406 research outputs found

    Transmit and Receive Signal Processing for MIMO Terrestrial Broadcast Systems

    Full text link
    [EN] Multiple-Input Multiple-Output (MIMO) technology in Digital Terrestrial Television (DTT) networks has the potential to increase the spectral efficiency and improve network coverage to cope with the competition of limited spectrum use (e.g., assignment of digital dividend and spectrum demands of mobile broadband), the appearance of new high data rate services (e.g., ultra-high definition TV - UHDTV), and the ubiquity of the content (e.g., fixed, portable, and mobile). It is widely recognised that MIMO can provide multiple benefits such as additional receive power due to array gain, higher resilience against signal outages due to spatial diversity, and higher data rates due to the spatial multiplexing gain of the MIMO channel. These benefits can be achieved without additional transmit power nor additional bandwidth, but normally come at the expense of a higher system complexity at the transmitter and receiver ends. The final system performance gains due to the use of MIMO directly depend on physical characteristics of the propagation environment such as spatial correlation, antenna orientation, and/or power imbalances experienced at the transmit aerials. Additionally, due to complexity constraints and finite-precision arithmetic at the receivers, it is crucial for the overall system performance to carefully design specific signal processing algorithms. This dissertation focuses on transmit and received signal processing for DTT systems using MIMO-BICM (Bit-Interleaved Coded Modulation) without feedback channel to the transmitter from the receiver terminals. At the transmitter side, this thesis presents investigations on MIMO precoding in DTT systems to overcome system degradations due to different channel conditions. At the receiver side, the focus is given on design and evaluation of practical MIMO-BICM receivers based on quantized information and its impact in both the in-chip memory size and system performance. These investigations are carried within the standardization process of DVB-NGH (Digital Video Broadcasting - Next Generation Handheld) the handheld evolution of DVB-T2 (Terrestrial - Second Generation), and ATSC 3.0 (Advanced Television Systems Committee - Third Generation), which incorporate MIMO-BICM as key technology to overcome the Shannon limit of single antenna communications. Nonetheless, this dissertation employs a generic approach in the design, analysis and evaluations, hence, the results and ideas can be applied to other wireless broadcast communication systems using MIMO-BICM.[ES] La tecnología de múltiples entradas y múltiples salidas (MIMO) en redes de Televisión Digital Terrestre (TDT) tiene el potencial de incrementar la eficiencia espectral y mejorar la cobertura de red para afrontar las demandas de uso del escaso espectro electromagnético (e.g., designación del dividendo digital y la demanda de espectro por parte de las redes de comunicaciones móviles), la aparición de nuevos contenidos de alta tasa de datos (e.g., ultra-high definition TV - UHDTV) y la ubicuidad del contenido (e.g., fijo, portable y móvil). Es ampliamente reconocido que MIMO puede proporcionar múltiples beneficios como: potencia recibida adicional gracias a las ganancias de array, mayor robustez contra desvanecimientos de la señal gracias a la diversidad espacial y mayores tasas de transmisión gracias a la ganancia por multiplexado del canal MIMO. Estos beneficios se pueden conseguir sin incrementar la potencia transmitida ni el ancho de banda, pero normalmente se obtienen a expensas de una mayor complejidad del sistema tanto en el transmisor como en el receptor. Las ganancias de rendimiento finales debido al uso de MIMO dependen directamente de las características físicas del entorno de propagación como: la correlación entre los canales espaciales, la orientación de las antenas y/o los desbalances de potencia sufridos en las antenas transmisoras. Adicionalmente, debido a restricciones en la complejidad y aritmética de precisión finita en los receptores, es fundamental para el rendimiento global del sistema un diseño cuidadoso de algoritmos específicos de procesado de señal. Esta tesis doctoral se centra en el procesado de señal, tanto en el transmisor como en el receptor, para sistemas TDT que implementan MIMO-BICM (Bit-Interleaved Coded Modulation) sin canal de retorno hacia el transmisor desde los receptores. En el transmisor esta tesis presenta investigaciones en precoding MIMO en sistemas TDT para superar las degradaciones del sistema debidas a diferentes condiciones del canal. En el receptor se presta especial atención al diseño y evaluación de receptores prácticos MIMO-BICM basados en información cuantificada y a su impacto tanto en la memoria del chip como en el rendimiento del sistema. Estas investigaciones se llevan a cabo en el contexto de estandarización de DVB-NGH (Digital Video Broadcasting - Next Generation Handheld), la evolución portátil de DVB-T2 (Second Generation Terrestrial), y ATSC 3.0 (Advanced Television Systems Commitee - Third Generation) que incorporan MIMO-BICM como clave tecnológica para superar el límite de Shannon para comunicaciones con una única antena. No obstante, esta tesis doctoral emplea un método genérico tanto para el diseño, análisis y evaluación, por lo que los resultados e ideas pueden ser aplicados a otros sistemas de comunicación inalámbricos que empleen MIMO-BICM.[CA] La tecnologia de múltiples entrades i múltiples eixides (MIMO) en xarxes de Televisió Digital Terrestre (TDT) té el potencial d'incrementar l'eficiència espectral i millorar la cobertura de xarxa per a afrontar les demandes d'ús de l'escàs espectre electromagnètic (e.g., designació del dividend digital i la demanda d'espectre per part de les xarxes de comunicacions mòbils), l'aparició de nous continguts d'alta taxa de dades (e.g., ultra-high deffinition TV - UHDTV) i la ubiqüitat del contingut (e.g., fix, portàtil i mòbil). És àmpliament reconegut que MIMO pot proporcionar múltiples beneficis com: potència rebuda addicional gràcies als guanys de array, major robustesa contra esvaïments del senyal gràcies a la diversitat espacial i majors taxes de transmissió gràcies al guany per multiplexat del canal MIMO. Aquests beneficis es poden aconseguir sense incrementar la potència transmesa ni l'ample de banda, però normalment s'obtenen a costa d'una major complexitat del sistema tant en el transmissor com en el receptor. Els guanys de rendiment finals a causa de l'ús de MIMO depenen directament de les característiques físiques de l'entorn de propagació com: la correlació entre els canals espacials, l'orientació de les antenes, i/o els desequilibris de potència patits en les antenes transmissores. Addicionalment, a causa de restriccions en la complexitat i aritmètica de precisió finita en els receptors, és fonamental per al rendiment global del sistema un disseny acurat d'algorismes específics de processament de senyal. Aquesta tesi doctoral se centra en el processament de senyal tant en el transmissor com en el receptor per a sistemes TDT que implementen MIMO-BICM (Bit-Interleaved Coded Modulation) sense canal de tornada cap al transmissor des dels receptors. En el transmissor aquesta tesi presenta recerques en precoding MIMO en sistemes TDT per a superar les degradacions del sistema degudes a diferents condicions del canal. En el receptor es presta especial atenció al disseny i avaluació de receptors pràctics MIMO-BICM basats en informació quantificada i al seu impacte tant en la memòria del xip com en el rendiment del sistema. Aquestes recerques es duen a terme en el context d'estandardització de DVB-NGH (Digital Video Broadcasting - Next Generation Handheld), l'evolució portàtil de DVB-T2 (Second Generation Terrestrial), i ATSC 3.0 (Advanced Television Systems Commitee - Third Generation) que incorporen MIMO-BICM com a clau tecnològica per a superar el límit de Shannon per a comunicacions amb una única antena. No obstant açò, aquesta tesi doctoral empra un mètode genèric tant per al disseny, anàlisi i avaluació, per la qual cosa els resultats i idees poden ser aplicats a altres sistemes de comunicació sense fils que empren MIMO-BICM.Vargas Paredero, DE. (2016). Transmit and Receive Signal Processing for MIMO Terrestrial Broadcast Systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/66081TESISPremiad

    A Scalable VLSI Architecture for Soft-Input Soft-Output Depth-First Sphere Decoding

    Full text link
    Multiple-input multiple-output (MIMO) wireless transmission imposes huge challenges on the design of efficient hardware architectures for iterative receivers. A major challenge is soft-input soft-output (SISO) MIMO demapping, often approached by sphere decoding (SD). In this paper, we introduce the - to our best knowledge - first VLSI architecture for SISO SD applying a single tree-search approach. Compared with a soft-output-only base architecture similar to the one proposed by Studer et al. in IEEE J-SAC 2008, the architectural modifications for soft input still allow a one-node-per-cycle execution. For a 4x4 16-QAM system, the area increases by 57% and the operating frequency degrades by 34% only.Comment: Accepted for IEEE Transactions on Circuits and Systems II Express Briefs, May 2010. This draft from April 2010 will not be updated any more. Please refer to IEEE Xplore for the final version. *) The final publication will appear with the modified title "A Scalable VLSI Architecture for Soft-Input Soft-Output Single Tree-Search Sphere Decoding

    The Telecommunications and Data Acquisition Report

    Get PDF
    This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Mission Operations Directorate (TMOD), which now includes the former Telecommunications and Data Acquisition (TDA) Office. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC). TMOD also performs work funded by other NASA program offices through and with the cooperation of OSC. The first of these is the Orbital Debris Radar Program funded by the Office of Space Systems Development. It exists at Goldstone only and makes use of the planetary radar capability when the antennas are configured as science instruments making direct observations of the planets, their satellites, and asteroids of our solar system. The Office of Space Sciences funds the data reduction and science analyses of data obtained by the Goldstone Solar System Radar. The antennas at all three complexes are also configured for radio astronomy research and, as such, conduct experiments funded by the National Science Foundation in the U.S. and other agencies at the overseas complexes. These experiments are either in microwave spectroscopy or very long baseline interferometry. Finally, tasks funded under the JPL Director's Discretionary Fund and the Caltech President's Fund that involve TMOD are included. This and each succeeding issue of 'The Telecommunications and Data Acquisition Progress Report' will present material in some, but not necessarily all, of the aforementioned programs

    On The Performance Of 1-Bit ADC In Massive MIMO Communication Systems

    Get PDF
    Massive multiple-input multiple-output (MIMO) with low-resolution analog-to-digital converters is a rational solution to deal with hardware costs and accomplish optimal energy efficiency. In particular, utilizing 1-bit ADCs is one of the best choices for massive MIMO systems. This paper investigates the performance of the 1-bit ADC in the wireless coded communication systems where the robust channel coding, protograph low-density parity-check code (LDPC), is employed. The investigation reveals that the performance of the conventional 1-bit ADC with the truncation limit of 3-sigma is severely destroyed by the quantization distortion even when the number of antennas increases to 100. The optimized 1-bit ADC, though having substantial performance gain over the conventional one, is also affected by the quantization distortion at high coding rates and low MIMO configurations. Importantly, the investigation results suggest that the protograph LDPC codes should be re-designed to combat the negative effect of the quantization distortion of the 1-bit ADC

    A Scalable Correlator Architecture Based on Modular FPGA Hardware, Reuseable Gateware, and Data Packetization

    Full text link
    A new generation of radio telescopes is achieving unprecedented levels of sensitivity and resolution, as well as increased agility and field-of-view, by employing high-performance digital signal processing hardware to phase and correlate large numbers of antennas. The computational demands of these imaging systems scale in proportion to BMN^2, where B is the signal bandwidth, M is the number of independent beams, and N is the number of antennas. The specifications of many new arrays lead to demands in excess of tens of PetaOps per second. To meet this challenge, we have developed a general purpose correlator architecture using standard 10-Gbit Ethernet switches to pass data between flexible hardware modules containing Field Programmable Gate Array (FPGA) chips. These chips are programmed using open-source signal processing libraries we have developed to be flexible, scalable, and chip-independent. This work reduces the time and cost of implementing a wide range of signal processing systems, with correlators foremost among them,and facilitates upgrading to new generations of processing technology. We present several correlator deployments, including a 16-antenna, 200-MHz bandwidth, 4-bit, full Stokes parameter application deployed on the Precision Array for Probing the Epoch of Reionization.Comment: Accepted to Publications of the Astronomy Society of the Pacific. 31 pages. v2: corrected typo, v3: corrected Fig. 1

    Authentication of GNSS signal by Information-theoretic security

    Get PDF
    In this work a new authentication protocol for global navigation satellite system (GNSS) signals is proposed. The protocol uses artificial noise to confuse the adversary and send an initially hidden verification message. Correctness is based on information-theoretic security and performances are evaluated in terms of secrecy capacityope

    The Second Spaceborne Imaging Radar Symposium

    Get PDF
    Summaries of the papers presented at the Second Spaceborne Imaging Radar Symposium are presented. The purpose of the symposium was to present an overwiew of recent developments in the different scientific and technological fields related to spaceborne imaging radars and to present future international plans
    • …
    corecore