16 research outputs found

    Sparse error gait image: a new representation for gait recognition

    Get PDF
    The performance of a gait recognition system is very much related to the usage of efficient feature representation and recognition modules. The first extracts features from an input image sequence to represent a user's distinctive gait pattern. The recognition module then compares the features of a probe user with those registered in the gallery database. This paper presents a novel gait feature representation, called Sparse Error Gait Image (SEGI), derived from the application of Robust Principal Component Analysis (RPCA) to Gait Energy Images (GEI). GEIs obtained from the same user at different instants always present some differences. Applying RPCA results in low-rank and sparse error components, the former capturing the commonalities and encompassing the small differences between input GEIs, while the larger differences are captured by the sparse error component. The proposed SEGI representation exploits the latter for recognition purposes. This paper also proposes two simple approaches for the recognition module, to exploit the SEGI, based on the computation of a Euclidean norm or the Euclidean distance. Using these simple recognition methods and the proposed SEGI representation gait recognition, results equivalent to the state-of-the-art are obtained

    View-invariant gait recognition exploiting spatio-temporal information and a dissimilarity metric

    Get PDF
    In gait recognition, when subjects do not follow a known walking trajectory, the comparison against a database may be rendered impossible. Some proposed solutions rely on learning and mapping the appearance of silhouettes along various views, with some limitations caused for instance by appearance changes (e.g. coats or bags). The present paper discusses this problem and proposes a novel solution for automatic viewing angle identification, using minimal information computed from the walking person silhouettes, while being robust against appearance changes. The proposed method is more efficient and provides improved results when compared to the available alternatives. Moreover, unlike most state-of-the- art methods, it does not require a training stage. The paper also discusses the use of a dissimilarity metric for the recognition stage. Dissimilarity metrics have shown interesting results in several recognition systems. This paper also attests the strength of a dissimilarity-based approach for gait recognition.info:eu-repo/semantics/acceptedVersio

    View-invariant gait recognition system using a gait energy image decomposition method

    Get PDF
    Gait recognition systems can capture biometrical information from a distance and without the user's active cooperation, making them suitable for surveillance environments. However, there are two challenges for gait recognition that need to be solved, namely when: (i) the walking direction is unknown and/or (ii) the subject's appearance changes significantly due to different clothes being worn or items being carried. This study discusses the problem of gait recognition in unconstrained environments and proposes a new system to tackle recognition when facing the two listed challenges. The system automatically identifies the walking direction using a perceptual hash (PHash) computed over the leg region of the gait energy image (GEI) and then compares it against the PHash values of different walking directions stored in the database. Robustness against appearance changes are obtained by decomposing the GEI into sections and selecting those sections unaltered by appearance changes for comparison against a database containing GEI sections for the identified walking direction. The proposed recognition method then recognises the user using a majority decision voting. The proposed view-invariant gait recognition system is computationally inexpensive and outperforms the state-of-the-art in terms of recognition performance.info:eu-repo/semantics/acceptedVersio

    Gait recognition and understanding based on hierarchical temporal memory using 3D gait semantic folding

    Get PDF
    Gait recognition and understanding systems have shown a wide-ranging application prospect. However, their use of unstructured data from image and video has affected their performance, e.g., they are easily influenced by multi-views, occlusion, clothes, and object carrying conditions. This paper addresses these problems using a realistic 3-dimensional (3D) human structural data and sequential pattern learning framework with top-down attention modulating mechanism based on Hierarchical Temporal Memory (HTM). First, an accurate 2-dimensional (2D) to 3D human body pose and shape semantic parameters estimation method is proposed, which exploits the advantages of an instance-level body parsing model and a virtual dressing method. Second, by using gait semantic folding, the estimated body parameters are encoded using a sparse 2D matrix to construct the structural gait semantic image. In order to achieve time-based gait recognition, an HTM Network is constructed to obtain the sequence-level gait sparse distribution representations (SL-GSDRs). A top-down attention mechanism is introduced to deal with various conditions including multi-views by refining the SL-GSDRs, according to prior knowledge. The proposed gait learning model not only aids gait recognition tasks to overcome the difficulties in real application scenarios but also provides the structured gait semantic images for visual cognition. Experimental analyses on CMU MoBo, CASIA B, TUM-IITKGP, and KY4D datasets show a significant performance gain in terms of accuracy and robustness

    Gait recognition in the wild using shadow silhouettes

    Get PDF
    Gait recognition systems allow identification of users relying on features acquired from their body movement while walking. This paper discusses the main factors affecting the gait features that can be acquired from a 2D video sequence, proposing a taxonomy to classify them across four dimensions. It also explores the possibility of obtaining users’ gait features from the shadow silhouettes by proposing a novel gait recognition system. The system includes novel methods for: (i) shadow segmentation, (ii) walking direction identification, and (iii) shadow silhouette rectification. The shadow segmentation is performed by fitting a line through the feet positions of the user obtained from the gait texture image (GTI). The direction of the fitted line is then used to identify the walking direction of the user. Finally, the shadow silhouettes thus obtained are rectified to compensate for the distortions and deformations resulting from the acquisition setup, using the proposed four-point correspondence method. The paper additionally presents a new database, consisting of 21 users moving along two walking directions, to test the proposed gait recognition system. Results show that the performance of the proposed system is equivalent to that of the state-of-the-art in a constrained setting, but performing equivalently well in the wild, where most state-of-the-art methods fail. The results also highlight the advantages of using rectified shadow silhouettes over body silhouettes under certain conditions.info:eu-repo/semantics/acceptedVersio

    View and clothing invariant gait recognition via 3D human semantic folding

    Get PDF
    A novel 3-dimensional (3D) human semantic folding is introduced to provide a robust and efficient gait recognition method which is invariant to camera view and clothing style. The proposed gait recognition method comprises three modules: (1) 3D body pose, shape and viewing data estimation network (3D-BPSVeNet); (2) gait semantic parameter folding model; and (3) gait semantic feature refining network. First, 3D-BPSVeNet is constructed based on a convolution gated recurrent unit (ConvGRU) to extract 2-dimensional (2D) to 3D body pose and shape semantic descriptors (2D-3D-BPSDs) from a sequence of gait parsed RGB images. A 3D gait model with virtual dressing is then constructed by morphing the template of 3D body model using the estimated 2D-3D-BPSDs and the recognized clothing styles. The more accurate 2D-3D-BPSDs without clothes are then obtained by using the silhouette similarity function when updating the 3D body model to fit the 2D gait. Second, the intrinsic 2D-3D-BPSDs without interference from clothes are encoded by sparse distributed representation (SDR) to gain the binary gait semantic image (SD-BGSI) in a topographical semantic space. By averaging the SD-BGSIs in a gait cycle, a gait semantic folding image (GSFI) is obtained to give a high-level representation of gait. Third, a gait semantic feature refining network is trained to refine the semantic feature extracted directly from GSFI using three types of prior knowledge, i.e., viewing angles, clothing styles and carrying condition. Experimental analyses on CMU MoBo, CASIA B, KY4D, OU-MVLP and OU-ISIR datasets show a significant performance gain in gait recognition in terms of accuracy and robustness

    Multiple views gait recognition using view transformation model based on optimized gait energy image

    Full text link
    Gait is one of well recognized biometrics that has been widely used for human identification. However, the current gait recognition might have difficulties due to viewing angle being changed. This is because the viewing angle under which the gait signature database was generated may not be the same as the viewing angle when the probe data are obtained. This paper proposes a new multi-view gait recognition approach which tackles the problems mentioned above. Being different from other approaches of same category, this new method creates a so called View Transformation Model (VTM) based on spatial-domain Gait Energy Image (GEI) by adopting Singular Value Decomposition (SVD) technique. To further improve the performance of the proposed VTM, Linear Discriminant Analysis (LDA) is used to optimize the obtained GEI feature vectors. When implementing SVD there are a few practical problems such as large matrix size and over-fitting. In this paper, reduced SVD is introduced to alleviate the effects caused by these problems. Using the generated VTM, the viewing angles of gallery gait data and probe gait data can be transformed into the same direction. Thus, gait signatures can be measured without difficulties. The extensive experiments show that the proposed algorithm can significantly improve the multiple view gait recognition performance when being compared to the similar methods in literature. ©2009 IEEE

    Multiple Views Gait Recognition using View Transformation Model Based on Optimized Gait Energy Image

    No full text
    Gait is one of well recognized biometrics that has been widely used for human identification. However, the current gait recognition might have difficulties due to viewing angle being changed. This is because the viewing angle under which the gait signature database was generated may not be the same as the viewing angle when the probe data are obtained. This paper proposes a new multi-view gait recognition approach which tackles the problems mentioned above. Being different from other approaches of same category, this new method creates a so called View Transformation Model (VTM) based on spatial-domain Gait Energy Image (GEI) by adopting Singular Value Decomposition (SVD) technique. To further improve the performance of the proposed VTM, Linear Discriminant Analysis (LDA) is used to optimize the obtained GEI feature vectors. When implementing SVD there are a few practical problems such as large matrix size and over-fitting. In this paper, reduced SVD is introduced to alleviate the effects caused by these problems. Using the generated VTM, the viewing angles of gallery gait data and probe gait data can be transformed into the same direction. Thus, gait signatures can be measured without difficulties. The extensive experiments show that the proposed algorithm can significantly improve the multiple view gait recognition performance when being compared to the similar methods in literature
    corecore