971 research outputs found

    Discourse-Aware Graph Networks for Textual Logical Reasoning

    Full text link
    Textual logical reasoning, especially question-answering (QA) tasks with logical reasoning, requires awareness of particular logical structures. The passage-level logical relations represent entailment or contradiction between propositional units (e.g., a concluding sentence). However, such structures are unexplored as current QA systems focus on entity-based relations. In this work, we propose logic structural-constraint modeling to solve the logical reasoning QA and introduce discourse-aware graph networks (DAGNs). The networks first construct logic graphs leveraging in-line discourse connectives and generic logic theories, then learn logic representations by end-to-end evolving the logic relations with an edge-reasoning mechanism and updating the graph features. This pipeline is applied to a general encoder, whose fundamental features are joined with the high-level logic features for answer prediction. Experiments on three textual logical reasoning datasets demonstrate the reasonability of the logical structures built in DAGNs and the effectiveness of the learned logic features. Moreover, zero-shot transfer results show the features' generality to unseen logical texts

    AnaLog: Testing Analytical and Deductive Logic Learnability in Language Models

    Get PDF
    Acknowledgements We would like to thank the anonymous ARR and *SEM 2022 reviewers for their feedback and suggestions, as well as Ece Takmaz for her comments. Samuel Ryb and Arabella Sinclair worked on this project while affiliated with the University of Amsterdam. The project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 819455). 1The dataset is available at https://github.com/dmg-illc/analogPublisher PD

    Discourse Structure in Machine Translation Evaluation

    Full text link
    In this article, we explore the potential of using sentence-level discourse structure for machine translation evaluation. We first design discourse-aware similarity measures, which use all-subtree kernels to compare discourse parse trees in accordance with the Rhetorical Structure Theory (RST). Then, we show that a simple linear combination with these measures can help improve various existing machine translation evaluation metrics regarding correlation with human judgments both at the segment- and at the system-level. This suggests that discourse information is complementary to the information used by many of the existing evaluation metrics, and thus it could be taken into account when developing richer evaluation metrics, such as the WMT-14 winning combined metric DiscoTKparty. We also provide a detailed analysis of the relevance of various discourse elements and relations from the RST parse trees for machine translation evaluation. In particular we show that: (i) all aspects of the RST tree are relevant, (ii) nuclearity is more useful than relation type, and (iii) the similarity of the translation RST tree to the reference tree is positively correlated with translation quality.Comment: machine translation, machine translation evaluation, discourse analysis. Computational Linguistics, 201

    Brain electrical traits of logical validity

    Get PDF
    p. 1-13Neuroscience has studied deductive reasoning over the last 20 years under the assumption that deductive inferences are not only de jure but also de facto distinct from other forms of inference. The objective of this research is to verify if logically valid deductions leave any cerebral electrical trait that is distinct from the trait left by non-valid deductions. 23 subjects with an average age of 20.35 years were registered with MEG and placed into a two conditions paradigm (100 trials for each condition) which each presented the exact same relational complexity (same variables and content) but had distinct logical complexity. Both conditions show the same electromagnetic components (P3, N4) in the early temporal window (250–525 ms) and P6 in the late temporal window (500–775 ms). The significant activity in both valid and invalid conditions is found in sensors from medial prefrontal regions, probably corresponding to the ACC or to the medial prefrontal cortex. The amplitude and intensity of valid deductions is significantly lower in both temporal windows (p = 0.0003). The reaction time was 54.37% slower in the valid condition. Validity leaves a minimal but measurable hypoactive electrical trait in brain processing. The minor electrical demand is attributable to the recursive and automatable character of valid deductions, suggesting a physical indicator of computational deductive properties. It is hypothesized that all valid deductions are recursive and hypoactive.S

    Space-Related Applications of Intelligent Control: Which Algorithm to Choose? (Theoretical Analysis of the Problem)

    Get PDF
    For a space mission to be successful it is vitally important to have a good control strategy. For example, with the Space Shuttle it is necessary to guarantee the success and smoothness of docking, the smoothness and fuel efficiency of trajectory control, etc. For an automated planetary mission it is important to control the spacecraft's trajectory, and after that, to control the planetary rover so that it would be operable for the longest possible period of time. In many complicated control situations, traditional methods of control theory are difficult or even impossible to apply. In general, in uncertain situations, where no routine methods are directly applicable, we must rely on the creativity and skill of the human operators. In order to simulate these experts, an intelligent control methodology must be developed. The research objectives of this project were: to analyze existing control techniques; to find out which of these techniques is the best with respect to the basic optimality criteria (stability, smoothness, robustness); and, if for some problems, none of the existing techniques is satisfactory, to design new, better intelligent control techniques
    corecore