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Abstract: Gait recognition systems can capture biometrical information from a distance and without the 

user’s active cooperation, making them suitable for surveillance environments. However, there are two 

challenges for gait recognition that need to be solved, namely when: i) the walking direction is unknown 

and/or ii) the subject’s appearance changes significantly due to different clothes being worn or items being 

carried. This paper discusses the problem of gait recognition in unconstrained environments and proposes 

a new system to tackle recognition when facing the two listed challenges. The system automatically 

identifies the walking direction using a perceptual hash (PHash) computed over the leg region of the gait 

energy image (GEI) and then compares it against the PHash values of different walking directions stored 

in the database. Robustness against appearance changes is obtained by decomposing the GEI into sections 

and selecting those sections unaltered by appearance changes for comparison against a database containing 

GEI sections for the identified walking direction. The proposed recognition method then recognizes the 

user using a majority decision voting. The proposed view-invariant gait recognition system is 

computationally inexpensive and outperforms the state-of-the-art in terms of recognition performance. 

 

 

1. Introduction 

Traditional biometric traits, such as fingerprint, iris, etc. are unique to a user, which explains why 

many applications rely on biometric systems for user recognition. However, these traits have a limited use 

in surveillance environments because they require active user cooperation and are difficult to acquire from 

a distance. To overcome this limitation, soft biometric traits, such as height, weight or gender have been 

explored, as they can be captured from a significant distance without the need for active user cooperation. 

The problem, however, is that these soft biometric traits are not distinctive enough to uniquely identify a 

user. Gait, on the other hand, which is the way a person walks, is a popular biometric trait that uniquely 

identifies a user from a distance [1]. As such, gait is becoming an increasingly interesting trait to exploit in 

surveillance environments. 

Many different methods explore gait for recognition, as discussed in [2]. These include methods that 

rely on motion recording sensors worn on the body or force plates installed on the floor. Such methods are 

restricted to controlled environments only since the user/environment has to be set up with the recording 

device. However, there are also methods that simply use silhouettes obtained from video sequences. A 

popular example uses the GEI, computed from the silhouettes, for recognition [3]. Other methods 
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following similar strategies include [4] [5] [6], typically being developed to work on lateral walking 

direction sequences, and therefore having a limited application in unconstrained environments. 

For gait recognition to be a viable alternative in unconstrained surveillance environments, the 

following two challenges have to be dealt with: 

 Unknown walking direction – When a user opts to walk in a random direction, the captured 

sequence cannot effectively be compared against database sequences captured from a 

different observation viewpoint. 

 Changes in subject appearance – When there are variations in the user’s clothing or carried 

items, these appearance changes are not foreseen in the database. 

In face of these challenges, the matching results may not be the desired ones. While in the literature one 

can find several proposals to tackle each of these challenges individually, only a limited number of 

proposals addresses both challenges simultaneously, as discussed below. 

 

1.1. Related Work 
 

Gait recognition methods can be classified as either model-based or appearance-based recognition 

methods [1]. 

Model-based methods set parameters of 3D models using the features obtained from the gait 

sequences. These models can then be used to synthesize images from the desired viewpoint, as presented 

in [7] and [8], or to extract new features to be used for user recognition, such as trajectories of key joints or 

lengths of segments between joints, as in [9]. They also include methods that synthesize features for a 

desired viewpoint by using the perspective projection model and camera calibrations [10]. Model-based 

methods usually perform extremely well in controlled environments, being robust to changes in the 

walking direction even within a gait cycle. However, since they typically require multiple cameras and 

additional setup information, including external and internal camera parameters or the position of the floor, 

they have a limited application in unconstrained surveillance environments. 

For other model-based methods gait is modelled by relying on features that are themselves invariant 

to changes in the walking direction. For instance, the work presented in [11] and [12] uses the hip, knee 

and ankle positions obtained from a gait sequence to model gait parameters. After a view rectification step, 

angular measurements derived over the gait cycle are used for user recognition. The method in [13] uses 

the head and feet positions obtained from the gait sequence to model their trajectories. The performance of 

these methods depends on the detection of invariant features and thus occlusions or the presence of 
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artefacts in the images can hamper their performance. In addition, these methods are ineffective when 

there is a large change in the range of observed walking directions between testing and training sequences. 

On the other hand, appearance-based methods use the spatiotemporal features obtained from 

observed gait sequences, without relying on any 3D model and its parametrization. These methods 

perform gait recognition relying on sequences captured from a single camera, without the knowledge of 

any intrinsic and extrinsic camera parameters or depth cues. User recognition is typically performed by 

exploring inter- and intra-user correlations. View transformation methods, a sub-class of the appearance-

based methods, generate gait feature vectors and a transformation matrix, typically by applying singular 

value decomposition (SVD) on the GEIs for available walking directions. Thus, GEIs obtained from a 

particular walking direction can be transformed into another walking direction using only the 

transformation matrix. Examples include walking direction identification using linear discriminant 

analysis (LDA) [14], user recognition using multiple discriminant analysis (MDA) [15], and convolutional 

neural networks [16]. The method presented in [17] is similar to [15] but uses a Radon transform-based 

energy image to improve recognition. The method presented in [18] obtains a transformation from any 

walking direction into a lateral walking direction by optimizing low rank textures of a gait texture image 

(GTI). The transformation is applied to the gait silhouettes, which are then recognized using Procrustes 

shape analysis. Although effective, these methods are applicable when the walking direction changes 

within a limited range around the lateral walking direction. Since the transformation degrades when the 

walking direction changes a lot with respect to the trained walking direction, poor recognition results are 

obtained in those conditions. Additionally, as the methods rely on inter- and intra-user correlation, further 

appearance changes to the GEIs, e.g., due to bags or coats, will adversely affect their performance. 

Some appearance-based methods tackle the identified limitations by splitting gait recognition into 

two steps. They first identify the walking direction of the user, and then perform user recognition for the 

identified walking direction. This two-step approach restricts comparisons to the identified walking 

direction, of course implying that users have to be registered in all the considered directions. The methods 

presented in [19] and [20] use the GEI’s leg region entropy to identify the walking direction, followed by 

random subspace learning (RSL) for user recognition. The method in [19] further improves robustness to 

appearance changes by Gaussian filtering the GEI at different scales, generating a multiscale gait image 

that gradually highlights the subject's shape, which is unaltered by appearance changes. The method 

presented in [21] trains the Gaussian process (GP) classifier using GEI’s leg region for walking direction 

identification and performs user recognition using canonical correlation analysis (CCA). In [22] walking 

direction identification is performed by analyzing the feet positions in a GTI and user recognition is 
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performed by applying LDA to dissimilarity vectors which represent a user. Although these methods are 

effective, some operate over a limited range of walking directions, while some others provide a limited 

robustness against appearance changes and walking direction identification. In addition, most of the 

mentioned methods are computationally expensive. 

As expected, methods that operate only with lateral walking direction report increased robustness to 

appearance changes. In this observation viewpoint, methods explore different gait representations to obtain 

better recognition results. The work in [23] uses Poisson random walk as a gait feature, while [24] and [25] 

use gait entropy image (GEnI). The work presented in [26] selects the common parts of the test GEnI and 

the training GEnIs, including those altered by appearance changes, by using a binary mask obtained from 

the two GEnIs being compared. The mask thus eliminates the alterations caused by appearance change 

before applying MDA for user recognition. The method presented in [27] sets higher weights to areas 

unaltered by appearance changes, and sets lower weights to altered areas during the recognition step. A 

golden ratio based approach, in [28], uses four different clothing models to identify unaltered area of the 

test GEI that is used for recognition. Although these methods handle appearance changes, most are limited 

by the use of information about the type of appearance change considered while training.  

 

1.2. Motivation and Contribution 
 

From the above discussion, it can be concluded that appearance-based methods are better suited for 

surveillance environments, since they can deal with changes in the walking direction with fewer 

constraints. Among appearance-based methods, those that are more effective against appearance changes 

rely on two steps, first identifying the walking direction, and then performing user recognition. Here, there 

is room for improving both the walking direction identification and the overall recognition performance.  

This paper presents a system comprising two novel methods: one for walking direction identification 

and the other for user recognition when subjected to appearance changes, achieving better walking 

direction identification and user recognition results when compared to the state-of-the-art. The proposed 

system follows the two-step approach described above. Walking direction identification is performed by 

computing PHash over the leg region of the GEI. Test and training PHash values are compared using 

hamming distances, making the method computationally inexpensive. User recognition is then performed 

by the system using the novel method of GEI decomposition into sections. Only the GEI sections that are 

unaltered by appearance changes are selected for the matching step. Unaltered sections are identified by 

analyzing the difference between the average of all training GEIs available and the test GEI. Sections are 

separately matched against the user database corresponding to the identified walking direction. User 
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recognition relies on a majority voting decision, among the selected GEI sections. Since the appearance 

changes caused by a coat or a bag do not alter the entire GEI, its decomposition allows a good match 

between the unaltered GEI sections, making the proposed method perform better against appearance 

changes when compared to available state-of-the-art methods.  

The major contributions of this paper can be summarized as follows: 

 Walking Direction Identification – The paper improves on the work presented in [29], 

obtaining better walking direction identification results, achieved by better adapting the 

PHash method for walking direction identification. 

 User Recognition – A novel recognition method is proposed that decomposes the test GEI 

into sections. Analysing the difference between the test and the training GEIs average allows 

selecting those sections unaltered by appearance changes. The method obtains better user 

recognition results when compared to the state-of-the-art. It is also robust to walking 

direction misclassifications among neighbouring walking directions. 

The rest of the paper is organized as follows. Section 2 presents the proposed system, with the 

corresponding experimental results being reported in section 3. Section 4 provides conclusions and 

directions for future work. 

 

2. The Proposed System 

The proposed system architecture is presented in Fig. 1, consisting of two phases: training and 

testing. In the training phase, the user GEI and walking direction features considered of interest are 

recorded in the database. The walking direction database holds the PHash values computed over training 

GEI’s leg region associated with the considered walking directions. For the recognition step, the GEIs 

corresponding to each walking direction are grouped together. They are further decomposed into 

horizontal sections of equal size, followed by the application of principal component analysis (PCA) and 

LDA for dimensionality reduction and data decorrelation. The obtained features are recorded such that 

each walking direction has a separate user database. Thus, the performance of the proposed system 

depends on the range of walking directions available for training. However, since the proposed user 

recognition method is robust to slight changes in the detected walking direction, the considered directions 

need not be extremely granular. 

Once training is completed, the system performance can be evaluated with a disjoint set of test 

sequences. Walking direction identification is performed using k-nearest neighbour (KNN) with Hamming 

distance as the distance measure between the test and training PHash values. For user recognition, the test 
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GEI is decomposed into sections, following the procedure described for the training step. Sections 

unaltered by appearance changes are selected by analyzing the difference between test and the training 

GEIs’ average and a matching score is obtained for each of them. Finally, the system adopts a majority 

voting decision for user recognition. 

 

 

Fig. 1. The proposed gait recognition system 
 

2.1. Walking Direction Identification 
 

The proposed method, instead of training with each user’s leg region, as done in [19], [20] and [26], 

trains with the general shape of the leg region, computed from all users for each considered walking 

direction. The general shape of the leg region is obtained by computing a PHash over approximately the 

bottom third part of the GEI. Unlike with cryptographic hash methods, perceptual hash outputs can be 

compared to obtain a distance measure. The first step in [29] suggests resizing the leg region to a square 

block of 32×32 pixels, for reducing the computational complexity. However, the size of the leg region 

obtained is not significantly large in the already size-normalized GEIs. Resizing also affects the overall 

shape of the leg region causing misclassification among neighbouring walking directions. Thus, in this 

paper, it is proposed to skip the resizing step. Next, the discrete cosine transform (DCT) is computed over 
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the leg region of the GEI. The lower frequency DCT coefficients represent the most relevant shape 

information, allowing to discard higher frequency components to obtain a more compact descriptor –

details on coefficient selection are given in section 3.1. The unidimensional PHash directional descriptor 

results from concatenating the selected coefficients using a raster scan order. Then PHash can be 

converted to a binary vector, according to (1): 

 𝑃𝐻𝑎𝑠ℎ(𝐼𝑐) = {
0 𝑖𝑓 𝐷𝐶𝑇(𝐼𝑐) ≤ 𝐷𝐶𝑇̅̅ ̅̅ ̅̅

1 𝑖𝑓 𝐷𝐶𝑇(𝐼𝑐) > 𝐷𝐶𝑇̅̅ ̅̅ ̅̅  (1) 

where 𝑃𝐻𝑎𝑠ℎ(𝐼𝑐)  and 𝐷𝐶𝑇(𝐼𝑐)  are, respectively, the PHash bit values and the DCT coefficient at 

position 𝐼𝑐 within the selected lower frequency DCT coefficients. 𝐷𝐶𝑇̅̅ ̅̅ ̅̅ =
1

𝑁
∑ 𝐷𝐶𝑇(𝐼𝑐)𝑁

𝑐=1  is the mean of 

these DCT coefficients. 

The steps for PHash computation are illustrated in Fig. 2. The obtained PHash values tends to be 

similar as long as the overall shape of the GEI’s leg region remains similar, making it ideal for walking 

direction identification. As described above, the PHash obtained from the training GEIs are stored in the 

corresponding walking direction database and are compared to each test sequence PHash values, using k-

NN with Hamming distance as the distance measure, to identify the walking direction. 

 

 

     a       b          c           d 

Fig. 2. Output of the PHash computation steps 

a GEI and selected leg region 

b GEI leg region 
c DCT coefficients 

d matrix representing the selected PHash bits. 
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2.2. User Recognition 

 

Once the walking direction is identified, user recognition can be performed by matching the test GEI 

against the database containing the training GEIs corresponding to the identified walking direction. 

Matching GEIs obtained from different walking directions would not be feasible due to the change in 

features caused by the change in the walking direction. 

The proposed method decomposes the GEI into N horizontal sections of equal size. The rationale 

behind splitting the GEI is that a bag or a coat does not alter the appearance of the entire GEI but only a 

small section of it. This small section of the GEI is usually responsible for the poor recognition results, as 

sections altered by appearance changes are seldomly matched to the correct user. By decomposing the GEI 

into sections, the effect of change in appearance is limited to only a few of the sections, allowing the rest 

of the sections to be successfully matched to the correct user registered in the database.  

Next, the rows of each GEI section are concatenated (from top to bottom) to form a unidimensional 

vector. The vectors for each section, from all users registered in the database, are stacked to create a matrix. 

Its dimensionality is reduced by applying PCA, selecting the principal components with highest variance 

and obtaining its projection onto the selected components. 

For each section, LDA is employed for data decorrelation, by identifying a projection matrix onto a 

subspace that maximizes the ratio of intra- to inter-class scatter, using the Fisher’s criterion. Given 𝑛 

classes, the intra-class scatter matrix Σ𝑤  is given by (2) and the inter-class scatter matrix Σ𝑏 is given by (3). 

 Σ𝑤 = ∑ ∑(𝑥 − �̅�𝑖)(𝑥 − �̅�𝑖)
′

𝑥∈𝑐𝑖

𝑛

𝑖=1

 (2) 

 

 Σ𝑏 = ∑ 𝑚𝑖(�̅�𝑖 − �̅�)(�̅�𝑖 −  �̅�)′

𝑛

𝑖=1

 (3) 

where �̅�𝑖 is the mean of the class 𝑐𝑖,  𝑚𝑖 is the number of training samples for each class 𝑐𝑖 and �̅� is total 

mean (considering all classes). The transition matrix 𝜙  that maximizes the ratio of the between-class 

scatter matrix to the within class scatter matrix is given by (4). 

 𝐽(𝜙) =
|𝜙𝑇Σ𝑏𝜙|

|𝜙𝑇Σ𝑤𝜙|
 (4) 

To perform recognition over a test GEI the system decomposes it into N horizontal sections of equal 

size and selects the sections that are unaltered under appearance changes. To do so, one possibility is to 

create a binary mask that selects similar parts between a test and a training GEnI [26]. However, individual 

user’s appearance can affect its performance. To overcome that problem, the proposed method computes 
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an average GEI over all training sequences corresponding to each walking direction. The average image 

represents the general shape of the unaltered database users with respect to a walking direction. The 

unaltered sections in a test GEI can then be selected by applying a threshold T to the difference between 

the average image and the test GEI, with the differences in the altered sections being significantly larger 

than what is observed for unaltered sections. The threshold T is empirically set to 150. The selected 

sections can then be projected onto the selected principal components. 

Given a test GEI section 𝑧, its classification into one of the existing classes (i.e., users registered in 

the database) is performed in the transformed space, based on Euclidean distance 𝑑(, ), according to (5). 

 arg  min
𝑘

𝑑(𝑧𝜙, 𝑥𝑘̅̅ ̅𝜙)  (5) 

where 𝑥𝑘̅̅ ̅ is the centroid of the k-th class. 

Next, user recognition is performed by a majority voting decision among the selected sections. Each 

section votes for the user class that it is classified into, and the test GEI is classified into the user class 

receiving most votes. For the example illustrated in Fig. 3, the leg sections of the GEI, which are unaltered 

by the coat, are correctly classified into their user class (in this case, 1), while the sections that are altered 

by the coat are assigned to apparently random classes. In this example, the correct user is identified with 

the majority of the votes. 
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  a     b     c 

 

 

  d     e     f 

Fig. 3. Example of proposed user recognition method 

a Average image created using database GEIs for a given walking direction 
b GEI of a “normal” walking sequence 

c GEI of a walking sequence altered by the user wearing a coat 

d Binary mask representing the thresholded difference between a and c 

e GEI sections of the walking sequence in c 

f GEI sections selected for recognition. 

 

3. Experimental Results  

The proposed system is tested using the dataset B of CASIA gait database, collected by the Institute 

of Automation of the Chinese Academy of Sciences [30] and the Large Population Dataset of the OU-ISIR 

Gait Database [31]. The dataset B of CASIA gait database contains gait silhouette sequences of 124 users, 

captured for 11 different walking directions, with angles of acquisition ranging from 0º to 180º, with a step 

of 18º between adjacent views. For each angle, there are 10 sequences per user, out of which six 

correspond to normal walking, in two of them the user wears a coat, and in other two the user carries a bag. 
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The Large Population Dataset of the OU-ISIR Gait Database consists of 4016 users. It contains four 

walking directions for each user (55o, 65o, 75o and 85o). It should be noted that all four walking directions 

are derived from the same video sequence, such that for each of them there is one gait cycle available, and 

the walking direction changes along the gait cycle. Moreover, the provided GEIs have undergone a 

perspective correction. Each walking direction has one sequence for training and one for testing. 

 

3.1. Walking Direction Identification Results –  CASIA Gait Database 

 

Before performing walking direction identification, some initial tests are conducted to adjust PHash 

parameters: (i) select the percentage of the GEI to be used as the leg region; (ii) the number of DCT 

coefficients to use; and (iii) the value of parameter k to be set for k-NN. The tests are conducted by 

varying these parameters over a range of values. The best walking direction identification results are 

obtained using the bottom 33% of the GEI to represent the leg region, the 22×22 lower frequency DCT 

coefficients to generate the PHash and the value of k is set to 6. These are the default values for the 

conducted experiments. 

To evaluate the performance of the proposed PHash method it is compared, in Table 1, to the state-

of-the-art methods reported in [19], [20], [22] and [26], as they are applicable in the cases where the users 

are wearing a coat or carrying a bag. The entropy method [19] is evaluated similarly to the proposed 

PHash method, using the first four normal sequences for training and the remaining two normal, two coat 

and two bag sequences for testing. The improved entropy method [20] considers three normal sequences 

for training, while the remaining sequences are used for testing. The method in [22] uses all the sequences 

for testing. The GP method [26] is computed for a subset of seven walking directions (36º to 144º), with 

the training consisting of 4 normal sequences for 60% of the total users available, the remaining 40% 

being considered for testing, and thus not reported in Table 1. Adopting the setup of the GP method setup, 

the proposed PHash method obtains a mean walking direction identification score of 95% for normal 

sequences, 94% for coat sequences and 93% for bag sequences.  

Table 1 displays the obtained walking direction identification results where each row represents the 

walking direction. Each method has three columns associated to it where the first corresponds to normal 

sequences while second and third corresponds to sequences altered by coats and bags, respectively. From 

the mean results it can be concluded that the proposed PHash method performs better than the state-of-the-

art methods, with an average correct walking direction identification rate of 97%. The significant 

improvement in the performance can be attributed to the use of the PHash. It extracts the shape 
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information of the leg region making it robust to alterations caused by bags and coats, a factor that 

hampers the performance of most state-of-the-art methods. Although the Contour Method [22] performs 

equally well it involves the construction of a new gait feature called GTI, which needs additional 

information from the environment thus restricting its use when, as observed for the Osaka database, only 

cropped silhouettes and not the entire image are available. A second advantage is that most 

misclassifications usually occur into neighbouring walking directions as shown in Table 2, and 

misclassifications between neighbouring walking directions do not significantly affect the recognition 

performance of the system, as discussed in section 3.3.  

 

Table 1 Correct walking direction identification rate (%)  
N- normal walking; C – wearing a coat; B – carrying a bag 

 
View 

(o) 

GP Method [26]  Entropy Method [19] Improved Entropy 

Method [20] 

Contour Method [22] Proposed PHash 

Method 

 

 N C B N C B N C B N C B N C B 

 

0 n/a n/a n/a 83 80  79 89 79 89 98 96 98 99 98 97 

18 n/a n/a n/a 94 87 85 98 84 92 99 99 99 99 97 96 

36 84 83 84 88 85 80 89 79 85 98 98 98 97 96 92 

54 91 88 91 92 90 89 98 95 95 99 99 98 98 98 93 

72 85 84 85 81 80 78 90 89 88 98 99 98 99 97 98 

90 74 68 74 89 79 72 86 69 73 97 97 97 94 92 90 

108 86 83 86 79 75 70 85 64 69 95 94 95 98 98 96 

126 91 92 91 90 88 85 93 83 89 98 99 99 99 98 98 

144 93 93 93 83 81 79 85 73 82 96 96 96 96 95 93 

162 n/a n/a n/a 89 86 84 88 88 85 97 96 99 97 94 93 

180 n/a n/a n/a 82 80 75 88 86 76 99 97 99 99 99 98 

 

Mean 86 84 86 86 82 78 89 80 83 97 97 97 98 97 95 
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Table 2 Confusion matrix of the proposed method for the results in Table 1 (number of sequences) 

 
Classified 

View(o) 

Ground Truth (o) 

0 18 36 54 72 90 108 126 144 162 180 

 

0 98 1 0 0 0 0 0 0 0 0 1 

18 2 97 0 0 0 0 0 0 0 0 1 

36 1 3 95 1 0 0 0 0 0 0 0 

54 1 1 1 96 1 0 0 0 0 0 0 

72 0 1 0 0 98 1 0 0 0 0 0 

90 0 0 0 0 5 92 3 0 0 0 0 

108 0 0 0 0 1 2 97 0 0 0 0 

126 1 0 0 0 0 0 1 98 0 0 0 

144 0 0 0 0 0 0 0 2 95 2 1 

162 0 0 0 0 0 0 0 0 2 95 3 

180 0 0 0 0 0 0 0 0 0 1 99 

 

A third advantage of the proposed PHash method lies in its low computational complexity. The 

method is compared to a reimplementation of the entropy method proposed in [20], using a computer with 

an Intel(R) Core(TM) I7 @ 3.60GHz CPU, with 32GB of RAM, in both cases running the same 

MATLAB R2014b code, just replacing the feature selection and distance computation (either PHash or the 

entropy method). The proposed PHash method performs the computations, for a user in Table 1, with an 

average time of 0.02s, compared to 0.3 s required by the entropy method. The PHash is extremely simple 

and easy to compute, making it significantly faster than the entropy method. 

 

3.2. User Recognition Results – CASIA Gait Database 

 

To show the effectiveness of the proposed GEI decomposition method, it is compared to the state-of-

the-art methods that are robust to appearance changes for lateral walking (90o) sequences. The method 

uses the first four normal sequences for training and the remaining two normal, two bag and two coat 

sequences for testing. Results are reported in Table 3. A preliminary test has been conducted to identify 

the number of ideal sections N the GEI can be decomposed into. The number of sections was varied from 

5 to 20. It can be observed in Fig. 4 that optimal number of sections is 13 for coat sequences and 11 for 

bag sequences, while the performance for normal sequences is indifferent to the number of sections. The 
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default value for the number of sections is set to 11, since it provides the best mean performance across all 

lateral walking sequences. 

 

 

Fig. 4. Performance of the proposed decomposition method with respect to the number of sections N 

 

Table 3 Correct user recognition rate in (%) for lateral walking direction 

 
 Normal Coat Bag Mean 

 

P. Rw. GEI Method [23] n/a n/a n/a 93 

Pal Entropy Method [25] 93 22 56 57 

CCA Method [26] 100 55 79 78 

Weighting Method [27] 97 78 91 88 

Multiscale Method [19] 100 76 89 88 

Proposed GEI Decomposition 

Method 

100 96 87 94 

 

The results in Table 3 show that the mean performance of the proposed GEI decomposition method 

is better than the state-of-the-art methods for lateral walking gait recognition. Most of the methods are 

very effective for normal waking sequences with a correct classification rate of almost 100%. The 
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challenge, however, arises in face of appearance changes. It is observed that the performance of the 

proposed method is far better than the state-of-the-art methods when the subjects wear coats, while its 

performance when carrying bags is among the best listed. The decomposition of the GEI into N sections 

allows isolation of the sections altered by appearance changes, thus improving performance. Even without 

the selection of unaltered sections, the proposed method obtains competitive performance, with a correct 

recognition rate of 94% and 86% for coats and bags, respectively.  

 

3.3. Proposed System Results – CASIA Gait Database 

 

The next set of results reflects the integration of the proposed PHash and GEI decomposition 

methods. To show the effectiveness of the proposed system, the entire CASIA B database is used. The first 

four normal sequences of each user are used for training, while the remaining two normal, two bag and 

two coat sequences are used for testing. The test GEIs are initially sorted with respect to their walking 

direction using the proposed PHash method, which is then followed by the proposed GEI decomposition 

method for user recognition.  

Correct user recognition rate results are shown in Table 4. As expected, very good results are 

obtained for normal walking sequences. It is worth noting that a correct walking direction identification 

rate of 97%, as reported in Table 1, in the case of normal sequences leads to a correct user recognition rate 

of 99% – see Table 4. Thus, it can be concluded that even in some cases where the walking direction is 

incorrectly identified, the proposed GEI decomposition method performs correct user recognition, being 

robust to small walking direction misclassifications. The GEI decomposition method performs best for 

near lateral walking directions with a correct recognition rate of 95% for 90o in the case of coat sequences, 

as the appearance change is easy to detect for near lateral walking directions, as shown in Fig. 5 c, d. The 

appearance change caused by bags is easy to detect and is more localized for all walking directions as 

shown in Fig. 5 e, f. To show the effectiveness of the proposed GEI decomposition method in user 

recognition and robustness to walking direction misclassification, a second set of result is obtained where 

the walking direction is ideally sorted before user recognition. It can be seen from Table 4 that in this ideal 

case the proposed method’s performance is almost equivalent to when walking direction is identified using 

PHash method. Thus, it can be concluded that the proposed method is robust to walking direction 

misclassification. 
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 a       b           c                d         e   f 

Fig. 5. Lateral and frontal examples of GEIs for normal (a, b), coat (c, d) and bag (e, f) sequences. 

 

Table 4 Correct user recognition rate (%) 

 

Proposed Method 

View(o) 

PHash for walking direction identification Ideal Case 

Normal Coat Bag Normal Coat Bag 

 

0 98 78 85 100 83 89 

18 98 82 82 99 84 87 

36 100 84 87 99 86 86 

54 99 88 90 99 88 88 

72 99 91 84 100 92 86 

90 100 95 86 100 94 87 

108 99 88 86 100 90 88 

126 100 86 90 100 87 91 

144 99 89 87 99 90 88 

162 98 82 86 100 82 86 

180 99 81 78 100 88 81 

 

Mean 99 86 86 100 88 87 

 

The proposed system is compared to the state-of-the-art in Table 5. It displays its robustness to 

appearance changes, especially in the case of coat sequences, where it outperforms its competitors. It 

should be noted that the proposed system is indifferent to the type of appearance change, while the 

multiscale method presented in [19] uses the information about the type of appearance change to adapt to 

the various situations. That method chooses the scales for its multiscale Gaussian method by considering 

the three cases of normal, bag and coat separately, thus making its application more constrained.  
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Table 5 Comparison of mean correct user recognition rate (%) 

 
 Normal Coat Bag Mean 

 

Multiscale Method [19] 99 69 87 85 

RSL Method [20] 99 38 77 71 

Proposed Method 99 86 86 90 

 

 

3.4. Walking Direction Identification Results – OU-ISIR Gait Database 

 

To test the performance of the proposed walking direction identification method over the OU-ISIR 

Gait Database the protocol presented in [16] is followed. According to the protocol, a subset of 1912 users 

is selected. The subset is then divided into two disjoint groups of 956 users each. The first group is used to 

train and the second group is used to test the proposed walking direction identification method. The final 

result is obtained by repeating the test for ten different subsets.  

To perform these tests the 22×22 lower frequency DCT coefficients are used to generate the PHash 

and the value of k is set to six for k-NN, as discussed in section 3.1. Since the silhouettes of the OU-ISIR 

Gait Database are normalized to compensate for the walking direction change, the shape information in the 

leg region of the GEI is distorted and thus the bottom third of the GEI (leg region) produces poor results. 

Therefore, for this database the shape of the entire GEI is considered for computing the PHash, allowing to 

achieve a correct walking direction identification rate of 80%. The confusion matrix for these results is 

included in Table 6, which shows that most misclassification errors occur with the neighbouring walking 

directions. The appearance of the GEIs for 75o and 85o are visually very similar, which leads to poor 

results in distinguishing them, while the GEIs for 55o appear as much more distinct. The proposed method 

exploits this visual difference using PHash.  
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Table 6 Confusion matrix of the proposed waking direction identification method for OU-ISIR Gait Database 

 
Classified 

View(o) 

Ground Truth (o) 

55 65 75 85 

 

55 93 7 0 0 

65 6 83 11 0 

75 0 11 71 18 

85 0 1 26 73 

 

3.5. User Recognition Results – OU-ISIR Gait Database 

 

Since the proposed recognition method uses LDA and the OU-ISIR Gait Database provides only one 

training sequence for each user, user recognition cannot be performed following the protocol presented in 

[16]. To overcome this limitation, the GEIs of the four available walking directions in the training set are 

used as if they all corresponded to the same walking direction, to allow performing the tests with the 

methodology presented in Section 3.2. Moreover, since the size of the GEIs is small, the number of 

sections, N, is limited to 6, to prevent sections from being extremely small which would hamper 

performance. In these conditions, the proposed system achieved a recognition rate around 97%, which is a 

significant improvement from the 94% reported in [31].   

A second test is conducted where the training only considers directions different from the one that is 

being tested. This is repeated for all four walking directions. The result is an average correct user 

recognition rate of 94%, which shows the robustness of the proposed method to walking direction 

misclassification. Since the OU-ISIR Gait Database is not often used in the literature for testing walking 

direction identification or appearance changes, the results could not be compared to the state-of-the-art.  

 

4. Conclusion 

This paper proposes a new gait recognition system that tackles change in walking direction and 

change in appearance by addressing them in two steps, handling a single problem at a time. 

Step 1 performs walking direction identification by computing a PHash over the leg region of the 

GEI. The obtained PHash is matched against the database using k-NN with Hamming distance to identify 

the walking direction. As for Step 2, it performs user recognition by decomposing the GEI into sections 

and selecting the sections unaltered by appearance changes. Each section is then individually matched 



19 

 

against the corresponding sections registered in the user database, using LDA. The final classification is 

performed using a majority voting decision. The decomposition of the GEI into sections limits the 

influence of appearance changes to a few sections, while analyzing the difference between a test GEI and 

the average of all available training GEIs helps identify and discard the altered sections, making the 

system robust against such changes. This allows the proposed system to outperform the state-of-the-art. 

The proposed system uses the GEI representation of gait together with simple classification methods, 

such as LDA. Therefore, future work will consider exploring more complex classification tools to improve 

user recognition. Furthermore, the work will also include improving the walking direction identification 

method to tackle changes within a gait cycle by further exploring features that are unaltered by appearance 

change and thus better reflect the user’s walking direction. 
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