411 research outputs found

    Speaker segmentation and clustering

    Get PDF
    This survey focuses on two challenging speech processing topics, namely: speaker segmentation and speaker clustering. Speaker segmentation aims at finding speaker change points in an audio stream, whereas speaker clustering aims at grouping speech segments based on speaker characteristics. Model-based, metric-based, and hybrid speaker segmentation algorithms are reviewed. Concerning speaker clustering, deterministic and probabilistic algorithms are examined. A comparative assessment of the reviewed algorithms is undertaken, the algorithm advantages and disadvantages are indicated, insight to the algorithms is offered, and deductions as well as recommendations are given. Rich transcription and movie analysis are candidate applications that benefit from combined speaker segmentation and clustering. © 2007 Elsevier B.V. All rights reserved

    Automatic Emotion Recognition: Quantifying Dynamics and Structure in Human Behavior.

    Full text link
    Emotion is a central part of human interaction, one that has a huge influence on its overall tone and outcome. Today's human-centered interactive technology can greatly benefit from automatic emotion recognition, as the extracted affective information can be used to measure, transmit, and respond to user needs. However, developing such systems is challenging due to the complexity of emotional expressions and their dynamics in terms of the inherent multimodality between audio and visual expressions, as well as the mixed factors of modulation that arise when a person speaks. To overcome these challenges, this thesis presents data-driven approaches that can quantify the underlying dynamics in audio-visual affective behavior. The first set of studies lay the foundation and central motivation of this thesis. We discover that it is crucial to model complex non-linear interactions between audio and visual emotion expressions, and that dynamic emotion patterns can be used in emotion recognition. Next, the understanding of the complex characteristics of emotion from the first set of studies leads us to examine multiple sources of modulation in audio-visual affective behavior. Specifically, we focus on how speech modulates facial displays of emotion. We develop a framework that uses speech signals which alter the temporal dynamics of individual facial regions to temporally segment and classify facial displays of emotion. Finally, we present methods to discover regions of emotionally salient events in a given audio-visual data. We demonstrate that different modalities, such as the upper face, lower face, and speech, express emotion with different timings and time scales, varying for each emotion type. We further extend this idea into another aspect of human behavior: human action events in videos. We show how transition patterns between events can be used for automatically segmenting and classifying action events. Our experimental results on audio-visual datasets show that the proposed systems not only improve performance, but also provide descriptions of how affective behaviors change over time. We conclude this dissertation with the future directions that will innovate three main research topics: machine adaptation for personalized technology, human-human interaction assistant systems, and human-centered multimedia content analysis.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133459/1/yelinkim_1.pd

    Computationally Efficient and Robust BIC-Based Speaker Segmentation

    Get PDF
    An algorithm for automatic speaker segmentation based on the Bayesian information criterion (BIC) is presented. BIC tests are not performed for every window shift, as previously, but when a speaker change is most probable to occur. This is done by estimating the next probable change point thanks to a model of utterance durations. It is found that the inverse Gaussian fits best the distribution of utterance durations. As a result, less BIC tests are needed, making the proposed system less computationally demanding in time and memory, and considerably more efficient with respect to missed speaker change points. A feature selection algorithm based on branch and bound search strategy is applied in order to identify the most efficient features for speaker segmentation. Furthermore, a new theoretical formulation of BIC is derived by applying centering and simultaneous diagonalization. This formulation is considerably more computationally efficient than the standard BIC, when the covariance matrices are estimated by other estimators than the usual maximum-likelihood ones. Two commonly used pairs of figures of merit are employed and their relationship is established. Computational efficiency is achieved through the speaker utterance modeling, whereas robustness is achieved by feature selection and application of BIC tests at appropriately selected time instants. Experimental results indicate that the proposed modifications yield a superior performance compared to existing approaches

    Audio segmentation-by-classification approach based on factor analysis in broadcast news domain

    Get PDF
    This paper studies a novel audio segmentation-by-classification approach based on factor analysis. The proposed technique compensates the within-class variability by using class-dependent factor loading matrices and obtains the scores by computing the log-likelihood ratio for the class model to a non-class model over fixed-length windows. Afterwards, these scores are smoothed to yield longer contiguous segments of the same class by means of different back-end systems. Unlike previous solutions, our proposal does not make use of specific acoustic features and does not need a hierarchical structure. The proposed method is applied to segment and classify audios coming from TV shows into five different acoustic classes: speech, music, speech with music, speech with noise, and others. The technique is compared to a hierarchical system with specific acoustic features achieving a significant error reduction

    An Information Theoretic Approach to Speaker Diarization of Meeting Recordings

    Get PDF
    In this thesis we investigate a non parametric approach to speaker diarization for meeting recordings based on an information theoretic framework. The problem is formulated using the Information Bottleneck (IB) principle. Unlike other approaches where the distance between speaker segments is arbitrarily introduced, the IB method seeks the partition that maximizes the mutual information between observations and variables relevant for the problem while minimizing the distortion between observations. The distance between speech segments is selected as the Jensen-Shannon divergence as it arises from the IB objective function optimization. In the first part of the thesis, we explore IB based diarization with Mel frequency cepstral coefficients (MFCC) as input features. We study issues related to IB based speaker diarization such as optimizing the IB objective function, criteria for inferring the number of speakers. Furthermore, we benchmark the proposed system against a state-of-the-art systemon the NIST RT06 (Rich Transcription) meeting data for speaker diarization. The IB based system achieves similar speaker error rates (16.8%) as compared to a baseline HMM/GMM system (17.0%). This approach being non parametric clustering, perform diarization six times faster than realtime while the baseline is slower than realtime. The second part of thesis proposes a novel feature combination system in the context of IB diarization. Both speaker clustering and speaker realignment steps are discussed. In contrary to current systems, the proposed method avoids the feature combination by averaging log-likelihood scores. Two different sets of features were considered – (a) combination of MFCC features with time delay of arrival features (b) a four feature stream combination that combines MFCC, TDOA, modulation spectrum and frequency domain linear prediction. Experiments show that the proposed system achieve 5% absolute improvement over the baseline in case of two feature combination, and 7% in case of four feature combination. The increase in algorithm complexity of the IB system is minimal with more features. The system with four feature input performs in real time that is ten times faster than the GMM based system

    Speech data analysis for semantic indexing of video of simulated medical crises.

    Get PDF
    The Simulation for Pediatric Assessment, Resuscitation, and Communication (SPARC) group within the Department of Pediatrics at the University of Louisville, was established to enhance the care of children by using simulation based educational methodologies to improve patient safety and strengthen clinician-patient interactions. After each simulation session, the physician must manually review and annotate the recordings and then debrief the trainees. The physician responsible for the simulation has recorded 100s of videos, and is seeking solutions that can automate the process. This dissertation introduces our developed system for efficient segmentation and semantic indexing of videos of medical simulations using machine learning methods. It provides the physician with automated tools to review important sections of the simulation by identifying who spoke, when and what was his/her emotion. Only audio information is extracted and analyzed because the quality of the image recording is low and the visual environment is static for most parts. Our proposed system includes four main components: preprocessing, speaker segmentation, speaker identification, and emotion recognition. The preprocessing consists of first extracting the audio component from the video recording. Then, extracting various low-level audio features to detect and remove silence segments. We investigate and compare two different approaches for this task. The first one is threshold-based and the second one is classification-based. The second main component of the proposed system consists of detecting speaker changing points for the purpose of segmenting the audio stream. We propose two fusion methods for this task. The speaker identification and emotion recognition components of our system are designed to provide users the capability to browse the video and retrieve shots that identify ”who spoke, when, and the speaker’s emotion” for further analysis. For this component, we propose two feature representation methods that map audio segments of arbitary length to a feature vector with fixed dimensions. The first one is based on soft bag-of-word (BoW) feature representations. In particular, we define three types of BoW that are based on crisp, fuzzy, and possibilistic voting. The second feature representation is a generalization of the BoW and is based on Fisher Vector (FV). FV uses the Fisher Kernel principle and combines the benefits of generative and discriminative approaches. The proposed feature representations are used within two learning frameworks. The first one is supervised learning and assumes that a large collection of labeled training data is available. Within this framework, we use standard classifiers including K-nearest neighbor (K-NN), support vector machine (SVM), and Naive Bayes. The second framework is based on semi-supervised learning where only a limited amount of labeled training samples are available. We use an approach that is based on label propagation. Our proposed algorithms were evaluated using 15 medical simulation sessions. The results were analyzed and compared to those obtained using state-of-the-art algorithms. We show that our proposed speech segmentation fusion algorithms and feature mappings outperform existing methods. We also integrated all proposed algorithms and developed a GUI prototype system for subjective evaluation. This prototype processes medical simulation video and provides the user with a visual summary of the different speech segments. It also allows the user to browse videos and retrieve scenes that provide answers to semantic queries such as: who spoke and when; who interrupted who? and what was the emotion of the speaker? The GUI prototype can also provide summary statistics of each simulation video. Examples include: for how long did each person spoke? What is the longest uninterrupted speech segment? Is there an unusual large number of pauses within the speech segment of a given speaker

    AGGLOMERATIVE INFORMATION BOTTLENECK FOR SPEAKER DIARIZATION OF MEETINGS DATA

    Get PDF
    In this paper, we investigate the use of agglomerative Information Bottleneck (aIB) clustering for the speaker diarization task of meetings data. In contrary to the state-of-the-art diarization systems that models individual speakers with Gaussian Mixture Models, the proposed algorithm is completely non parametric . Both clustering and model selection issues of non-parametric models are addressed in this work. The proposed algorithm is evaluated on meeting data on the RT06 evaluation data set. The system is able to achieve Diarization Error Rates comparable to state-of-the-art systems at a much lower computational complexity

    Agglomerative information bottleneck for speaker diarization of meetings data

    Full text link

    Learning and mining from personal digital archives

    Get PDF
    Given the explosion of new sensing technologies, data storage has become significantly cheaper and consequently, people increasingly rely on wearable devices to create personal digital archives. Lifelogging is the act of recording aspects of life in digital format for a variety of purposes such as aiding human memory, analysing human lifestyle and diet monitoring. In this dissertation we are concerned with Visual Lifelogging, a form of lifelogging based on the passive capture of photographs by a wearable camera. Cameras, such as Microsoft's SenseCam can record up to 4,000 images per day as well as logging data from several incorporated sensors. Considering the volume, complexity and heterogeneous nature of such data collections, it is a signifcant challenge to interpret and extract knowledge for the practical use of lifeloggers and others. In this dissertation, time series analysis methods have been used to identify and extract useful information from temporal lifelogging images data, without benefit of prior knowledge. We focus, in particular, on three fundamental topics: noise reduction, structure and characterization of the raw data; the detection of multi-scale patterns; and the mining of important, previously unknown repeated patterns in the time series of lifelog image data. Firstly, we show that Detrended Fluctuation Analysis (DFA) highlights the feature of very high correlation in lifelogging image collections. Secondly, we show that study of equal-time Cross-Correlation Matrix demonstrates atypical or non-stationary characteristics in these images. Next, noise reduction in the Cross-Correlation Matrix is addressed by Random Matrix Theory (RMT) before Wavelet multiscaling is used to characterize the `most important' or `unusual' events through analysis of the associated dynamics of the eigenspectrum. A motif discovery technique is explored for detection of recurring and recognizable episodes of an individual's image data. Finally, we apply these motif discovery techniques to two known lifelog data collections, All I Have Seen (AIHS) and NTCIR-12 Lifelog, in order to examine multivariate recurrent patterns of multiple-lifelogging users
    corecore