
comparing the results in Fig. 4 for weak (β � 1) and strong epistemic (β � 1) weighting,
the key concept in the strongly weighted group is a sub-set of key concepts corresponding
to themaximally substantiated (β � 1) network. It is this more limited set of key concepts
that students can bring to their discussions and use in a justified manner when construct-
ing arguments and making knowledge claims; these key nodes thus provide important
information concerning what one can expect about the quality of knowledge within the
student group and how it appears in discussions and argumentation within the group.
The set of key concepts and the changes in it with increasing epistemic weighting can

conveniently be displayed using radar maps (or spider-web maps), where each concept is
given as a corner in a polygon and the distance from the centre of the polygon is propor-
tional to the value of the communicability. Such radar maps for source (OUT) and target
(IN) key concepts are shown in Fig. 5 for 18 key concepts that appear in cases of low-

Table 3 Correlation coefficients �[ X , Y] between variables X , Y ∈ {DIN,DOUT,GIN,GOUT}
�[DIN,DOUT] �[GIN,GOUT] �[DIN,GIN] �[DOUT,GOUT]

log β -2\0 \2 -2\0 \2 -2\0 \2 -2 \0 \2

ρ 0.66\0.66\0.59 0.64\0.31\0.29 1.00\0.89\0.84 0.99\0.86\0.82

τ 0.51\0.50\0.44 0.48\0.20\0.18 0.95\0.73\0.68 0.95 \0.71\0.66

The Spearman ρ and Kendall τ correlation coefficients are provided for epistemic weights logβ = −2, 0 and 2 (separated by \in
the same order). All correlation coefficients have p-values p < 0.005
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Fig. 4 Fingerprint maps of the key concepts in the collated concept network. The key concepts having a
high communicability are shown as black stripes. The weighting of links with β = 10p changes from p = −2
to p = 2 as shown on the scale on the right. The communicability through out-going links (OUT) is shown in
the upper panel and through in-coming links (IN) in the lower panel. Numbering of nodes is given in upper-
and lower sides of the stripes. The colour-legend for relative strengths of communicability is provided on the
right. Note how differently weighted networks have different sets of key nodes. The key nodes surviving after
the strong epistemic weighting region are the most strongly supported/supporting ones

and high epistemic weighting. For comparison, the radar map shows also the in- and out-
strengths of the nodes. The radar maps in the left panel show the key concepts for β � 1,
in which case all the links are equally weighted and the relative strengths of the commu-
nicabilities have the same values as would be obtained in a fully substantiated network
where all links would receive weights 1.
When the epistemic weighting is increased, the radar maps reveal how certain concepts

gradually lose their role as key concepts and only a smaller sub-set of key concepts sur-
vives when β � 1. The in-and out strengths, however, remain largely unaffected, because
they depend only on epistemic weights on nearest neighbour links. Moreover, as shown
by results in Table 3 only for logβ = −2 the communicability and strength of node are
strongly correlated. This difference in values of communicability and strength show that
epistemic weighting of long contiguous paths depend sensitively on quality of epistemic
substantiation and thus it provides more information of the epistemic substantiation than
strength of node. The column at the right in Fig. 5 shows the key concepts for β = 102,
which is already a limiting case and further increase in β has no effect on the relative val-
ues of the communicabilities, and thus on the set of key concepts. The set of key concepts
is remarkably robust, which indicates that many links contained in the collated network
are sufficiently well substantiated to make the set resilient under the increased demand
for epistemic substantiation.

Auxiliary concepts

The collated network contains a set of concepts which are tightly connected in terms of
standard local clustering coefficient (da Costa et al. 2007; Estrada 2012). The unweighted
collated network with β � 1 has nine concepts or conceptual elements with maxi-
mum local clustering coefficient of 1.00 and five from 0.70 to 0.98. Nearly all top 15



Koponen and Nousiainen Applied Network Science  (2018) 3:14 Page 15 of 21

Fig. 5 Radar maps of the key concepts in the collated network. The radar map representation of the 18 most
important key concepts in the collated concept network. In the left column, the communicability (black
polygon) is compared with the strength of nodes (red polygon) for the weighting β = 10−2. In the middle,
the communicability (black) and the strenght (red) are compered for β = 100, and on the right for β = 102.
The out- and in-communicabilities are shown in the upper and lower rows, respectively

high-clustering nodes have Z-scores 2.5 < Z < 4.5. The average value of local cluster-
ing of collated network nodes is 0.13. None of these concepts or conceptual elements
appear among nodes listed in Table 1 and none of them is indispensable for the content
in general. The top conceptual elements with high local clustering coefficient are spe-
cific and context related model based derivations of certain laws, models, experiments or
statement-type definitions. For example, some of the top-ranking nodes are: 121. Model
exemplifying RCL-circuit and 107. Definition of mutual inductance. For collated and indi-
vidual networks the 15 highest ranking concepts according to their clustering coefficient
contain 12 which are derivations, models, model based definitions or experiments. More-
over, these items and ways they are reported in students’ reports closely match textbook
presentations.

Similarity comparisons

The collated network which contains the best substantiated concepts of all individual
12 student-constructed concept maps is significantly more extensive and comprehensive
than any of the 12 individual concept maps. The direct comparisons of individual concept
maps to the collated network is not very illuminating, because the individual networks
are very sparse and too few of the connections (links) contained in them are significant.
Generally, while the collated network contains some 30 significant and well-substantiated
concepts (see Table 1), the single individual network typically contains only from 6 to 10.
Thus, there are few overlaps of single networks and the collated networks, and even fewer
between the single networks themselves. An overall picture of how individual networks
compare with the collated network is revealed by averaging the communicabilities of the
12 networks for all nodes and comparing these averaged values with values obtained for
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the collated network. In Fig. 6 are shown the communicabilities averaged over 12 individ-
ual networks for the key concepts shown in Fig. 5. The changes in the set of key concepts
with increased epistemic weighting reveal substantial changes in the communicabilities,
and for β � 1 only a few of the key concepts remain. Interestingly, in the set of source
nodes, nodes 2 (electric charge) and 28 (empirically operationalised electric field) are
dominant. In the set of target nodes, nodes 109, 117 and 120, related to magnetoelec-
tric induction (the inverse of electromagnetic induction) are dominant. The unexpected
dominance of certain key concepts in case of strong epistemic weighting is in contrast to
the collated network, which turned out to be rather robust with the increased demand
for epistemic substantiation. This indicates that a good and robust substantiation of the
collated network actually originates only from one or two of the individual networks.
Although many of the individual networks contain very few well-substantiated nodes,
every network contains some which are not found in any other network. The collated
network collects all these rare cases and the outcome is a well-substantiated and robust
concept network, which is also highly satisfactory from the viewpoint of targeted content
knowledge.
A more detailed breakdown of the key concepts in individual networks as compared

to the collated network is provided in Table 4, where the key concepts in individual net-
works are divided into three categories: I, II and III. Category I contains the concepts that
appear in at least 10 networks, category II concepts appearing in at least 7 but at most 9,
and III concepts that appear in exactly 6 networks only. The column COLLATED shows
concepts in the collated network in order of their ranking based on the communicabil-
ity. The key concepts in category I in Table 4 show that the concepts which appear in 11

Fig. 6 Radar maps of the key concepts obtained as averages. The radar map representation of the 18 most
important key concepts obtained by averaging the values of communicabilities over 12 individual concept
network. The weighting of links is as denoted in upper row (note the colour annotation). The out- and
in-communicabilities are shown in the upper and lower rows, respectively
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Table 4 Key concepts as they appear in the collated and 12 individual concept networks

log β I: (12-10) II: (9-7) III: (6) COLLATED

-2 IN – 120,113, 112, 117,93, 82, 85, 109, 91, 100, 86, 83,
109,100, 91, 69, 51, 41, 117, 113, 82, 71, 87,120,

87, 85, 54, 44 76, 69, 98, 34, 103, 116

OUT 8, 28, 1, 2, 57, 66, 7, 76 66, 57, 71, 63, 55, 83,

66, 71, 83, 90 82, 59, 65, 77, 72, 90,

76, 9, 91, 2, 68, 27

0 IN 109 120, 117, 113, 87, 85, 83, 91, 109, 85, 100, 113, 83,

112, 100, 91, 71, 54, 22 117, 82, 120, 86, 87, 71,

86 116, 76, 33, 69, 34, 98

OUT 2, 8, 28 1, 57, 63, 66 33, 38, 55, 57, 66, 2, 55, 28, 71,

71, 83, 90 72, 109 63, 72, 59, 83, 70, 62,

91, 74, 9, 65, 8, 22

2 IN – 120, 117, 113, 83, 87 100, 82, 63, 91, 38, 113,

109, 100, 91, 109, 27, 71, 82, 74, 33,

86, 71 86, 44, 69, 47, 85, 76

OUT 2, 28 1, 33, 38, 16, 69, 71, 28, 2, 57, 66, 83, 71

47, 57, 63, 72, 76, 95 72, 33, 109, 14, 91, 63,

66, 83, 90 55, 69, 20, 47, 27, 90

The columns from I to III show 18 key concepts selected from the 25 highest ranking concepts common to all 12 networks.
Column I shows the concepts that appear in at least 10 networks; in II the concepts that appear in at least 7 but at the most 9
networks, and in III the concepts that appear in exactly 6 networks only. The column COLLATED shows concepts in the collated
network in order of their ranking based on the communicability. The results in I-III and COLLATED are given for epistemic weights
Logβ = −2, 0 and 2, and for in-coming (IN) and out-going (OUT) links. In the COLLATED, the five highest ranking concepts for
Logβ = −2 are shown in boldface. In Columns I-III the concepts not contained in the key concepts in COLLATED for the epistemic
weight β are given in slanted font. If the concept is not among any of the 18 key concepts for collated, it is in slanted boldface

or 12 networks, are not very many, but are among the key concepts in the collated net-
work, although not the top ranking. The key concepts that appear in all 12 concept maps
made by the students and that are epistemically strongly substantiated in these maps are
concepts of electric charge (2) and electric field (28) as empirically operationalised. How-
ever, in the collated network the ranking of these concepts as key concepts is considerably
lower, which indicates that their significant role is mostly due to their appearance in every
individual concept map while most other key concepts in them are different. When the
nodes and links are collated, the relative significance of 2 and 28, however, is greatly
reduced. The only exception, a key concept which is important in individual networks but
not in the collated network, is concept 1, electricity as recognised qualitatively. Concept 1
appears in all individual concept maps but is not epistemically strongly substantiated, and
disappears from the set of key concepts when β is increased; although it is mentioned by
all students in their networks, it is very weakly established key concept. Concepts in cat-
egories II and III are the most significant for the collated network and form its backbone.
In these categories, however, many of the key concepts of the individual networks do not
appear in the topmost set of key concepts in the collated network. The changes in the set
of key concepts in categories II and III when epistemic weighting is increased are also sub-
stantial. The concepts which appear in five or fewer networks are not listed in Table 4. In
this set of concepts, individual concept maps have little overlap, the concepts are poorly
substantiated and do not form a robust collection under changed epistemic weighting.
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The results in Table 4 show that the differences between individual student-made con-
cept maps are substantial, as well as the difference between any individual student map
and the collated network. Here, the similarity of interest derives from the similarity of the
set of key concepts and how their communicability values are distributed. A suitable sim-
ilarity measure which fulfils these requirements is the similarity defined in Eq. 6. Roughly,
such similarity can be interpreted as a relative, total communicability similarity between
the compared networks. The similarity function S is shown in Fig. 7. The similarity of the
epistemically weighted collated network to the unweighted collated (COLL) network cor-
responding β � 1 is shown by the uppermost curves for out-going (OUT) links at the left
and for in-coming links (IN) at the right. The results show that when setting the highest
demand on the epistemic weighting (β � 1), the similarity is reduced to 50% and to 60%
for source and target concepts, respectively. The situation is more severe for the individ-
ual concept maps, whose similarity to the similarly weighted collated network are shown
as gray dots. These similarities are for β � 1 in the best cases 50% but in the worst cases
only 30%, and are reduced to very low values less than 20% for β � 1. For a comparison,
the similarity of averaged (AVER) values of the communicabilities to values obtained for
the collated network, corresponding to equal β , are shown, as well as the fitting function
to the average over the individual network similarities. These results confirm the con-
clusion drawn on the basis of the radar maps in Figs. 5 and 6 and the results shown in
Table 4; the individual concept maps contain only sparsely the relevant conceptual knowl-
edge, but when they do this, it is often well substantiated. By collecting all separate well
substantiated-elements, a highly satisfactory collated network results.

Discussion and conclusions
Wehave focused on finding the key concepts in how university students conceive the rela-
tional conceptual structure of electricity and magnetism. The study sample was a set of
12 concept maps and accompanying study reports made by students during a seven-week
course. The 12 individual networks were agglomerated into a single collated network,
which could be taken to represent the totality of concepts and their relationships which
arose in the discussions and which were focused on exercises during the course. Here,

Fig. 7 Similarity of networks in epistemic weighting. The similarity of the epistemic weighted collated
network to the unweighted collated (COLL, black circles) network with β � 1 is shown by the uppermost
curves for out-going (OUT) links at the left and for in-coming links (IN) at the right. The similarity based on the
averaged values of the communicabilities (AVER, gray squares) compared to the values from the collated
network, with same value of epistemic weight β , is shown by the second curve from the top. The gray dots
show the distribution of the similarities of the 12 individual networks. The fitting curve (the lowest curves)
show the average value corresponding to the 12 individual cases
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we showed that the communicability of nodes in the collated network had good resolv-
ing power in revealing how different nodes (concepts) in the collated network channelled
information to provide epistemic substantiation of other nodes in the network, and how
the other nodes were substantiated by that information. The nodes that had a key role
in transmitting or receiving the information were those with a high communicability
through either the out-going or in-coming links, respectively. These nodes were the key
concepts in the network.
The analysis method based on finding the key concepts on the basis of the ranking of

nodes according to their communicability provided insight on the quality of the epis-
temic substantiation of the knowledge as it was represented in the concept network. The
method introduced here for global analysis augments the traditional methods of concept
network and concept map analysis, which focus on the local properties through count-
ing links (Ruiz-Primo and Shavelson 1996; Nicoll et al. 2001; McClure et al. 1999) or on
visual appearances of the patterns found in the concept maps (Kinchin et al. 2000, 2005).
The method based on communicability operationalises the desired property of the con-
ceptual contiguity of the concept network and the information flow from node to node in
the network. It also provides a way to study the effect of the epistemic weighting on the
emergence of the key concepts.
The results of the analysis for the collated network were compared to the results

obtained by averaging the communicabilities of the nodes over all 12 individual networks.
The comparison indicated that the individual networks were rather limited sub-sets of the
collated network, with many of the concepts poorly substantiated. However, every sin-
gle network contained some essential key concepts which the students had managed to
substantiate well. Most often these concepts were found to be associated with magneto-
statics. It appears that students relied on magnetostatics as mediating module of concepts
which link electrostatics concepts to electrodynamics, while less information is chan-
neled directly from electrostatics to electrodynamics. This feature may be partly related
to the structure of the task, but may also emerge partly from the recency of the learned
magnetostatics in comparison to electrostatics. Magnetostatics having a special role is
similarly seen in a different kind of analysis, suggesting that concepts of magnetism have
for students an important role in organising their knowledge of electricity and magnetism
around that mediating role (Koponen and Nousiainen 2013).
In several recent studies it has been claimed that experts’ knowledge builds around

interrelated set of concepts connected by their relational structure (Goldwater and Schalk
2016). This is in contrast to views, where semantic connections and feature based con-
cepts are in focus, where the concepts (or terms corresponding them) tend to form
clusters, connections are close and concepts within clusters share more similarities than
concepts between clusters (Chi and Ohlsson 2005; Kemp and Tenenbaum 2008). Accord-
ing the relational view on concepts, structure of experts’ knowledge is characterized by
distant and complex conceptual connections, while novices’ knowledge often consists
of concepts closely related but remains also shallower in comparison to experts’ knowl-
edge. On the other hand, this difference reflects not only the distinction between feature
based concepts and relational concepts but also how novices and experts can access and
utilize such knowledge (Lachner and Nückles 2015). Here, the key concepts with high
communicability are abstract, widely applicable and independent of specific situation, for
example very general field concepts. Another set of concepts is the set with high local
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clustering coefficients. These concepts and conceptual elements are specific derivedmod-
els or specific examples, or auxiliary concepts connected with them. They are not key
concepts but auxiliary and strongly context specific concepts and conceptual elements
and have a role in supporting or augmenting the theoretical skeletal structure formed by
the abstract theoretical concepts with high global connectivity.
Interestingly, by collecting all the best substantiated nodes and connections contained

in the 12 individual concepts maps into a collated network, a highly satisfactory con-
cept network emerges with a rich collection of key concepts and with a strong epistemic
substantiation. However, individual networks have quite a lot variability in number of
nodes, links and in selection of nodes. This is in agreement with findings that also indi-
vidual semantic networks have large variability and aggregated network based on them
may be very different from individual networks (Morais et al. 2013). On the other hand,
the results suggests that in the group of 12 students, a substantial amount of relevant
and well-substantiated knowledge was harboured, but with each individual student pos-
sessing only a fraction of the knowledge potentially available at the group level. If this
unshared knowledge within the group could be somehow better shared, it would provide
great potential for successful peer-to-peer learning.
In summary, we have shown how students’ knowledge of the relational knowledge of

scientific concepts can be analysed and approached by utilising the appropriate network
methods. We believe that the results presented here could not be obtained by any of the
traditional methods for analysing concept maps. Moreover, the present method reduces
the interpretative component of the analysis to aminimum (only the recognition and eval-
uation of epistemic levels is needed), overcomes the limits of local analysis, and replaces
the awkward visual inspection of global analysis methods with quantitative operational-
isations of the global features of interest for examining students’ declarative knowledge
and the quality of its substantiation.
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