
NASA-CR-202660

// , ,,J

, , 7'

"p >/ /

o ,)< g

Space-Related Applications of

Intelligent Control:

Which Algorithm to Choose?

(Theoretical Analysis of the Problem)

Final Report on Research Project

Funded by NASA Grant 9-757

Vladik Kreinovich

Department of Computer Science

University of Texas at E1 Paso

E1 Paso, TX 79968

email vladik©cs, ut ep. edu

office (915) 747-6951, fax (915) 747-5030

Contents

Formulation of the Problem 2

1.1 Intelligent Control is Necessary for Space Exploration ...... 2
1.2 The choice of intelligent control methodology can drastically

change the quality of the resulting control ............. 4

1.3 For space applications, it is necessary to have theoretical methods
for selecting the best intelligent control methodology ....... 4

1.4 Research objectives .......................... 4

1.5 This report is a brief overview .................... 4

2 Fktzzy control: in brief 5

Preliminary Research: Is the Existing

Intelligent Control Methodology
Reasonable?

Universally Applicable? Optimal?

3.1 Fuzzy control is reasonable .....................
3.2 Fuzzy control is universally applicable ...............

6

6

9

https://ntrs.nasa.gov/search.jsp?R=19970005303 2020-06-16T02:55:12+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42775417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


6

3.3 Fuzzycontrolisoptimal ....................... 10

Main Result. Part I:

The Optimal Choice of the Fuzzy Control Methodology 11
4.1 Criteria for choosing a control .................... ll

4.2 How we solve the corresponding optimization

problems ................................ 12

4.3 Results: the list of optimal methods ................ 13

Main Results. Part II:

A New (Interval) Approach to Fuzzy Control

5.1 Why intervals? Part 1:

15

Intervals naturally appear ...................... 15

5.2 Why intervals? Part lI:
Intervals lead to a better control .................. 18

5.3 How to elicit interval membership functions? ........... 19

5.4 The main problem of interval approach

computational complexity --

and possible solutions of this problem ............... 19
5.5 Additional method of improving fuzzy control ........... 23

Auxiliary Results. Part I:

Technical Diagnostics 23

Auxiliary Results. Part II:

Applications to Space-Related

Data Processing
7.1
7.2

7.3

7.4
7.5

7.6

24

Data Processing is Important .................... 24

Major Areas of Space-Related Data Processing .......... 24
Near-Earth observations ....................... 25

Relativistic Effects and the Structure of Space-Time ....... 26

Fundamental Physical Processes .................. 27
Mission to Planet Earth ....................... 28

1 Formulation of the Problem

1.1 Intelligent Control is Necessary for Space Exploration

Control is necessary for space missions. For a space mission to be suc-

cessful, it is vitally important to have a good control strategy for all possible

situations. For example:

• For a Space Shuttle, it is necessary to guarantee the success and smoothness
of docking, the smoothness and fuel efficiency of trajectory control, etc.



• Foran automated planet mission, e.g., for a rover mission to Mars, it is

important to control the spaceship's trajectory, and after that, to control
the rover so that it would be operable for the longest possible period of
time.

It is often difficult or impossible to apply methods of traditional con-

trol theory. In many complicated control situations, in particular, in many
control situations related to space flights, methods of traditional control theory

are difficult or even impossible to apply. The main reason for that difficulty is
as follows:

• For traditional control, we must know (more or less precisely) the properties

of the controlled system.

However, space missions are usually sent to explore new phenomena, and

must operate under extreme conditions. Therefore, our prior knowledge

about the situation is not complete.

Even when we do know the system precisely, this description may be so compli-

cated that computing the optimal control is computationally intractable [85].

Intelligent control is needed. In general, in uncertain situations, where

no routine methods are directly applicable, we must rely on the creativity and

skill of the human operators. And, indeed, expert controllers are very good in

controlling complicated processes (not only in space missions, but also in the
chemical industry, in metallurgy, in business). These experts usually cannot

explain their control strategy in precise mathematical terms, but they can de-
scribe their strategies in terms of natural language, by phrases like "If a Space

Station is close, and the relative speed is medium, decelerate a little bit". So,

in order to develop an automated controller,

we must somehow transform these informal rules into a precise control

strategy.

The methodology of such transformations is called intelligent control.

Intelligent control is useful also for non-automatic control: For example, for
manned space missions, there are astronauts who are the best in solving the

control problems. We cannot clone the best controllers, but we want to have
an automated device that would simulate the best experts, and thus help other
astronauts to control the mission.

Intelligent control is possible. There exist several dozens of different meth-
ods for intelligent control. This activity started in the 1970's by L. Zadeh and

Mamdani, and has now many important applications, ranging from the Japanese

automated subway system to various appliances.



1.2 The choice of intelligent control methodology can

drastically change the quality of the resulting control

The experience in applying intelligent control shows that sometimes a transfor-
mation method leads to unstable or non-smooth control. In such situations, a

different transformation of rules into control would be more appropriate.

Usually the choice of an appropriate technique is made on a trial-and-error
basis.

1.3 For space applications, it is necessary to have theoret-

ical methods for selecting the best intelligent control

methodology

Experiments performed at Johnson Space Center on the Shuttle and rover sim-

ulators, showed that these methods really lead to high quality control of space

missions and planet rovers.
However, most of the existing methods are semi-heuristic, in the sense that

they rely partly on trial-and-error. This may be acceptable for an appliance,
but it is definitely unacceptable to choose a technique on a trial-and-error basis

for a billion-dollar project. So, we need guaranteed (theoretical) methods to

choose an appropriate technique.
The development of such theoretical choice methods was the main research

objective of this project:

1.4 Research objectives

The eventual goal of the research started by this project is to develop methods

for choosing the appropriate intelligent control technique either from one of

the already existing formalisms or by developing a new one. This goal is a very

general and a very complicated one. In this research project, the main objectives
were:

• to analyze the existing intelligent control techniques, and

• to find out which of these techniques is the best with respect to the basic

optimality criteria: stability, smoothness, robustness, etc.;

• if for some problems, none of the existing techniques is of satisfactory

quality, to design new, better intelligent control techniques.

1.5 This report is a brief overview

The results of this research are described in detail in the papers [1]-[91] and

in the student theses and projects supported by this project [T1]-[T6]. In this

report, we give a brief overview of these results.



Beforeweformulatetheseresults,wewill brieflyremindthereaderof the
mainfeaturesofthemostwidelyusedexistingintelligentcontrolmethodology:
fuzzycontrol.

2 Fuzzy control: in brief

Rules. Fuzzy control methodology starts with expert "if-then" rules, i.e., with

rules of the following type:

If xl is A_ and x2 is A j and ... and xn is A j, then u is B j,

where xi are parameters that characterize the plant, u is the control, and A_,

B j are the natural language terms that are used to describe the jta rule (e.g.,

"small", "medium", et¢).

Mamdani's transformation. The value u is a proper value for the control

if and only if one of these rules is applicable.
Thus, the property "u is a proper control" (which we will denote by C(u)),

can be, therefore, described as follows:

C(u) =_ (A{(x,)&Al(xj& ... &A_(x.)&B'(u))V

(A_(x, ) & A_(xJ & ... & A_ (x,,) & B2(u) )Y

(Af (Xl) _ Ag(x2) & ... & A_(xn)& BK(u))

Membership function. The natural language terms are described by mem-

bership functions, i.e., we describe A_(x) as p_(x), the degree of belief that a

given value x satisfies the property A_; similarly, B j (u) is represented as/Ji(u).

"And" and "or" operations. The logical connectives & and V are inter-

preted, in this context, as operations fs_ and fv on degrees of belief. The most

frequent choices of these operations are min(a,b) and a-b for f_(a,b), and

max(a,b) and a + b- a. b for fv(a,b).
After these interpretations, we can form the membership function for control:

#c(u) : ...,pu),

where

pj = fa(pj.l(xl),pj,2(x2), ...,#L,_(xn),l_i(u))), j = 1, ...,K.



Defuzzification. Thesystemmustsupplyacontrol,sowemustendupwith
asinglevalueu of the control that will actually be applied. An operation that
transforms a membership function into a single value is called a defuzzification.

To complete the fuzzy control methodology, therefore, we must apply some

defuzzification operator F to the membership function pc(u) and thus obtain
the desired value fi = fc(x) of the control that corresponds to _ = (xl, ..., xn).

The most widely used defuzzification procedure is centroid defuzzification

_ f_,.#c(u)au
f #c(u) du

3 Preliminary Research: Is the Existing

Intelligent Control Methodology

Reasonable?

Universally Applicable? Optimal?

Before we start fine-tuning the existing intelligent control techniques, we must

first make sure that this methodology is indeed good, i.e.,

• that this methodology is reasonable, i.e., consistent both with common

sense and with other successful formalisms proposed to represent human

reasoning;

• that this methodology is universally applicable, i.e., in principle, it can be

used for an arbitrary control situation; and finally,

• that this methodology is indeed optimal in some reasonable sense, i.e., it

can, potentially, lead to the best possible control.

In our preliminary research, we have shown that this is indeed the case.

3.1 Fuzzy control is reasonable

Let us first show that fuzzy logic is indeed consistent with other formalisms pro-

posed to describe commonsense reasoning. All these formalisms can be viewed

as modifications of classical (2-valued) logic, the logic that describes the ideal
reasoning. Both in classical logic and in its commonsense modifications, we

start with elementary (atomic) statements and combine them by using logical

connectives (such as "and", "or", "not") and quantifiers (such as "for all" and

"there exists") into more complicated logical statements.
The classical 2-valued logic can be characterized by the following features:

• in classical logic, every elementary statement is either true, or false;



• these statements can be combined by basic logical connectives and quan-

lifters;

• the truth value of the resulting complicated statements is determined by

the rules of logic: e.g., "for all x, A(x)" is true if and only if the statement

A(x) is indeed true for all x.

At first glance, these features sounds perfectly reasonable. However, in real life,

our reasoning does not always follow these rules:

• First of all, in real life, we are often not sure whether a certain statement

is true or false.

To describe this "un-sureness", it is desirable, in addition to the classical
truth values "true" and "false", to have intermediate degrees of belief. If

we add such degrees of belief, we get a modification of a classical logic

that is called a multiple-valued logic:

- Fuzzy logic is one particular case of this logic, in which we assume

that there are infinitely many different degrees of belief that fill the

entire interval [0, 1].

- Other multiple-valued logics, with finitely many different degrees of

belief, have also been proposed to describe commonsense reasoning.

Comment. To a certain extent, the third value -- "unknown" -- is already

present in the classical logic system, in the sense that in a formal system,
due to G6del's theorem, a statement S can not only be true (when S is

deducible from the theory) or false (when its negation --,S is deducible from
a theory), but it can also be unknown, when neither the statement S itself,

nor its negation can be deduced from the theory. In this sense, multiple-
valued logics are not so much replacing the traditional logic, but they are

enriching these logics by providing a finer structure of this "unknown".

In particular, in [74], we show that traditional "paradoxes" of fuzzy logic,

like the possibility of a statement to be (to some extent) true and, at the

same time, (to some extent) false have natural analogies in classical logic.

• Second, in commonsense reasoning, the meaning of connectives is some-

times slightly different from its meaning in classical logic.

For example, in classical logic, if one of the atomic statements A1, •.., A,,

is false, then the compound statement AI&...&An is false. Not so in

commonsense reasoning. For example, if the objective of a Space Shuttle's

mission was to investigate a new geophysical area (A1), to experiment with

the signal transmission (A2), to repair a satellite (A_), etc., and to launch

a new satellite (An), and the mission succeeded in all but one parts of this

mission, then,



- accordingto classicallogic,wemustsaythat themissionhasfailed,
while

- fromthecommonsenseviewpoint,thismissionwashighlysuccessful.

Therearecrucialsituationswhereallgoalsmustbesatisfied.Depending
onthesituation,thesameword"and"canmeandifferentoperations.So,
anotherapproachto formalizingcommonsensereasoningis to replacea
single, say, "and" operation with several different operations that describe

different commonsense meanings of "and".

For better understanding, the difference between the classical logic and

this new approach can be illustrated graphically: if we represent each

statement by a point, then,

in classical logic, the combined statement "A and B" is well defined

and thus, also represents a point, while

- in this new approach, we get the whole line of different values de-

pending on which interpretation of "and" we choose. In view of this

interpretation, this approach is called linear logic.

• Finally, formulas of classical logic are known to be, in general, algorith-

mically undecidable in the sense that there is no algorithm for finding the

truth values of all composite logical statements.

Thus, in commonsense reasoning, when we want to estimate the truth

values of these statements, we have to use some heuristic algorithmic

techniques that, in general, only approximatethe actual (non-algorithmic)
truth values of these statements.

The corresponding approach to commonsense reasoning, in which we make
logical reasoning algorithmic (i.e., implementable by a program), is called

logic programming.

All three approaches turned out to be consistent with fuzzy logic:

• Formulas stemming from the finite-valued logic turn out to be exactly the

formulas of fuzzy logic and fuzzy systems [76].

• Formalisms of fuzzy and linear logic are do close that we can justifiably

call fuzzy logic "applied linear logic" [54, 75].

• Finally, logical equivalence stemming from logic programming turns out to
be equivalent to the one that comes from fuzzy logic [68, 71, 72].

In all three cases, we not only show that fuzzy logic is consistent with the other

formalisms, but we get a new justification of previously heuristic methods and

formulas of fuzzy logic in terms of these other formalisms:



• Finite-valued logic helps to justify certain and and or operations of fuzzy

logic (namely, min and max), the extension principle, fuzzy optimization,

etc. [76].

• Axioms of linear logic justify the general properties of fuzzy and and or

operations, such as associativity [54, 75].

• Finally, logic programming explains why in the most successful approach

to fuzzy control -- Mamdani's approach -- implication is (weirdly) inter-

preted as "and" [30, 72].

3.2 Fuzzy control is universally applicable

Main result: fuzzy control is a universal approximation for (crisp)

control strategies. It has been known that fuzzy control is a universal

methodology for traditional control problems, with one or several inputs. To

be more precise, it has been known that an arbitrary control can be, within an
arbitrary accuracy, approximated by an appropriate fuzzy controller.

In [52, 79], this result is extended to distributed systems in which the state
is described by a function, and to even more general control situations.

Auxiliary result: "fuzzy control"-type statements are a universal ap-

proximation for arbitrary fuzzy statements about control. The uni-

versality results mentioned above mean, in particular, that if we know a crisp

control strategy, then we can have a set of fuzzy control rules that approximate

this strategy with any given accuracy.
In real life, however, we do not know this crisp strategy; instead, we have

a (fuzzy) expert knowledge about it. In some cases, this knowledge is already
formulated in terms of if-then fuzzy rules; in fuzzy control methodology, these

rules are transformed into statements that only use connectives "and", "or",

and "not".

However, in many other real-life cases, the fuzzy knowledge about control

can be of much more general type. Therefore, the question appears: can we ap-

proximation an arbitrary fuzzy knowledge, that uses arbitrary logical connectives

(including different versions of fuzzy implication), by a knowledge described in
terms of "and", "or", and "not" fuzzy connectives? In other word, can we ap-

proximate an arbitrary fuzzy logical connective by a combination of these three
basic ones?

It may seem, at first glance, that different unusual connectives are purely

mathematical constructions, but, as we show in [87], even those connectives

that may appear this way actually result from very natural axioms. In view

of this result, it is desirable to consider the approximability of arbitrary logical
connectives.

It turned out [77, 80] that in general, such an approximation of an arbi-
trary connective is possible, but only when we, in addition to these three basic



connectives,allowmodifiers such as "very", "slightly", etc. (that without the

modifiers, such an approximation is impossible, is also shown in [53]).

3.3 Fuzzy control is optimal

Main result: fuzzy control is optimal (in some reasonable sense). In

many space-related problems, we need the control results really fast; in these
situations, to speed up the computations, it is natural to use several processors

working in parallel. In [63], we have shown that if we want the fastest possible

parallel universal computer (i.e., a computer with the ability to approximate

an arbitrary function), then we get an architecture that corresponds exactly to

fuzzy control methodology.
Thus, fuzzy control methodology is indeed, in the above sense, optimal.

Fuzzy control and neural control: which is the best? The paper [63]

also contains a comparison between the fuzzy control methodology and another
widely spread area of intelligent control: neural network control. Namely:

• If we consider digital processors, then fuzzy control is the optimal method-

ology.

• However, if we consider analog processors, then the same optimality cri-
terion leads to the selection of neural network control methodology.

On one hand, neural network control is somewhat similar to the fuzzy control:

• the description of a fuzzy controller consists of elementary objects rules;

• the description of a neural network controller consists of elementary ob-

jects: neurons.

This similarity shows itself in the fact that for a natural expert system applica-
tion, both approaches lead to the same class of methods [38].

On the other hand, this analogy is not complete, there are major differences

in these two methodologies:

• In fuzzy control, rules (i.e., the corresponding elementary objects) come

directly from the experts.

• On the other hand, for neural network control, neurons and their weights

usually come from a lengthy and extremely time-consuming training.

This specific neural problem of determining the weights of the neurons naturally

leads to the following two questions:

• First of all, how uniquely are these weights determined by the control
that we are trying to approximate? The answer to this question -- "yes,

uniquely" -- is given in [82].

l0



Second,howmanyneuronsdoweneedto approximateagivencontrol?
In general,wemayneeda lot, but in [58,59],ageneralclassof controls
is describedfor whichthe numberof necessaryneuronsremainsquite
feasible.

4 Main Result. Part I:

The Optimal Choice of the Fuzzy Control

Methodology

4.1 Criteria for choosing a control

What do we want of the control?

• First, the control must control. In other words, if some external force has

shifted the controlled object from the desired trajectory, then the system

must return to the desired trajectory as soon as possible. In control theory,

this property is called stability.

• Second, the control must lead to a smooth trajectory. Smoothness is ex-

tremely important both for manned and for automated space missions,

because abrupt accelerations can be very uncomfortable to human astro-

nauts and damaging for the sensitive equipment.

• The input data for control usually comes from sensors, and sensors are not

100% accurate. As a result, the measured values of the input variables

that are used by the controller may be different from the actual values of

the measured quantities. The ideal control must, therefore, work well not

only for the input values, but also for the values that are close to the input
ones. In other words, the uncertainty in the final control value, that is

caused by the uncertainty of the input data, must be the smallest possible.
Such controls are called robust.

• Finally, we want the computations of the control value to be as fast as

possible. This computation speed is important for many control situations,
but it is especially important for space missions, where decisions often need
to be made in no time. As a result, in such situations, we must select the

fastest possible algorithms, i.e., in computer science terms, algorithms
with the smallest possible computational complexity.

Ideally, we would like to have a control that is the best according to all of these

criteria, but in reality, these criteria are often conflicting with each other: e.g.,
if we want the system to be the stablest possible, i.e., return to the original

trajectory as fast as possible, then a small deviation would result in a fast
jerk back, making the trajectory non-smooth. In different situations, different

criteria are most appropriate:

11



• Forexample,whenwedock a Space Shuttle to a Space Station, the main

criterion is smoothness, because non-smooth docking can seriously damage

both the Space Shuttle and the Space Station.

• When we track a satellite by a radio signal, then our main goal is not to

lose it; in this case, if we have accidentally deviated from the satellite's

position, we want to get the signal back as soon as possible. In terms of
our criteria, in this situation, the main criterion is stability.

In this report, we describe which techniques are the best w.r.t, these basic
criteria.

Comment. In addition to the situations where one of the above-described criteria

is the most appropriate, we may have more complicated situations in which

the objective function is the result of a trade-off between different criteria.
A critical survey of different methods of optimizing a (crisp) criterion under

(possible fuzzy) constraints was published in [8, 9, 10, 39].

Since we can have (potentially) infinitely many different combinations of
criteria, we cannot explicitly describe the best control for all possible combina-

tions. However, we hope that the general methods developed and used in this

project can help in these more complicated situations as well.

4.2 How we solve the corresponding optimization

problems

We must optimize under uncertainty. Fuzzy control is mainly used in
situations when we do not have a complete knowledge about the controlled sys-

tem; in other words, fuzzy control is mainly used in the presence of uncertainty.

Hence, the problems of choosing the best technique (that we are interested in

solving) are particular cases of optimization under uncertainty.

Optimization under uncertainty also occurs in fundamental physics.
Choosing the best control technique is not the only real-life area where we

must make conclusions in case of strong uncertainty. Strong uncertainty is also

present in fundamental research, i.e., research in the areas where we have just

started collecting data.
To handle such situations, theoretical physics has developed many useful

approaches. One of these approaches that turned out to be one of the most
successful in theoretical physics, is the so-called group-theoretic (symmetry) ap-

proach.

Group-theoretic (symmetry) approach in physics. It is well known that
if a problem has a certain symmetry, then solving this problem becomes a much

simpler task.

12



Forexample,if wearelookingfor a gravitationMpotential_0(t,xl, x2, x3)

generated by several moving celestial bodies, then we must find a function of
four variables by solving the corresponding partial differential equation. If,

however, we know that there is only one body, and that this body is stationary
and spherically symmetric, then we have two reasonable symmetries: invariance

w.r.t, shift in time t ---* t + to) and invariance w.r.t, rotations. In this situation,
we must look for a solution that also has similar symmetries. If a function

is invariant w.r.t, shift in time, this means that it does not depend on time at
all. If a function is invariant w.r.t, rotations around the body's center O, this

means that _, depends only on one variable: the distance r from a given point

to the point O. Thus, the function _ turns into a function of 1 variable only:

_(t, xl, x2, x3) = _(r), and a difficult-to-solve partial differential equation runs

into a (much easier to solve) ordinary differential equation.
This idea of symmetries is used in physics not only to find solutions, but also

to describe fundamental physical theories, the equations of most of which can be

uniquely determined by the corresponding invariance requirements. This trend

started with special relativity theory, whose main postulate was the postulate of

relativity, i.e., invariance w.r.t, constant-speed motion. The notion of symmetry

is so wide-spread that new physical theories are often formulated not in terms

of different equations, but in terms of the corresponding symmetries.
Since symmetries are such a useful tool in physics, we want to use them for

our problems as well.

Group-theoretic (symmetry) approach can be also used for selecting

the best fuzzy control technique. In order to apply the ideas of symmetry

to our problems, we must find out what the symmetries are in these problems.

There is a very natural symmetry here: namely, the very "fuzziness" of

assigning crisp numbers to different "fuzzy" expert's degrees of belief means
that different assignment procedures can be equally adequate. It is therefore

natural to require the results of our processing the membership values (i.e.,

processing the results of this assignment) should not depend on which of the

several possible equally adequate assignment procedures we choose. In other

words, our processing algorithms must be invariant w.r.t re-scaling, i.e., w.r.t.
moving from one scale of membership values to another possible scale.

It turns out that a natural formalization of this invariance can indeed solve

the original optimization problems [8, 9]:

4.3 Results: the list of optimal methods

Optimal methods w.r.t, major optimality criteria. Part I. Choice
of membership functions. The most robust membership functions are

piecewise-linear ones [72, 78].
This result explains why the piecewise-linear membership functions are, at

present, most frequently used.
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Optimal methodsw.r.t, major optimality criteria. Part II. Choice

of "and" and "or" operations. (These results are (mainly) summarized in

[8, 9, 72, 78].)

• If we are looking for the most stable control, then the best choice is to use

f_(a,b) -- min(a,b) and fv(a,b) -: a + b- a. b [53].

• If we are looking for the smoothest control, then the best choice is to use

f_(a,b) = a. b and fv(a,b)= min(a, b).

• If we are looking for the control that is most robust, then, depending on

what we are looking for, we can get two different results:

- if we are looking for the control that is the most robust in the the

worst case, then the best choice is to use f_(a, b) --- min(a,b) and

fv(a, b) -- max(a, b) [72, 78];

- if we are looking for the control that is the most robust in the average,

then the best choice is to use f_ (a, b) = a. b and fv (a, b) = a + b- a. b

[72, 78];

- instead of minimizing the average error, we can try to minimize the

corresponding entropy [39, 53]:

• if we use the average entropy (in some reasonable sense), we get
the same pair of optimal functions as for average error;

, for an appropriately defined worst-case entropy (see also [83])

the optimal operations are f_(a, b) = min(a, b) and fv(a, b) =
a+b-a.b.

• Finally, if we are looking for the control that is the fastest to compute, then

the best choice is to use f_(a, b) = rain(a, b) and fv(a, b) = max(a, b).

Optimal methods w.r.t, major optimality criteria. Part III. Choice

of defuzzification. In [39, 53], we show that the optimal defuzzification is

given by the centroid formula.

Optimal methods w.r.t, additional optimality criteria: robustness
w.r.t, possible computer malfunctions. Robustness can also mean ro-

bustness w.r.t, possible computer malfunctions. In principle, there are two

possible types of malfunctioning:

• It can be a temporary malfunction, so all we need to do is undo the faulty

operation and start again.

In this case, we would like to have algorithms that make this "undoing"

the easiest. In [6], we show that the possibility to undo is always present

if and only if all membership functions are fuzzy numbers, i.e., if they have

14



thesimplestpossiblemonotonicitystructure(namely,theyfirst increase,
andthendecrease).

It canalsobea serious malfunction, after which, for a certain period of

time, further computations are impossible. In this case, we would like

to have control implemented by an interruptible algorithm, i.e., by an

algorithm that, if interrupted in the middle of the computations, still
produces a reasonable control. In [3], it was shown that it is possible to

transform every algorithm into an interruptible one without making its

computation time much worse.

Optimal methods w.r.t, additional optimality criteria: optimal tuning

in adaptive control. Similar optimization techniques have been applied to

show that certain (fractionally linear) tuning formulas are the best in adaptive

fuzzy control IT4].

Multi-criteria optimization. So far, we have considered situations in which

we have a well-defined optimality criterion. However, in real life, we often have

several conflicting criteria, especially when different participants of a project

have slightly different aims. Optimization methods for such conflict situations

are considered in [39].

5 Main Results. Part II:

A New (Interval) Approach to Fuzzy Control

The main goal of this project was not only to choose the best of the existing

fuzzy control techniques, but also, if possible, to design new, better techniques.
To describe these methods, let us first explain why the traditional fuzzy

control techniques are not always the most adequate.

5.1 Why intervals? Part I:

Intervals naturally appear

• Traditional fuzzy control techniques start with the expert's degree of belief
that are represented by numbers from the interval [0, 1].

-- This use of numbers may be natural when we describe physical quan-

tities, for which there exists a true value that can be, in principle,

measured with greater and greater accuracy.

- However, for degrees of belief, numbers may not be the most adequate

representation.
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Indeed,howaretheexistingknowledge elic_lation techniques determine

these numbers?

- One of the possible techniques is to ask an expert to estimate his or

her degree of belief by a number on a scale, say, from 0 to 10. Then,

when an expert estimates this degree of belief by choosing, say, 6, we

take 6/10 = 0.6 as the numerical expression of the expert's degree of
belief.

At first glance, this may sound like a reasonable assignment, but in
reality, the fact that an expert has chosen 6 does not necessarily mean

that the expert's degree of belief is exactly equal to 0.6; it rather
means that this degree of belief is closer to 0.6 than to the other

values between which we have asked the expert to choose (i.e., to

0, 0.1,..., 0.5, 0.7 .... ,0.9, 1.0). Mathematically, values that are the

closest to 0.6 form an interval [0.55, 0.65]. In other words, the only

thing that we can conclude based on this choice is that the expert's
true degree of belief belongs to the interval [0.55, 0.65].

In principle, we could try to get a more precise value of the degree
of belief by asking an expert for a value on, say, a scale from 0

to 100, but hardly anyone can distinguish between degree of belief
that correspond to, say, 63 and 64 on this scale. Thus, the interval

[0.55, 0.65] is the best we can get.

- Another way of determining the degree of belief is to poll experts. If
6 experts out of 10 believe that, say, a given value of x is small, then

we take 6/10 = 0.6 as the degree of belief psmaJl(X) that this value x
is small.

Polls have their own margins of uncertainty. Hence, from a poll, we
cannot extract the exact ratio of experts who believe that x is small;

we can, at best, find an interval of possible values of this ratio.

In principle, to get a narrower interval, we can ask more and more

experts, but in reality, the number of experts is often limited, and

asking all of them is not practically possible. As a result, the interval

of possible values is the best we can get.

Similar conclusions can be obtained for all other methods of eliciting the

values. For all these methods, an interval is a much more adequate de-

scription of the expert's degree of belief.

• Even if we manage to get narrow enough intervals for degrees of belief, so

that these original degrees of belief can be adequately described as num-

bers, in the fuzzy control methodology, we need to process these numbers.

The first processing consists of applying and and or operations.

These operations, in their turn, must also be elicited from an expert so
that they would be most adequate in describing what the experts mean

16



whentheyusethecorrespondingconnectives.Wehavealreadyseenthat
elicitingnumbers leads, in reality, to intervals. The resulting uncertainty
is even worse if we try to elicit not a single number, but several different

numbers that describe the desired functions f_(a,b) and fv(a,b). As a

result, instead of a single pair of functions, we, most probably, will get

an interval of possible functions. If we apply this interval function to

numerical input values, we get an interval of possible results.

Thus, even if we managed to avoid intervals on the first stage, they will ap-

pear on the second stage of fuzzy control methodology: when we combine
the original degrees of belief into degrees of belief of different rules.

Even if we fix and and or operations, for the same query, we can have

different representations in terms of "and", "or", and "not". These dif-
ferent representations are equivalent in classical logic, but in fuzzy logic,

they are not. As a result, depending on which representation we use, we

may get different numerical answers to the query. Hence, if we only know

the query itself, and we are not sure what "translation" into basic logi-

cal operations is the best, it is natural to return not a single numerical
value, but the entire interval of possible values of degrees of belief that

correspond to different possible translations.

In [91], we show how to compute this interval for different queries.

Comments.

• These three arguments (also given in [22, 31, 50, 69, 72]) do not exhaust

all arguments in favor of intervals as a better way to describe uncertainty.
Other arguments showing that two numbers represent uncertainty better

are given, e.g., in [62].

• Intervals are very natural not only in the contents of fuzzy control, but

also in computing in general. It suffices to say that:

- actually, the modern calculus started with interval computations [13],
and

- that intervals are the only sets whose use preserves the invertibility

of arithmetic operations [29].

• So far, we have only said that intervals are a more adequate tool for de-

scribing expert knowledge. This, in itself, does not necessarily mean that
fuzzy control that comes from using intervals is in any sense better. How-

ever, it is reasonable to expect that more adequate description of expert's

knowledge leads to the fuzzy control that more adequately describes ex-
pert's high-quality control and is, therefore, of a better quality itself. In

the next section, we will show that these expectations were correct: inter-

val control is, indeed, in many cases better.
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5.2 Why intervals? Part II:

Intervals lead to a better control

Interval-valued fuzzy control. If we use intervals of possible values of initial

degrees of belief, then, on all further stages of fuzzy control methodology, we
also have to use intervals of possible values.

General idea behind using intervals in fuzzy control ([50, 64]). The

main idea of using an interval to describe the expert's degree of belief, instead
of more traditional technique of picking a number from this interval, is that the

actual (unknown) degree of belief is guaranteed to belong to the interval, but it
may be different from the picked value.

From this idea, one can easily deduce that the resulting interval control is

often better than the original number-valued control.

Intervals lead to a more stable control. Traditional fuzzy control tech-

niques, if used appropriately, lead to a control that is stable.

• However, if we use only a single picked value from the interval of possible

values, we will get a control that is stable for this particular value, and

may not be stable at all for the actual value.

• The only way to guarantee that the control is stable for the actual (un-

known) value is to guarantee that it is stable for all values from this

interval. This requires, at least, that the algorithm that computes the
control values should have this interval at its disposal.

Thus, to improve stability, we must have an algorithm that processes intervals

of degrees of belief (rather than picked numerical values).

Intervals lead to a smoother control. A picked value of degree of belief

is, in general, unpredictably ("randomly") different from the actual value. As
a result, the control _ coming from the picked values, will "wobble" around the

control that correspond to the actual (unknown) degrees of belief. The random

wobbling around a smooth process usually makes it less smooth.
Thus, the way to avoid this wobbling (and to make control smoother) is to

take into consideration that the actual values are within the intervals, and then,

to choose the smoothest possible control within these intervals.

Intervals lead to a more robust control. The control that takes into

consideration the possibility of slightly different inputs is, by definition, more

robust than the control that is based only on the original picked values.
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Intervals sometimes lead to a eomputationally faster control. In gen-

eral, computational simplicity is not the strongest point of interval computations

(see below); however, in some situations, intervals do make computations faster.

Indeed, if we only have numbers, without any indication how accurate these

numbers are, then, in order to guarantee the accuracy the resulting compu-

tations, we have to do all the data processing with all the digits of all these

numbers.

If we know intervals instead of numbers, this means, in essence, that we

know the accuracy of the input values. If the input values are known, say, with

accuracy of 10%, then there is no much sense to have computations with much

better accuracy, so we can use fewer digits in our computations and thus, make

these computations much faster.

5.3 How to elicit interval membership functions?

In order to apply fuzzy control methodology, we must first elicit the member-

ship functions and "and" and "or" operations that best describe the expert (or

experts) whose opinions we are formalizing.

For this elicitation, we can use two sources of information:

• First, we can interview experts and try to extract the required information

from their answers. For interval-valued degrees of belief, the corresponding

problem is formulated and partially solved in [11].

• Interview is an ideal method, but often, experts who are very good in

controlling are not that good in the ability to describe their control in

words. Actually, the very necessity of fuzzy control comes from the fact

that experts are not very good in describing their control strategies. For

such experts, an important source of membership functions and other

information is their actual control: we can

- simulate different situations;

- record how these experts would control the desired object, and then

- try to extract their membership functions and other information from

these records.

In [7], we show that it is always possible to extract this information from

the records, and we describe how exactly this can be done.

5.4 The main problem of interval approach

-- computational complexity-

and possible solutions of this problem

The problem. We have mentioned that the use of intervals often improves the

quality of intelligent control. However, an apparent disadvantage of their use is
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that when we consider interval-valued instead of more traditional number-valued

degrees of belief, we need to process twice as many numbers and therefore, the
computational complexity (and thus, the computation time) increases. This

increase can be very drastic: e.g.,

• While the solution of a linear systems _ aijxj -= bi with crisp coefficients

aij and bi is a relatively easy problem, the solution of a linear system
of equations with interval coefficients is, in general, computationally in-

tractable (NP-hard) (see, e.g., [20, 44, 61]), even if we restrict ourselves

to narrow intervals only IT5]. This computational complexity can be "ex-
plained" if we look at the geometric shape of the corresponding solution
sets:

for crisp linear systems, the solution set is a convex polytope;

- for interval linear systems with symmetric matrices aij : aji, the

shape of the solution set becomes piecewise-quadratic [2];

for interval linear systems with dependent coefficients, we can have

arbitrarily complicated algebraic shapes [1];

• Even when we have explicit computations (e.g., if we compute the value

of a polynomial f(Xx, • •., Xn)) instead of solving systems of equations, for
interval-valued inputs xl ..... x,, the problem becomes NP-hard, and the

shapes become algebraic shapes of arbitrary complexity [33, 43]. (In [40],

a similar result is expressed in a slightly different form: if we want inter-

val computations without roundoff errors, then we have to use algebraic

numbers of arbitrary complexity.)

• For expert systems that use numerical degrees of belief, as soon as we

have been able to express a given query as a logical combination of the

statements from the system, computing the degree of belief in this query
becomes a pretty straightforward and easy task. However, when we have

interval-valued degrees of belief, the problem becomes NP-hard [T2].

• Closer to home, the problem of eliciting interval-valued membership func-

tions is, in general, NP-hard [11].

• Also, the problem of finding the optimal control is, in general, NP-hard

[85].

• Unfortunately, these results stay even if we consider a more realistic fuzzy-
based formalization of feasibility [70, 72].

A general survey of such problems was given in [45] (see also [67]).

Comment. A similar trade-off between the control quality and its computa-

tional complexity can be observed if we compare interval methods with more
traditional statistical methods:
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• intervalmethods lead to better estimates [89], but

• interval methods are, in general, more computationally complicated [28].

How can we solve this problem?

this problem:

There are several possible ways to solve

• If we cannot find fast algorithms that work well in all cases, then we can

look for algorithms that work well in almost all cases. In particular, for
narrow intervals, the existence of such algorithms was shown in [60].

• If we cannot find an algorithm that works well in almost all cases, then, at

least, we can try to look for specific cases in which fast interval algorithms

are possible. In particular, we discovered such algorithms for the following

problems that correspond to different stages of fuzzy control methodology:

- for some "and" and "or" operations, the problem of eliciting the

interval-valued membership functions becomes computationaily fea-

sible [11];

- fast algorithms are also known for the case when the functions are

monotonic [25]; "and" and "or" operations are usually monotonic;

- computing the range of fractionally linear functions [64]; this is im-
portant for applying defuzzification, which is usually described by a

fractionally linear transformation;

- "smoothing" an interval function [57]; this is very important for de-

signing a smooth control;

- locating local extrema of a function of one variable from interval

measurement results [65, 88]; this is extremely important for opti-

mization;

- finally, a fast algorithm is designed that checks stability of the result-

ing control [72].

• If we cannot find methods that are guaranteed to work well, then at least

we may find heuristic methods that may often work. As part of this
research, we have proposed and analyzed both the modifications of the

existing heuristic methods, such as genetic algorithms [21] and chemical

computing [38, T3], and proposed new interval-based heuristics [38, 86].

For heuristic methods, two questions naturally arise:

- We know that sometimes these methods do not lead to the best

possible results. Can we, given the inputs, check whether this method
will work or not? and how good the results are?
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- In manycases,heuristicmethodscontainseveralparametersthat
needto betuned.Dependingonhowwechoosethevaluesofthese
parameters,wemaygetverygoodresultsorverylousyresults.How
canwechoosetheoptimalvaluesof theseparameters?

In thisresearch,weattackbothquestion:

- In [49],wedesigna methodfor estimatingthe qualityof interval
computations.Tobemoreprecise,thereexistseveralmethodsthat
computethe enclosure (superset) of the desired interval. Methods

from [49] generate a subset of this interval. If the resulting two inter-
val are close, this means that the enclosure is a good estimate of the
desired interval.

In a more general context, the rating of different methods is proposed

and justified in [T6].

To find the optimal values of the parameters of heuristic methods, we

use the general group-theoretic (symmetry) approach [56]. In par-

ticular, in [73], we show that re-scaling, a useful heuristic technique

in fuzzy control and in genetic algorithms, should be best avoided in
the case of complete uncertainty.

• If the interval-related mathematical problem that we are trying to solve

is still too complicated, we may want to check whether this mathemat-

ical problem is indeed an adequate formalization of the original real-life

problem.

In many cases, as Zadeh himself mentions, the complexity of the model
is caused by the fact that the model tries to describe the original low-

granularity problem, with few distinct levels of a certain quantity (like

"small", "medium", and "large") by a model in which this quantity is
described by a real number and thus, has infinitely possible values (high

granularity).

Discovering that this indeed is the source of the problem is one thing; the

next important step is to see what we can do in this situation to speed up

computations. In [42], we describe how we can possibly do computations

directly with low-granularity values, without translating them into high-

granularity numbers.

• Finally, if we cannot think of any way of making an algorithm faster, we can

still speed up the computations if we make interval operations hardware

supported (and thus, faster).

It is impossible to hardware support all possible operations with inter-

vals. In view of that, in [51, 81], we analyze (and solve) the problem

of choosing the interval operations whose hardware support will lead to

the largest computation speed-up; the answer, crudely speaking, is as
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follows:in additionto intervalanalogsof standardarithmeticopera-
tions,wemustsupportanoperationof weighteddot (scalar)product
al,. • .,a_,bl, ...,b_ --_ _wi - ai - b_.

5.5 Additional method of improving fuzzy control

An additional method of improving the quality of fuzzy control was proposed

in [191 .
The main problem that this method is dealing with is that in traditional

fuzzy control techniques, all rules are on equal standing. As a result, even when

an expert explicitly says that for x = 1 the control should be exactly u = 4, the
technique mixes this conclusion with other rules (like "when x is small, u should

be small") and, as a result, returns the control _i(1) that is often different from
the desired U = 4.

R. Yager and other researchers have proposed to remedy this situation by in-

troducing the explicit priorities of different rules. In [19], we show that the same
effect can be achieved without any additional information, simply by (slightly)

modifying Mamdani's logical transformation.
A similar idea leads to a more adequate formalization of more complicated

expert knowledge that includes binary properties like "x is approximately equal

to y" [32].

6 Auxiliary Results. Part I:

Technical Diagnostics

Traditional fuzzy control techniques are designed mainly for the case when the

controlled system functions well, and the question is only how to control it. In

real life, however, and especially in space flights, malfunctions are quite possible.
In this case, we have a problem of finding out which exactly component of the

system is wrong.
If the system is simple and all its components are easily accessible, then we

can simply test all its components. In space missions, however, systems are

very complicated, and some components are difficult to access. As a result, we
cannot simply test all the components, we need some intelligent algorithm to

find the faulty component without testing all of them.

Similarly to fuzzy control, there are engineers who are very good in such a

diagnosis, so it is natural to use their experience to diagnose the systems. Such

technical diagnostic methods are developed for two possible types of malfunc-
tion:

• In [39], methods are described that find the faulty component for the case
when the system stops functioning.
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In [4],methodsaredescribedthat locatethe faultycomponentin the
situationswhenthesystemcontinuesto function,but thevalueat least
oneof thecriticalparameters(thatcharacterizethesystem'sbehavior)
getsoutoftheintervalofadmissiblevalues.

7 Auxiliary Results. Part II:

Applications to Space-Related

Data Processing

7.1 Data Processing is Important

Computation of the optimal control strategy is not the only space-related com-

putation. Indeed, why do we need to launch space missions in the first place?

One of the main objectives of the space flights is to bring the informatwn about

objects and processes, both in space and on the Earth. This information rarely
comes in the desired form, it usually requires some processing.

Computation of the best control strategy can also be viewed as a parlzcular
case of data processing: namely, we take as inputs the sensor data, and we
return the desired control. It is therefore reasonable to try to apply the methods

and results, that were originally designed for control-related data processing, to

general space-related data processing.

7.2 Major Areas of Space-Related Data Processing

In order to describe how these ideas can be used in space-related data processing,

let us first enumerate the major areas of space-related data processing:

• At present, most space missions occur in the close vicinity of the Earth,
and all of them are in the Solar system. Thus, the major area of space-

related data processing is the analysis of near-Earth environment from the

results of data processing.

• The near-Earth environment is not the only area about which we learn

more after the space missions. Space is also the area from where, undis-

turbed by the Earth atmosphere, we can:

- clearly observe the distant bodies and thus, get a large-scale picture

of our Galaxy and of the Universe as a whole;

- precisely trace the effects of the gravitation and thus, get a very
clear picture of the relativistic effects and, in general, of the space-

time (in particular, Dr. Jorge Lopez from Physics Department of
the University of Texas at El Paso is doing this data processing from

JPL);
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- observehigh-energyparticlesandprocessesandthus,getaclearer
understandingofthefundamentalphysicalprocesses.

• Lastbut not the least,spaceflights,especiallynear-Earthspaceflights,
bringsusa lot of geophysical information, i.e., information about our
Earth. The importance of this application area is emphasized by the
fact that the Mission to Planet Earth is one the main missions of NASA.

7.3 Near-Earth observations

For near-Earth observations, we can formulate the following three problems:

• First, we would like to estimate the accuracy of the existing indirect mea-

suring techniques.

• Second, for the situations when the resulting accuracy is not sufficient, we

would like to design new, more accurate indirect measurement (= data

processing) methods.

• Traditional data processing results in numbers that still have to be ana-

lyzed. Therefore, it is desired, in addition to this traditional data pro-

cessing, to have more intelligent data processing that would provide us
directly with the answers to the fundamental questions about the Solar

system, questions that we are really interested in.

As part of the project, we solved the simplest cases of all these three problems:

Error estimation.

• Most of the instruments and sensors used in space missions are similar

to the instruments used on Earth, and so, we can use the results of error

estimation obtained in the analysis of Earth measurements (see, e.g., [5,

12, 18, 22, 31, 48]).

• There are, however, a few instruments and sensors that are more specific

for space environment.

Namely, one of the main advantages of space observations is that in space,
there is practically no atmosphere, and therefore, optical observations can be

drastically more accurate than on Earth. This comment relates both:

• to passive observations, when we simply use an orbital telescope to observe

the light coming from the celestial bodies, and

• to active observations, when we artificially "brighten" the objects and then

observe the reflected light.
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To"brighten"theimages,wemustuseaverystrongsourceoflight;sofar,the
strongestsourcesof lightarelasers, so, we arrive at the problem of estimating

accuracy for laser observations.
A particular case of this problem was considered and solved in [84].

New data processing methods. As we have just mentioned, most near-
Earth measurements are very similar to Earth measurements. There are, how-

ever, a few things that are radically different in space. The major difference is
that:

• on Earth, all the matter is usually in one of the three main states: solid,

liquid, and gas.

• In space, many substances are in the fourth state: of plasma, where,
instead of electrically neutral atoms, we have charged particles: electrons
and ions.

The abundance of charged particles often creates currents, magnetic fields, etc.,

that are much stronger than we are used to, and therefore, cannot be directly

measured by means of traditional sensors. For these measurements, we need a

new methodology.

In [55], we design a new method of measuring string current by measuring
magnetic fields that these currents generate; so far, the algorithm is applied
to the Earth situations in which strong current are artificially created: to the

string currents used in aluminum production.

Fundamental questions about the solar system. So far, the Solar sys-
tems works as a clockwork; it looks like catastrophes are highly unprobable.

However, the huge masses of celestial bodies, together with the high speeds,

make every collision truly catastrophic. So, one of the most fundamental ques-
tions is: Is the Solar system truly stable or a big collision is inevitable?

This problem is very dii_icult to solve numerically because small numerical

uncertainties (that are inevitable in calculations) increase exponentially and
make the results of long-term numerical calculations useless for predictions. So,

the only way to guarantee stability is to have predictions with a guaranteed

accuracy.
In [41], we apply interval methods to the stability problem: namely, we show

that within a certain reasonable hypothesis, our Solar system is stable.

7.4 Relativistic Effects and the Structure of Space-Time

For these applications, to measuring geometry of space-time, we have two types
of results:
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First,weshow that the corresponding problems are, in general, very com-

putationally complicated [26]. Even when the corresponding problems are
computationally feasible [27], the problems of measuring proper distances

and proper times in space-time geometry are much more complicated than

the problems of measuring distances in Euclidean space [35].

Second, we show that the general group-theoretic methodology can be

successfully applied to these problems.

In particular, we show that reasonable axioms of space-time geometry that

are usually formulated in geometric and causal terms can be reformulated

in terms of symmetries [37]. This general reformulation turns out to be

quite useful: e.g., causality explains the previously unexplained physical
fact about symmetries: that spatial and temporal translations commute

[36].

7.5 Fundamental Physical Processes

Modern physics is based on quantum mechanics, which is usually interpreted

in probabilistic terms. At first glance, there seems to be no big need for using

fuzzy and/or interval methods. However, a more attentive analysis reveals some
fundamental problems in traditional probabilistic approach:

• First, the equations of quantum filed theory often lead to meaningless

infinities instead of the physically meaningful finite values. There exist
several semi-heuristic methods of handling these infinities, but it is defi-

nitely desirable to avoid them from the very beginning.

• For some possible physical processes that are seriously considered in mod-

ern physics (e.g., for acausal processes), the standard probability approach

encounter problems (see, e.g., [14]).

To handle both problems, we first showed, in [24], that standard quantum me-

chanics approach can be viewed as a particular case of the more general fuzzy

approach (of which interval uncertainty is another particular case), and that
many supposedly specifically quantum phenomena can be thus explained [47]

as pure mathematical consequences of the formalism rather than a necessity for
a new specifically quantum approach. With this embedding, we have a more

general formalism, and we show that both problems can be naturally handled

within this more general formalism:

• In [23], we show that if we take into consideration measurement uncer-
tainly, in particular, interval uncertainty, then the equations of physics
become consistent.

• In [14], we show that the natural description of acausal processes leads to

non-probabilistic uncertainty.
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Asa sideeffectof theseresults,in [46],weexplainwhythegroup-theoretic
(symmetry)approach,anapproachwhichhasoriginatedonphysicsandwhich
wehavesosuccessfullyusedin ourresearch,isusefulinphysics.

7.6 Mission to Planet Earth

Specific feature of geophysical data processing is that we also have lots
of Earth data. The processing of geophysical data is one of the main areas of

space-related data processing. In particular, this data processing is one of the
main areas of the NASA Pan-American Center for Earth and Environmental

Studies (PACES) that operates in El Paso, Texas.
The specific feature of this application area (as opposed to pure space re-

search) is that, in addition to information coming from space flights, there is
also lots of geophysical information about the same areas coming from the Earth

measurements. It is therefore important to process both types of measurement
results.

With new space data, a new problem arises: estimating accuracy
of the results of data processing. Many data processing methods have

been developed in traditional geophysics. Traditional methods are based on the

processing of the hard-to-get Earth information. This information is usually
so scarce that, by itself, it does not lead to any meaningful results; to come

to useful conclusions (e.g., where oil most likely is), we must, in addition to
the raw measurement results, use the experts' intuition and knowledge. In

such situation, conclusions are reasonably subjective, and therefore, there is no

question of estimating the accuracy of these conclusions: if the expert intuition
turn out to be wrong (and once in a while it is wrong), the results are way off.

Space measurements radically change the situation. From the traditional

geophysical situation where measurements results are scarce and hard-to-get,
we get into a new situation (typical for space-related research) where space
observations literally flood us with data, to the extent that we are unable to

process it in real time (this inability is one of the main reasons why the PACES

Center was established).
With this abundance of data, the results of data processing become more and

more reliable, and it is reasonable to start asking the question: how accurate

are they? This question is not easy to answer by traditional statistical methods,
because different pieces of sensor information come from different sources, with

different (and often unknown) error distribution. To estimate uncertainty of the
results of data processing in such situations, we have combined statistical and

interval methods; the resulting estimates are described in [15, 16].

Can the geophysical results be applied to other planets? Space analysis

of Earth geophysical structures is not only helpful for geophysics, it also creates
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atestinggroundfordifferentmethodsthat will laterbeappliedto theresearch
of thedistantplanets.

With thisapplicationinmind,it isimportantto clearlydistinguishbetween
thegeophysicalfeaturesthatarespecifictoourEarth,andthefeaturesthatare
offundamentaloriginsandwill, therefore,bytypicalforotherplanetsaswell.

Thefirst questionis: whichplanetareasaremostinformative?According
to moderngeophysics,themostinterestingdynamicalprocessesoccurat the
areawheredifferenttectonicplatesinteract.OnEarth,inadditionto heads-on
collisions and pull-apart motions, there are few areas where plates collide at

oblique angles.
On Earth, these oblique collisions are rare but important. Since these areas

are rare on Earth, a question may be asked: will we find such areas on other

planets? should we, therefore, prepare methods and models for handling these

areas? Or should we rather concentrate on the methods of analyzing hands-on

and pull-apart collisions?

In [17], fundamental geometric and topological methods are used to show
that oblique collisions are inevitable on every planet on which surface is subdi-

vided into tectonic plates, and therefore, their analysis is important for future

planetary missions.

References

(* indicates a student author)

[1] G. Alefeld, V. Kreinovich, and G. Mayer, "The Shape of the Solution Set
for Systems of Interval Linear Equations with Dependent Coefficients",

Mathematische Nachrichten, 1997 (to appear).

[2] G. Alefeld, G. Mayer, and V. Kreinovich, "The shape of the symmetric
solution set", In: R. B. Kearfott et al (eds.), Applications of Interval Com-

putations, Kluwer, Dordrecht, 1996, pp. 61-79.

[3] M. Beltran*, G. Castillo*, and V. Kreinovich, "Algorithms That Still Pro-
duce a Solution (Maybe Not Optimal) Even When Interrupted: Shary's
Idea Justified", Reliable Computing (to appear).

[4] M. Beltran* and V. Kreinovich, "How To Find Input Variables Whose
Influence On The Result Is The Largest, or, How To Detect Defective

Stages In VLSI Manufacturing?", Reliable Computing, 1995, Supplement

(Extended Abstracts of APIC'95: International Workshop on Applications

of Interval Computations, E1 Paso, TX, Febr. 23-25, 1995), pp. 34-37.

[5] A. Bernat, V. Kreinovich, T. McLean, and G. N. Solopchenko, "What are

interval computations, and how are they related to quality in manufac-
turing?", Reliable Computing, 1995, Supplement (Extended Abstracts of

29



APIC'95:InternationalWorkshoponApplicationsof IntervalComputa-
tions,El Paso,TX, Febr.23-25,1995),pp.10-12.

[6] B. Bouchon-Meunier,O.Kosheleva*,V. Kreinovich,andH. T. Nguyen,
"FuzzyNumbersaretheOnlyFuzzySets]'hat KeepInvertibleOperations
Invertible",Proceedings of the International Conference on Information

Processing and Management of Uncertainty in Knowledge-Based Systems

(IPMU'96), Granada, Spain, July 1 5, 1996, pp. 1049-1054.

[7] B. Bouchon-Meunier and V. Kreinovieh, "Simulating Fuzzy Control as a

New Method of Eliciting Membership Functions", Proceedings of the Inter-
national Conference on Information Processing and Management of Un-

certainty in Knowledge-Based Systems (1PMU'96), Granada, Spain, July
1--5, 1996, Vol. 2, pp. 1043-1048.

[8] B. Bouchon-Meunier, V. Kreinovich, A. Lokshin, and H. T. Nguyen, "On
the formulation of optimization under elastic constraints (with control in

mind)", Universitg Paris VI et VII, lnstitut Blaise Pascal, Laboratoire
Formes et Intelligence Artificielle LAFORIA, Technical Report 94/19, Oc-
tober 1994.

[9] B. Bouchon-Meunier, V. Kreinovich, A. Lokshin, and H. T. Nguyen, "On
the formulation of optimization under elastic constraints (with control in

mind)", Fuzzy Sets and Systems, 1996, Vol. 81, No. 1, pp. 5 29.

[10] B. Bouchon-Meunier, H. T. Nguyen, V. Kreinovich, and O. Kosheleva*,
"Optimization with soft constraints: case of fuzzy intervals", In: L. Hall,

H. Ying, R. Langari, and J. Yen (eds.), NAFIPS/IFIS/NASA '94, Proceed-

ings of the First International Joint Conference of The North American

Fuzzy Information Processing Society Biannual Conference, The Industrial

Fuzzy Control and Intelligent Systems Conference, and The NASA Joint
Technology Workshop on Neural Networks and Fuzzy Logic, San Antonio,

December 18-21, 1994, IEEE, Piscataway, NJ, pp. 177-179.

[11] B. Cloteaux*, C. Eick, V. Kreinovich, and B. Bouchon-Meunier, From Or-
dered Beliefs to Numbers: How to Elicit Numbers Without Asking for Them

(Doable but Computationally Difficult), Universitg Paris VI el VII, Insti-
rut Blaise Pascal, Laboratoire Formes et Intelligence Artificielle LAFORIA,
Technical Report 96/20, June 1996.

[12] G. 3. Deboeck, K. Villaverde*, and V. Kreinovich, "Interval Methods for

Presenting Performance of Financial Trading Systems", Reliable Comput-

ing, 1995, Supplement (Extended Abstracts of APIC'95: International
Workshop on Applications of Interval Computations, El Paso, TX, Febr.

23-25, 1995), pp. 67-70.

3O



[13]D. Dennis,V. Kreinovich,andS.Rump,"Calculus:It All StartedWith
Intervals",Reliable Computing (to appear).

[14] V. Dimitrov, M. Koshelev*, and V. Kreinovich, "Acausal processes and

astrophysics: case when uncertainty is non-statistical (fuzzy?)", BUlletin

for Studies and Ezchanges on Fuzziness and its AppLications (BUSEFAL),

No. 69, January 1997 (to appear).

[15] D. I. Doser, K. D. Crain*, M. R. Baker, V. Kreinovich, and M. C. Gersten-
berger*, "Estimating uncertainties for geophysical tomography', Reliable

Computing, 1997 (to appear).

[16] D. I. Doser, K. D. Crain*, M. R. Baker, V. Kreinovich, M. C. Gersten-
berger*, and J. L. Williams*, "Estimating uncertainties for geophysical

tomography", Reliable Computing, 1995, Supplement (Extended Abstracts

of APIC'95: International Workshop on Applications of Interval Compu-

tations, El Paso, TX, Febr. 23-25, 1995), pp. 74-75.

[17] D. Doser, M. A. Khamsi, and V. Kreinovich, "Earthquakes and geombina-
torics", Geombinatorics, Vol. 6, No. 2, pp. 48-54.

[18] B. H. Friesen*, V. Kreinovich, "Ockham's razor in interval identification",
Reliable Computing, 1995, Vol. 1, No. 3, pp. 225-238.

[19] B. Friesen* and V. Kreinovich. "How to improve Mamdani's approach to

fuzzy control", International Journal of Intelligent Systems, 1995, Vol. 10,

No. 11, pp. 947-957.

[20] G. Heindl, V. Kreinovich, and A. V. Lakeyev, "Solving Linear Interval

Systems is NP-Hard Even If We Exclude Overflow and Underflow", Reliable
Computing (to appear).

[21] L. Irwin and V. Kreinovich, "Adding predators to genetic algorithms", In:
Vladimir Dimitrov and Judith Dimitrov (eds.), Fuzzy Logic and the Man-

agement of Complexity (Proceedings of the 1996 International Discourse),

UTS Publ., Sydney, Australia, 1996, Vol. 3, pp. 289-291.

[22] R. B. Kearfott and V. Kreinovich, "Applications of interval computations:
an introduction", In: R. B. Kearfott et al (eds.), Applications of Interval

Computations, Kluwer, Dordrecht, 1996, pp. 1-22.

[23] A. B. Korlyukov and V. Kreinovich, "Equations of physics become con-
sistent if we take measurement uncertainty into consideration", Reliable

Computing, 1995, Supplement (Extended Abstracts of APIC'95: Interna-
tional Workshop on Applications of Interval Computations, E1 Paso, TX,

Febr. 23-25, 1995), pp. 111-112.

31



[24]M. Koshelev*andV. Kreinovich,"Fuzzyinterpretationof quantumme-
chanicsmademoreconvincing:everystatementwith realnumberscanbe
reformulatedin logicalterms",In: VladimirDimitrovandJudithDimitrov
(eds.),Fuzzy Logic and the Management of Complexity (Proceedings of the
1996 International Discourse), UTS Publ., Sydney, Australia, 1996, Vol. 3,

pp. 296 299.

[25] M. Koshelev* and V. Kreinovich, "Why Monotonicity in Interval Compu-
tations? A Remark", ACM SIGNUM Newsletter, 1996, Vol. 31, No. 3, pp.
4-8.

[26] O. Kosheleva* and V. Kreinovich, "Unit-distance preserving theorem is
locally non-trivial", Geombinatorics, 1995, Vol. 4, No. 4, pp. 119 128.

[27] O. Kosheleva* and V. Kreinovich, "How to measure arbitrary distances
using a given standard length (i.e., a stick with two marks on it): it is

necessary, it is theoretically possible, it is feasible", Geombinatorics, 1996,

Vol. 5, No. 4, pp. 142-155.

[28] O. Kosheleva* and V. Kreinovich, "Error estimation for indirect measure-
ments: Interval computation problem is (slightly) harder than a similar

probabilistic computational problem", Reliable Computing, 1997 (to ap-

pear).

[29] O. Kosheleva* and V. Kreinovich, "Only Intervals Preserve the Invertibility
of Arithmetic Operations", Reliable Computing, 1997 (to appear).

[30] O. Kosheleva*, V. Kreinovich, and H. T. Nguyen, "Mamdani's Rule: a
"weird" use of "and" as implication justified by modern logic", Sixth In-

ternational Fuzzy Systems Association World Congress, San Paulo, Brazil,

July 22 28, 1995, Vol. 1, pp. 229-232.

[31] V. Kreinovich, "Data processing beyond traditional statistics: applications
of interval computations. A brief introduction", Reliable Computing, 1995,

Supplement (Extended Abstracts of APIC'95: International Workshop on

Applications of Interval Computations, E1 Paso, TX, Febr. 23--25, 1995),

pp. 13-21.

[32] V. Kreinovich. "Strongly transitive fuzzy relations: a more adequate way
to describe similarity", International Journal of Intelligent Systems, 1995,

Vol. 10, No. 12, pp. 1061-1076.

[33] V. Kreinovich, "Interval rational = algebraic", ACM SIGNUM Newsletter,

1995, Vol. 30, No. 4, pp. 2-13.

[34] V. Kreinovich, "Maximum entropy and interval computations", Reliable
Computing, 1996, Vol. 2, No. 1, pp. 63-79.

32



[35]V. Kreinovich,"Space-timeis 'squaretimes'moredifficultto approximate
thanEuclideanspace",Geombinatorics, 1996, Vol. 6, No. 1, pp. 19 29.

[36] V. Kreinovich, "Causality explains why spatial and temporal translations
commute: a remark", International Journal of Theoretical Physics, 1996,

Vol. 35, No. 3, pp. 693-695.

[37] V. Kreinovieh, "Symmetry characterization of Pimenov's spacetime: a
reformulation of causality axioms", International Journal of Theoretical

Physics, 1996, Vol. 35, No. 2, pp. 341-346.

[38] V. Kreinovich, "S. Maslov's Iterative Method: 15 Years Later (Freedom
of Choice, Neural Networks, Numerical Optimization, Uncertainty Reason-

ing, and Chemical Computing)", a chapter in Problems of reducing the

exhaustive search, American Mathematical Society, Providence, RI, 1997,

pp. 175-189.

[39] V. Kreinovich, "Random sets unify, explain, and aid known uncertainty
methods in expert systems", in John Goutsias, Ron Mahler, and H. T.

Nguyen (eds.), Applications and Theory of Random Sets, Springer-Verlag,

1996 (to appear).

[40] V. Kreinovich, "Roundoff-Free Number Fields For Interval Computations",

Reliable Computing, 1997 (to appear).

[41] V. Kreinovich and A. Bernat, "Is solar system stable? A remark", Reliable
Computing, 1997 (to appear).

[42] V. Kreinovich and B. Bouchon-Meunier, "Granularity via Non-
Deterministic Computations", BUlletin for Studies and Exchanges on
Fuzziness and its AppLications (BUSEFAL), No. 68, October 1996 (to ap-

pear).

[43] V. Kreinovich and A. V. Lakeyev, " 'Interval Rational = Algebraic' Re-
visited: A More Computer Realistic Result", ACM SIGNUM Newsletter,

1996, Vol. 31, No. 1, pp. 14-17.

[44] V. Kreinovieh and A. V. Lakeyev, "Linear Interval Equations: Comput-
ing Enclosures with Bounded Relative Or Absolute Overestimation is NP-
Hard", Reliable Computing, 1996, Vol. 2, No. 4 (to appear).

[45] V. Kreinovich, A. Lakeyev, and J. Rohn, "Computational Complexity of
Interval Algebraic Problems: Some Are Feasible And Some Are Computa-

tionally Intractable - A Survey", In: Goetz Alefeld, Andreas Frommer,

and Bruno Lang (eds.), Scientific Computing and Validated Numerics,

Akademie-Verlag, Berlin, 1996, pp. 293-306.

33



[46]V.KreinovichandL. Longpr_,"Unreasonableeffectivenessofsymmetryin
physics",International Journal of Theoretical Physics, 1996, Vol. 35, No.

7, pp. 1549-1555.

[47] V. Kreinovich and L. Longpr_, "Pure Quantum States Are Fundamental,
Mixtures (Composite States) Are Mathematical Constructions: An Argu-
ment Using Algorithmic Information Theory", International Journal on

Theoretical Physics, 1997, Vol. 36, No. 1, pp. 167-176 (to appear).

[48] V. Kreinovich and G. Mayer, "Towards the future of interval computations

(editors' introduction to the student issue)", Reliable Computing, 1995, No.

3, pp. 209 214.

[49] V. Kreinovich, V. M. Nesterov, and N. A. Zheludeva*, "Interval Methods
That Are Guaranteed to Underestimate (and the resulting new justification

of Kaucher arithmetic)", Reliable Computing, 1996, Vol. 2, No. 2, pp. 119-
124.

[50] V. Kreinovich and H. T. Nguyen, "Applications of fuzzy intervals: a skeletal
outline of papers presented at this section", In: L. Hall, H. Ying, R. Lan-

gari, and J. Yen (eds.), NAFIPS/IFIS/NASA'94, Proceedings of the First
International Joint Conference of The North American Fuzzy Information

Processing Society Biannual Conference, The Industrial Fuzzy Control and

Intelligent Systems Conference, and The NASA Joint Technology Work-

shop on Neural Networks and Fuzzy Logic, San Antonio, December 18-21,

1994, IEEE, Piscataway, NJ, pp. 461-463.

[51] V. Kreinovich and H. T. Nguyen, "On tlilbert's Thirteenth Problem for
Soft Computing", Proceedings of the Joint 4th IEEE Conference on Fuzzy
Systems and 2nd IFES, Yokohama, Japan, March 20-24, 1995, Vol. IV, pp.
2089-2094.

[52] V. Kreinovich, H. T. Nguyen, O. Sirisaengtaksin, "On approximation of
controls in distributed systems by fuzzy controllers", In: B. Bouchon-

Meunier, R. R. Yager, and L. A. Zadeh (eds.), Fuzzy Logic and Soft Com-

puting, World Scientific, 1995, pp. 137-145.

[53] V. Kreinovich, H. T. Nguyen, and E. A. Walker, "Maximum entropy (Max-
Ent) method in expert systems and intelligent control: new possibilities and

limitations", In: Ken Hanson and Richard Silver, Eds., Maximum Entropy

and Bayesian Methods, Santa Fe, New Mexico, 1995, Kluwer Academic
Publishers, Dordrecht, Boston, 1996 (to appear).

[54] V. Kreinovich, H. Nguyen, and P. Wojeieehowski, "Fuzzy Logic as Applied
Linear Logic", BUlletin for Studies and Exchanges on Fuzziness and its

AppLications (BUSEFAL), No. 67, July 1996, pp. 4-13.

34



[55]V. Kreinovich,J. Perluissi,andM. Koshelev*,"A newmethodof mea-
suringstrongcurrentsby theirmagneticfields",Computers F_ Electrical

Engineering, 1997 (to appear).

[56] V. Kreinovich and R. Trejo, "Optimal interval computation techniques:
optimization of numerical methods in case of uncertainty", In: Marcilia

A. Campos (ed.), Abstracts of the H Workshop on Computer Arithmetic,
Interval and Symbolic Computation (WAI'96), Recife, Pernambuco, Brazil,

August 7-8, 1996, pp. 48 50.

[57] V. Kreinovich and K. Villaverde, "A Quadratic-Time Algorithm For
Smoothing Interval Functions", Reliable Computing, 1996, Vol. 2, No. 3,

pp. 255-264.

[58] V. Kfirkov£, P. C. Kainen, and V. Kreinovich, "Dimension-independent
rates of approximation by neural networks and variation with respect

to half-spaces", Proceedings of World Congress on Neural Networks,

WCNN'95, Washington, DC, July 1995, INNS Press, NJ, 1995, Vol. I,

pp. 54-57.

[59] V. Kflrkov£, P. C. Kainen, and V. Kreinovich, "Estimates of the Number of
Hidden Units and Variation with Respect to Half-spaces", Neural Networks,

1996 (to appear).

[60] A. V. Lakeyev and V. Kreinovich, "If Input Intervals Are Small Enough,
Then Interval Computations Are Almost Always Easy", Reliable Com-

puting, 1995, Supplement (Extended Abstracts of APIC'95: International
Workshop on Applications of Interval Computations, El Paso, TX, Febr.

23-25, 1995), pp. 134- 139.

[61] A. V. Lakeyev and V. Kreinovieh, "NP-hard classes of linear algebraic

systems with uncertainties", Reliable Computing, 1997, Vol. 3, No. 1, pp.

1-31 (to appear).

[62] C. Langrand, V. Kreinovich, and H. T. Nguyen, "Two-dimensional fuzzy
logic for expert systems", Sizth International Fuzzy Systems Association

World Congress, San Paulo, Brazil, July 22-28, 1995, Vol. 1, pp. 221-224.

[63] R. N. Lea and V. Kreinovich, "Intelligent Control Makes Sense Even With-
out Expert Knowledge: an Explanation", Reliable Computing, 1995, Sup-

plement (Extended Abstracts of APIC'95: International Workshop on Ap-

plications of Interval Computations, El Paso, TX, Febr. 23-25, 1995), pp.
140 145.

[64] R. Lea, V. Kreinovich, and R. Trejo*, "Optimal interval enclosures for
fractionally-linear functions, and their application to intelligent control",

Reliable Computing, 1996, Vol. 2, No. 3, pp. 265-286.

35



[65]J.Lorkowski* and V. Kreinovich. "If we measure a number, we get an inter-
val. What if we measure a function or an operator?", Reliable Computing,

1996, Vol. 2, No. 3, pp. 287-298.

[66] D. Misane and V. Kreinovich, "The necessity to check consistency explains
the use of parallelepipeds in describing uncertainty", Geombinatorics, 1996,

Vol. 5, No. 3, pp. 109 120.

[67] S. Nesterov and V. Kreinovich, "The worse, the better: a survey of para-
doxical computational complexity of interval computations", In: Marcilia

A. Campos (ed.), Abstracts of the II Workshop on Computer Arithmetic,

Interval and Symbolic Computation (WAI'96), Recife, Pernambuco, Brazil,

August 7-8, 1996, pp. 61A-63A.

[68] H. T. Nguyen, O. M. Kosheleva*, and V. Kreinovich, "Is the success of

fuzzy logic really paradoxical? Or: Towards the actual logic behind expert
systems", International Journal of Inlelligent Systems, 1996, Vol. 11, No.

5, pp. 295 326.

[69] H. T. Nguyen and V. Kreinovich, "Towards theoretical foundations of soft
computing applications", Proceedings of the lI-th IEEE CAAI, Conference

on Applications of Artificial Intelligence, Los Angeles, CA, February 20-22,

1995, pp. 368-373.

[70] H. T. Nguyen and V. Kreinovich, "When is an algorithm feasible? Soft
computing approach", Proceedings of the Joint 4th IEEE Conference on

Fuzzy Systems and 2nd IFES, Yokohama, Japan, March 20-24, 1995, Vol.

IV, pp. 2109-2112.

[71] H. T. Nguyen and V. Kreinovich, "On Logical Equivalence in Fuzzy Logic",
Sixth International Fuzzy Systems Association World Congress, San Pauio,

Brazil, July 22-28, 1995, Vol. 1, pp. 209 212.

[72] B. T. Nguyen and V. Kreinovich, "Towards theoretical foundations of soft

computing applications", International Journal on Uncertainty, Fuzziness,
and Knowledge-Based Systems, 1995, Vol. 3, No. 3, pp. 341 373.

[73] H. T. Nguyen and V. Kreinovich, "On Re-Scaling In Fuzzy Control and
Genetic Algorithms", Proceedings of the 1996 IEEE International Confer-

ence on Fuzzy Systems, New Orleans, September 8-11, 1996, Vol. 3, pp.
1677-1681.

[74] H. T. Nguyen and V. Kreinovich, "Classical-Logic Analogue of a Fuzzy

'Paradox' ", Proceedings of the 1996 IEEE International Conference on

Fuzzy Systems, New Orleans, September 8-11, 1996, Vol. 1, pp. 428-431.

36



[75]H. T. NguyenandV. Kreinovich,"FuzzyLogic,LogicProgramming,and
LinearLogic:Towardsa NewUnderstandingof CommonSense",Pro-

ceedings of NAFIPS'96, Biennial Conference of the North American Fuzzy

Information Processing Society, Berkeley, CA, June 20-22, 1996, pp. 546-
550.

[76] H. T. Nguyen and V. Kreinovich, "Nested Intervals and Sets: Concepts,
Relations to Fuzzy Sets, and Applications", In: R. B. Kearfott et al (eds.),

Applications of Interval Computations, Kluwer, Dordrecht, 1996, pp. 245-
290.

[77] H. T. Nguyen and V. Kreinovich, "Kolmogorov's Theorem and its impact
on soft computing", In: Ronald R. Yager and Janusz Kacprzyk, The Or-

dered Weighted Averaging Operators: Theory, Methodology, and Applica-

tions, Kluwer, Norwell, MA, 1997 (to appear).

[78] H. T. Nguyen, V. Kreinovich, B. Lea, and D. Tolbert*. "Interpolation that
leads to the narrowest intervals, and its application to expert systems and

intelligent control", Reliable Computing, 1995, Vol. 3, No. 1, pp. 299-316.

[79] H. T. Nguyen, V. Kreinovich, and O. Sirisaengtaksin, "Fuzzy control as a
universal control tool", Fuzzy Sets and Systems, 1996, Vol. 80, No. l, pp.

71-86.

[80] H. T. Nguyen, V. Kreinovich, and D. Sprecher, "Normal forms for fuzzy
logic an application of Kolmogorov's theorem" International Journal on
Uncertainty, Fuzziness, and Knowledge-Based Systems, 1996, Vol. 4, No.

4, pp. 331-349.

[81] H. T. Nguyen, V. Kreinovich, V. Nesterov, and M. Nakamura*, "On hard-
ware support for interval computations and for soft computing: a theorem",
IEEE Transactions on Fuzzy Systems (to appear)

[82] O. Sirisaengtaksin, P. Kainen, V. Kreinovich, and V. Kurkova, "For neural
networks, even approximate function determines form", Proceedings of the
First International Conference on Neural, Parallel, and Scientific Compu-

tations, Atlanta, GA, May 28-31, 1995, Vol. 1, pp. 424 426.

[83] L. M. Rocha, V. Kreinovich, and R. B. Kearfott, "Computing uncertainty
in interval based sets", In: R. B. Kearfott et al (eds.), Applications of

Interval Computations, Kluwer, Dordrecht, 1996, pp. 337-380.

[84] E. Serrano*, V. P. Pytchenko*, V. M. Rubinstein, and V. Kreinovich, "Er-
ror Estimate of the Result of Measuring Laser Beam Diameter", Reliable

Computing, 1995, Supplement (Extended Abstracts of APIC'95: Interna-
tional Workshop on Applications of Interval Computations, El Paso, TX,

Febr. 23-25, 1995), pp. 176-180.

37



[85]S.SmithandV.Kreinovich,"InCaseofIntervalUncertainty,OptimalCon-
trol isNP-HardEvenforLinearPlants,soExpertKnowledgeisNeeded",
Reliable Computing, 1995, Supplement (Extended Abstracts of APIC'95:

International Workshop on Applications of Interval Computations, El Paso,

TX, Febr. 23-25, 1995), pp. 190 193.

[86] B. Traylor*, V. Kreinovich, "A bright side of NP-hardness of interval com-

putations: interval heuristics applied to NP-problems", Reliable Comput-

ing, 1995, Vol. 1, No. 3, pp. 343-360.

[87] I. B. Turksen and V. Kreinovich, "Fuzzy implication revisited: a new type
of fuzzy implication explains Yager's implication operation", In: Vladimir

Dimitrov and Judith Dimitrov (eds.), Fuzzy Logic and the Management of

Complexity (Proceedings of the 1996 International Discourse), UTS Publ.,

Sydney, Australia, 1996, Vol. 3, pp. 292-295.

[88] K. Villaverde* and V. Kreinovich, "Parallel algorithm that locates local
extrema of a function of one variable from interval measurement results",

Reliable Computing, 1995, Supplement (Extended Abstracts of APIC'95:
International Workshop on Applications of Interval Computations, El Paso,

TX, Febr. 23-25, 1995), pp. 212-219.

[89] G. W. Walster and V. Kreinovich, "For unknown-but-bounded errors, in-
terval estimates are often better than averaging", ACM SIGNUM Newslet-

ter, 1996, Vol. 31, No. 2, pp. 6-19.

[90] P. J. Wojciechowski and V. Kreinovich, "On the Lattice Extensions of
Partial Orders of Rings", Communications in Algebra, 1997 (to appear).

[91] Q. Zuo*, I. B. Turksen, H. T. Nguyen, and V. Kreinovich, "In expert sys-
tems, even if we fix AND/OR operations, a natural answer to a composite

query is the interval of possible degrees of belief", Reliable Computing,

1995, Supplement (Extended Abstracts of APIC'95: International Work-
shop on Applications of Interval Computations, E1 Paso, TX, Febr. 23 25,

1995), pp. 236-240.

[T1] M. Baral*, Incorporating deadlines in lnternet message tra O_c, Master

Project, Department of Computer Science, University of Texas at El Paso,
1995.

[T2] L. Chee*, Computing the Value of a Boolean expression with intervals is
NP-hard, Master Thesis, Department of Computer Science, University of

Texas at El Paso, 1996.

IT3] B. Cloteaux*, On the Computational Power of Using Chemical Reactions,
Master Thesis, Department of Computer Science, University of Texas at E1

Paso, 1996.

38



[T4]S.Hullahalli*,Why fractionally linear formulas work well in adaptive fuzzy
control?, Master Thesis, Department of Computer Science, University of

Texas at El Paso, 1994.

[T5] P. Kahl*, Solving Narrow-Interval Linear Equation Systems Is NP-Hard,
Master Thesis, Department of Computer Science, University of Texas at El

Paso, 1996.

IT6] R. A. Trejo*, An improved rating system: its foundations and computa-
tional problems, Master Thesis, Department of Computer Science, Univer-

sity of Texas at El Paso, 1994.

39


