542 research outputs found

    Practical classification of different moving targets using automotive radar and deep neural networks

    Get PDF
    In this work, the authors present results for classification of different classes of targets (car, single and multiple people, bicycle) using automotive radar data and different neural networks. A fast implementation of radar algorithms for detection, tracking, and micro-Doppler extraction is proposed in conjunction with the automotive radar transceiver TEF810X and microcontroller unit SR32R274 manufactured by NXP Semiconductors. Three different types of neural networks are considered, namely a classic convolutional network, a residual network, and a combination of convolutional and recurrent network, for different classification problems across the four classes of targets recorded. Considerable accuracy (close to 100% in some cases) and low latency of the radar pre-processing prior to classification (∼0.55 s to produce a 0.5 s long spectrogram) are demonstrated in this study, and possible shortcomings and outstanding issues are discussed

    Indoor person identification using a low-power FMCW radar

    Get PDF
    Contemporary surveillance systems mainly use video cameras as their primary sensor. However, video cameras possess fundamental deficiencies, such as the inability to handle low-light environments, poor weather conditions, and concealing clothing. In contrast, radar devices are able to sense in pitchdark environments and to see through walls. In this paper, we investigate the use of micro-Doppler (MD) signatures retrieved from a low-power radar device to identify a set of persons based on their gait characteristics. To that end, we propose a robust feature learning approach based on deep convolutional neural networks. Given that we aim at providing a solution for a real-world problem, people are allowed to walk around freely in two different rooms. In this setting, the IDentification with Radar data data set is constructed and published, consisting of 150 min of annotated MD data equally spread over five targets. Through experiments, we investigate the effectiveness of both the Doppler and time dimension, showing that our approach achieves a classification error rate of 24.70% on the validation set and 21.54% on the test set for the five targets used. When experimenting with larger time windows, we are able to further lower the error rate

    Radar and RGB-depth sensors for fall detection: a review

    Get PDF
    This paper reviews recent works in the literature on the use of systems based on radar and RGB-Depth (RGB-D) sensors for fall detection, and discusses outstanding research challenges and trends related to this research field. Systems to detect reliably fall events and promptly alert carers and first responders have gained significant interest in the past few years in order to address the societal issue of an increasing number of elderly people living alone, with the associated risk of them falling and the consequences in terms of health treatments, reduced well-being, and costs. The interest in radar and RGB-D sensors is related to their capability to enable contactless and non-intrusive monitoring, which is an advantage for practical deployment and users’ acceptance and compliance, compared with other sensor technologies, such as video-cameras, or wearables. Furthermore, the possibility of combining and fusing information from The heterogeneous types of sensors is expected to improve the overall performance of practical fall detection systems. Researchers from different fields can benefit from multidisciplinary knowledge and awareness of the latest developments in radar and RGB-D sensors that this paper is discussing

    Radar-Based Multi-Target Classification Using Deep Learning

    Get PDF
    Real-time, radar-based human activity and target recognition has several applications in various fields. Examples include hand gesture recognition, border and home surveillance, pedestrian recognition for automotive safety and fall detection for assisted living. This dissertation sought to improve the speed and accuracy of a previously developed model classifying human activity and targets using radar data for outdoor surveillance purposes. An improvement in accuracy and speed of classification helps surveillance systems to provide reliable results on time. For example, the results can be used to intercept trespassers, poachers or smugglers. To achieve these objectives, radar data was collected using a C-band pulse-Doppler radar and converted to spectrograms using the Short-time Fourier transform (STFT) algorithm. Spectrograms of the following classes were utilised in classification: one human walking, two humans walking, one human running, moving vehicles, a swinging sphere and clutter/noise. A seven-layer residual network was proposed, which utilised batch normalisation (BN), global average pooling (GAP), and residual connections to achieve a classification accuracy of 92.90% and 87.72% on the validation and test data, respectively. Compared to the previously proposed model, this represented a 10% improvement in accuracy on the validation data and a 3% improvement on the test data. Applying model quantisation provided up to 3.8 times speedup in inference, with a less than 0.4% accuracy drop on both the validation and test data. The quantised model could support a range of up to 89.91 kilometres in real-time, allowing it to be used in radars that operate within this range

    Multistatic radar classification of armed vs unarmed personnel using neural networks

    Get PDF
    This paper investigates an implementation of an array of distributed neural networks, operating together to classify between unarmed and potentially armed personnel in areas under surveillance using ground based radar. Experimental data collected by the University College London (UCL) multistatic radar system NetRAD is analysed. Neural networks are applied to the extracted micro-Doppler data in order to classify between the two scenarios, and accuracy above 98% is demonstrated on the validation data, showing an improvement over methodologies based on classifiers where human intervention is required. The main advantage of using neural networks is the ability to bypass the manual extraction process of handcrafted features from the radar data, where thresholds and parameters need to be tuned by human operators. Different network architectures are explored, from feed-forward networks to stacked auto-encoders, with the advantages of deep topologies being capable of classifying the spectrograms (Doppler-time patterns) directly. Significant parameters concerning the actual deployment of the networks are also investigated, for example the dwell time (i.e. how long the radar needs to focus on a target in order to achieve classification), and the robustness of the networks in classifying data from new people, whose signatures were unseen during the training stage. Finally, a data ensembling technique is also presented which utilises a weighted decision approach, established beforehand, utilising information from all three sensors, and yielding stable classification accuracies of 99% or more, across all monitored zones

    Performance Analysis of Classification Algorithms for Activity Recognition using Micro-Doppler Feature

    Get PDF
    Classification of different human activities using micro-Doppler data and features is considered in this study, focusing on the distinction between walking and running. 240 recordings from 2 different human subjects were collected in a series of simulations performed in the real motion data from the Carnegie Mellon University Motion Capture Database. The maximum the micro-Doppler frequency shift and the period duration are utilized as two classification criterions. Numerical results are compared against several classification techniques including the Linear Discriminant Analysis (LDA), Naïve Bayes (NB), K-nearest neighbors (KNN), Support Vector Machine(SVM) algorithms. The performance of different classifiers is discussed aiming at identifying the most appropriate features for the walking and running classification

    Personal Identification Using Ultrawideband Radar Measurement of Walking and Sitting Motions and a Convolutional Neural Network

    Full text link
    This study proposes a personal identification technique that applies machine learning with a two-layered convolutional neural network to spectrogram images obtained from radar echoes of a target person in motion. The walking and sitting motions of six participants were measured using an ultrawideband radar system. Time-frequency analysis was applied to the radar signal to generate spectrogram images containing the micro-Doppler components associated with limb movements. A convolutional neural network was trained using the spectrogram images with personal labels to achieve radar-based personal identification. The personal identification accuracies were evaluated experimentally to demonstrate the effectiveness of the proposed technique.Comment: 9 pages, 7 figures, and 3 table

    Toward Deep Learning-Based Human Target Analysis

    Get PDF
    In this chapter, we describe methods toward deep learning-based human target analysis. Firstly, human target analysis in 2D and 3D domains of radar signal is introduced. Furthermore, range-Doppler surface for human target analysis using ultra-wideband radar is described. The construction of range-Doppler surface involves range-Doppler imaging, adaptive threshold detection, and isosurface extraction. In comparison with micro-Doppler profiles and high-resolution range profiles, range-Doppler surface contains range, Doppler, and time information simultaneously. An ellipsoid-based human motion model is designed for validation. Range-Doppler surfaces simulated for different human activities are demonstrated and discussed. With the rapid emergence of deep learning, the development of radar target recognition has been accelerated. We describe several deep learning algorithms for human target analysis. Finally, a few future research considerations are listed to spark inspiration
    • …
    corecore