460 research outputs found

    The Encyclopedia of Neutrosophic Researchers - vol. 1

    Get PDF
    This is the first volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation. The authors are listed alphabetically. The introduction contains a short history of neutrosophics, together with links to the main papers and books. Neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic precalculus, neutrosophic calculus and so on are gaining significant attention in solving many real life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistent, and indeterminacy. In the past years the fields of neutrosophics have been extended and applied in various fields, such as: artificial intelligence, data mining, soft computing, decision making in incomplete / indeterminate / inconsistent information systems, image processing, computational modelling, robotics, medical diagnosis, biomedical engineering, investment problems, economic forecasting, social science, humanistic and practical achievements

    Full Issue

    Get PDF

    A systematic review on multi-criteria group decision-making methods based on weights: analysis and classification scheme

    Get PDF
    Interest in group decision-making (GDM) has been increasing prominently over the last decade. Access to global databases, sophisticated sensors which can obtain multiple inputs or complex problems requiring opinions from several experts have driven interest in data aggregation. Consequently, the field has been widely studied from several viewpoints and multiple approaches have been proposed. Nevertheless, there is a lack of general framework. Moreover, this problem is exacerbated in the case of experts’ weighting methods, one of the most widely-used techniques to deal with multiple source aggregation. This lack of general classification scheme, or a guide to assist expert knowledge, leads to ambiguity or misreading for readers, who may be overwhelmed by the large amount of unclassified information currently available. To invert this situation, a general GDM framework is presented which divides and classifies all data aggregation techniques, focusing on and expanding the classification of experts’ weighting methods in terms of analysis type by carrying out an in-depth literature review. Results are not only classified but analysed and discussed regarding multiple characteristics, such as MCDMs in which they are applied, type of data used, ideal solutions considered or when they are applied. Furthermore, general requirements supplement this analysis such as initial influence, or component division considerations. As a result, this paper provides not only a general classification scheme and a detailed analysis of experts’ weighting methods but also a road map for researchers working on GDM topics or a guide for experts who use these methods. Furthermore, six significant contributions for future research pathways are provided in the conclusions.The first author acknowledges support from the Spanish Ministry of Universities [grant number FPU18/01471]. The second and third author wish to recognize their support from the Serra Hunter program. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/ 501100011033.Peer ReviewedPostprint (published version

    A Multi-Criteria Neutrosophic Group Decision Making Method Based TOPSIS for Supplier Selection

    Get PDF
    The process of multi-criteria group decision making (MCGDM) is of determining the best choice among all of the probable alternatives. The problem of supplier selection on which decision maker has usually vague and imprecise knowledge is a typical example ofmulti criteria group decision-making problem. The conventional crisp techniques has notmuch effective for solvingMCDMproblems because of imprecise or fuzziness nature of the linguistic assessments. To find the exact values for MCGDM problems is both difficult and impossible in more cases in real world. So, it is more reasonable to consider the values of alternatives according to the criteria as single valued neutrosophic sets (SVNS). This paper deal with the technique for order preference by similarity to ideal solution (TOPSIS) approach and extend the TOPSIS method to MCGDM problem with single valued neutrosophic information. The value of each alternative and the weight of each criterion are characterized by single valued neutrosophic numbers. Here, the importance of criteria and alternatives is identified by aggregating individual opinions of decision makers (DMs) via single valued neutrosophic weighted averaging (SVNWA) operator. The proposed method is, easy use, precise and practical for solving MCGDM problem with single valued neutrosophic data. Finally, to show the applicability of the developed method, a numerical experiment for supplier choice is given as an application of single valued neutrosophic TOPSIS method at end of this paper

    CODAS methods for multiple attribute group decision making with interval-valued bipolar uncertain linguistic information and their application to risk assessment of Chinese enterprises’ overseas mergers and acquisitions

    Get PDF
    Bipolar fuzzy set theory has been successfully applied in some areas, but there are situations in real life which can’t be represented by bipolar fuzzy sets. However, all the existing approaches are unsuitable to describe the positive and negative membership degree an element to an uncertain linguistic label to have an interval value, which can reflect the decision maker’s confidence level when they are making an evaluation. In order to overcome this limit, we propose the definition of interval-valued bipolar uncertain linguistic sets (IVBULSs) to solve this problem based on the bipolar fuzzy sets and uncertain linguistic information processing models. In this paper, we extend the traditional information aggregating operators to interval-valued bipolar uncertain linguistic sets (IVBULSs) and propose some IVBUL aggregating operators. Then, we extend the CODAS method to solve multiple attribute group decision making (MAGDM) issues with interval-valued bipolar uncertain linguistic numbers (IVBULNs) based on these operators. An example for risk assessment of Chinese enterprises’ overseas mergers and acquisitions (M&As) is given to illustrate the proposed methodology

    M-generalised q-neutrosophic extension of CoCoSo method

    Get PDF
    Nowadays fuzzy approaches gain popularity to model multi-criteria decision making (MCDM) problems emerging in real-life applications. Modern modelling trends in this field include evaluation of the criteria information uncertainty and vagueness. Traditional neutrosophic sets are considered as the effective tool to express uncertainty of the information. However, in some cases, it cannot cover all recently proposed cases of the fuzzy sets. The m-generalized q-neutrosophic sets (mGqNNs) can effectively deal with this situation. The novel MCDM methodology CoCoSomGqNN is presented in this paper. An illustrative example presents the analysis of the effectiveness of different retrofit strategy selection decisions for the application in the civil engineering industry
    • 

    corecore