49 research outputs found

    Conservation laws for a generalized seventh order KdV equation

    Get PDF
    In this paper, by applying the multiplier method we obtain a complete classification of low-order local conservation laws for a generalized seventh-order KdV equation depending on seven arbitrary nonzero parameters. We apply the Lie method in order to classify all point symmetries admitted by the equation in terms of the arbitrary parameters. We find that there are no special cases of the parameters for which the equation admits extra symmetries, other than those that can be found by inspection (scaling symmetry and space and time translation symmetries). We consider the reduced ordinary differential equations and we determined all integrating factors of the reduced equation from the combined x- and t- translation symmetries. Finally, we observe that all integrating factors arise by reduction of the low-order multipliers of the generalized seventh-order KdV equation.7 página

    Symmetries in Connection Preserving Deformations

    Full text link
    We wish to show that the root lattice of B\"acklund transformations of the qq-analogue of the third and fourth Painlev\'e equations, which is of type (A2+A1)(1)(A_2+ A_1)^{(1)}, may be expressed as a quotient of the lattice of connection preserving deformations. Furthermore, we will show various directions in the lattice of connection preserving deformations present equivalent evolution equations under suitable transformations. These transformations correspond to the Dynkin diagram automorphisms

    Discrete Lax pairs, reductions and hierarchies

    Get PDF
    The term `Lax pair' refers to linear systems (of various types) that are related to nonlinear equations through a compatibility condition. If a nonlinear equation possesses a Lax pair, then the Lax pair may be used to gather information about the behaviour of the solutions to the nonlinear equation. Conserved quantities, asymptotics and even explicit solutions to the nonlinear equation, amongst other information, can be calculated using a Lax pair. Importantly, the existence of a Lax pair is a signature of integrability of the associated nonlinear equation. While Lax pairs were originally devised in the context of continuous equations, Lax pairs for discrete integrable systems have risen to prominence over the last three decades or so and this thesis focuses entirely on discrete equations. Famous continuous systems such as the Korteweg de Vries equation and the Painleve equations all have integrable discrete analogues, which retrieve the original systems in the continuous limit. Links between the different types of integrable systems are well known, such as reductions from partial difference equations to ordinary difference equations. Infinite hierarchies of integrable equations can be constructed where each equation is related to adjacent members of the hierarchy and the order of the equations can be increased arbitrarily. After a literature review, the original material in this thesis is instigated by a completeness study that finds all possible Lax pairs of a certain type, including one for the lattice modified Korteweg de Vries equation. The lattice modified Korteweg de Vries equation is subsequently reduced to several q-discrete Painleve equations, and the reductions are used to form Lax pairs for those equations. The series of reductions suggests the presence of a hierarchy of equations, where each equation is obtained by applying a recursion relation to an earlier member of the hierarchy, this is confirmed using expansions within the Lax pairs for the q-Painleve equations. Lastly, some explorations are included into fake Lax pairs, as well as sets of equivalent nonlinear equations with similar Lax pairs

    On the (Non)-Integrability of KdV Hierarchy with Self-consistent Sources

    Get PDF
    Non-holonomic deformations of integrable equations of the KdV hierarchy are studied by using the expansions over the so-called "squared solutions" (squared eigenfunctions). Such deformations are equivalent to perturbed models with external (self-consistent) sources. In this regard, the KdV6 equation is viewed as a special perturbation of KdV equation. Applying expansions over the symplectic basis of squared eigenfunctions, the integrability properties of the KdV hierarchy with generic self-consistent sources are analyzed. This allows one to formulate a set of conditions on the perturbation terms that preserve the integrability. The perturbation corrections to the scattering data and to the corresponding action-angle variables are studied. The analysis shows that although many nontrivial solutions of KdV equations with generic self-consistent sources can be obtained by the Inverse Scattering Transform (IST), there are solutions that, in principle, can not be obtained via IST. Examples are considered showing the complete integrability of KdV6 with perturbations that preserve the eigenvalues time-independent. In another type of examples the soliton solutions of the perturbed equations are presented where the perturbed eigenvalue depends explicitly on time. Such equations, however in general, are not completely integrable.Comment: 16 pages, no figures, LaTe

    Symbolic computation of solitary wave solutions and solitons through homogenization of degree

    Full text link
    A simplified version of Hirota's method for the computation of solitary waves and solitons of nonlinear PDEs is presented. A change of dependent variable transforms the PDE into an equation that is homogeneous of degree. Solitons are then computed using a perturbation-like scheme involving linear and nonlinear operators in a finite number of steps. The method is applied to a class of fifth-order KdV equations due to Lax, Sawada-Kotera, and Kaup-Kupershmidt. The method works for non-quadratic homogeneous equations for which the bilinear form might not be known. Furthermore, homogenization of degree allows one to compute solitary wave solutions of nonlinear PDEs that do not have solitons. Examples include the Fisher and FitzHugh-Nagumo equations, and a combined KdV-Burgers equation. When applied to a wave equation with a cubic source term, one gets a bi-soliton solution describing the coalescence of two wavefronts. The method is largely algorithmic and is implemented in Mathematica.Comment: Proceedings Conference on Nonlinear and Modern Mathematical Physics (NMMP-2022) Springer Proceedings in Mathematics and Statistics, 60pp, Springer-Verlag, New York, 202
    corecore