
Structured inference networks using
high-dimensional sensors for surveillance

purposes

Vincent Polfliet1, Nicolas Knudde1, Baptist Vandersmissen2, Ivo Couckuyt1,
and Tom Dhaene1

1 Department of Information Technology, Ghent University - imec, Belgium
2 Department of Electronics and Information Systems, Ghent University - imec,

Belgium

Abstract. Video cameras are arguably the world’s most used sensors
for surveillance systems. They give a highly detailed representation of
a situation that is easily interpreted by both humans and computers.
However, these representations can lose part of their representational
value when being recorded in less than ideal circumstances. Bad weather
conditions, low-light illumination or concealing objects can make the
representation more opaque. A radar sensor is a potential solution for
these situations, since it is unaffected by the light intensity and can sense
through most concealing objects. In this paper, we investigate the per-
formance of a structured inference network on data of a low-power radar
device. A structured inference network applies automated feature ex-
traction by creating a latent space out of which the observations can be
reconstructed. A classification model can then be trained on this latent
space. This methodology allows us to perform experiments for both per-
son identification and action recognition, resulting in competitive error
rates ranging from 0% to 6.5% for actions recognition and 10% to 12%
for person identification. Furthermore, the possibility of a radar sensor
being used as a complement to a camera sensor is investigated.
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1 Introduction

In recent years, interest in autonomous surveillance systems grew considerably.
While these systems improved significantly, the primary sensors remained the
same. The dominance of video cameras in autonomous surveillance systems can
be explained by their fundamental strengths. They give a detailed high dimen-
sional representation of their environment, which is easily interpretable by hu-
mans as well as computers. Moreover, reduction in price and higher resolutions
kept driving their success. While the fundamental advantages of video cameras
were a big catalyst for the early development of surveillance systems, their de-
ficiencies are now holding them back. For some of these deficiencies, such as



2 V. Polfliet et al.

recordings in bad weather conditions or low light environments, workarounds
can be found. Others such as concealing clothing are harder to deal with. In
contrast, a radar sensor is unaffected by concealing clothing, bad weather con-
ditions, low-light environments and can be placed out of sight, behind a wall.

A radar is an active sensor that transmits an electromagnetic signal, which
is reflected by objects in its line of sight. Information about these objects is then
extracted out of these signals taking advantage of, e.g. the Doppler effect. More-
over, individual moving parts of a person or object will each reflect their own
Doppler signal which are then summarized into a micro-Doppler (MD) signature
[3].

These signatures contain information about the movement of the target, pro-
viding a promising feature to differentiate between for example cars, bikers,
pedestrians or dogs. Another use for these MD signatures is to recognise differ-
ent actions, ranging from walking to sitting or boxing [10, 11]. However, perhaps
the most challenging application is to differentiate individuals based on the way
they move, the so called gait-based identification. While there is a noticeable dif-
ference between how a dog and a human walks or how a person runs or sits, the
difference in the MD signature between two persons walking is more subtle. This
subject has been extensively researched, however, previous papers used a high-
power radar sensor with relatively simple scenarios. In this paper the data sets
are recorded using a low-power frequency modulated continous wave (FMCW)
radar. This radar is a low-cost, power efficient and compact sensor suited for
indoor usage. However, the combination of a human’s low radar cross-section
and a low-power device poses a significant challenge for this study [4].

Two data sets are used for our experiments. The first uses the IDentifica-
tion with Radar (IDRad) benchmark, which is an extensive data set where the
main objective is to identify individuals moving randomly in a room [19]. An
additional data set is recorded where the main objective is to recognise differ-
ent actions. Previous studies applied either deep convolutional neural networks
(DCNN) [19, 11] or clustering methods [9, 20] to MD signatures. Both approaches
were successful by exploiting certain properties of the data. The DCNN tries to
take advantage of the spatial properties, along the time and velocity axes, of an
MD signature. Conversely, the clustering methods are applied on feature vectors
of the original noisy data. Hence, a structured inference network (SIN) [14] can
potentially exploit both these properties due to its inherent Markovian proper-
ties. This model creates a lower dimensional latent space into which each time
step is projected without losing their sequential dependencies. The lower dimen-
sional states also implies that the model performs autonomous feature selection
on the data. The resulting lower dimensional latent states are then used in a
classification model. These properties make the SIN well-suited for high dimen-
sional sequential data, such as radar data.



Structured inference networks for surveillance purposes 3

2 Related Work

There has been extensive research in the use of radar as a sensor. This section
will highlight several relevant studies concerning action recognition and person
identification. Afterwards some other recent results will be discussed regarding
SINs.

Action recognition and gait-based identification are discussed in a wide array
of studies. The former is usually defined by the amount of different actions in the
data set. In [10, 11], 7 actions are proposed, ranging from walking, walking with a
stick, running to even boxing. A wide variety of models have been investigated to
differentiate between actions. Y. Kim et al. apply a support vector machine with
manual engineered features [10] and an DCNN [11]. In [16], transfer learning is
applied to a pretrained CNN. In [5], singular value decomposition with multiple
classification models were used for detecting violent intents. The studies [7, 15],
investigate autonomous surveillance systems as a tool to monitor elderlies using
a wide array of classifiers.

Conversely, mainly data driven models are studied for gait-based identifica-
tion. In [6] k-means and k-NN clustering is used on thirteen subjects with an
accuracy ranging from 92.4% to 100%. The authors of [17] also apply k-NN along
with two manual engineered features and K. Kalgaonkar and B. Raj obtained
an accuracy of 90% by using a Gaussian mixture model (GMM) [9]. Finally, the
authors of [19] designed a deep convolutional neural network (DCNN) resulting
in an accuracy of 81.61% on lower-power radar data.
Radar data can also be used for non-classification purposes such as person track-
ing [13]

The structured inference network was proposed in [14]. The authors apply the
model to the reconstruction of polyphonic music and the counterfactual predic-
tion of electronic health records of patient data. This model was then also used
by the authors of [18] to model human poses. A similar black box variational
inference model for state space models is proposed in [2]. While an unsupervised
model is proposed in [8], which combines the strengths of a latent graphical
variational auto-encoder (VAE) and GMM by using a conditional random field
as their inference network. The authors apply their model to a data set of a
mouse running in a box, where it successfully clusters different movements of
the mouse.

3 Micro-Doppler

A large object or body moving through a room at a constant speed induces
a constant Doppler frequence shift. However, smaller moving parts can cause
additional micro-motion dynamics, which, in their turn, induce Doppler modu-
lations on the echoed signal. This is referred to as the micro-Doppler effect [3]
and causes sidebands around the Doppler frequency, representing the different
smaller moving parts. The micro-Doppler map can thus be seen as the power re-
flected as a function of the speed of the reflector. The radar used in the data sets
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is a 77 GHz Frequency Modulated Continuous Wave radar. An FMCW radar
has the advantage of being power efficient, but comes as the expense of a low
signal to noise ratio, which makes analysing this sensor data more challenging.

4 Structured Inference Network

A structured inference network [14] is a subfield of machine learning where it is
assumed that the data confirms to the structure of a Gaussian state space model
(GSSM). A GSSM assumes that the actual states of a situation are only partly
observable and that there exist latent states that fully describe the context of
the data without any error. These states are then also assumed to be continuous
and only dependent on their previous state. However, in data-oriented problems,
the parametric form for a GSSM is usually unknown. A solution for this is a deep
Markov model (DMM): A GSSM where the emission and transition functions
are replaced by multi-layer perceptrons (MLP). The resulting GSSM still has the
Markovian structure of an hidden Markov model (HMM) but uses the strength
of deep neural networks to help model complex data. An example of a DMM
can be seen in Fig. 1.

Fig. 1: Generative models of sequential data: (left) is a classical HMM. While (right)
depicts a DMM. The transition (green) and emission (red) functions are both approx-
imated using MLPs.

The model requires that the latent states are multivariate Gaussian distribu-
tions, with a mean and covariance that are functions dependent on the previous
latent state. In this paper we also define our observations to be multivariate
Gaussian distributions where the parameters are dependent on the latent state.
Eq. 1 results in a GSSM with model parameters θ = {α,β,κ,λ}.

zt ∼ N (Gα(zt−1, ∆t), Sβ(zt−1, ∆t)) (Transition)

xt ∼ N (Gκ(zt, ∆t), Sλ(zt, ∆t)) (Emission)
(1)

Another technique needed for this model is variational learning [12]. Assume
that p(x, z) = pθ(z)pθ(x|z) is a generative model, where x is the observation
and z the latent variable. The posterior distribution for this generative model
is usually intractable. The variational principle then states that there should be
an approximation of the posterior distribution qφ(z|x). Using this principle, a
lower bound of the marginal likelihood is found, which is parameterized by a
neural network.
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log pθ(x) ≥ E
qφ(z|x)

[log pθ(x|z)]−KL(qφ(z|x)||pθ(z)) (2)

Using variational learning a lower bound is found that approximates the posterior
distribution of the GSSM [14].

L(X; (θ,φ)) =

T∑
t=1

E
qφ(zt|X)

[log pθ(x|z)]−KL(qφ(z1|X||p0(z1))

−
T∑

t=2

E
qφ(zt−1|X)

[KL(qφ(zt|zt−1,X)||pθ(zt|zt−1))]

(3)

Since the latent states of the generative model will be used for classification
purposes, we propose an additional modification. By using a different prior for
each classification target, we can encourage the latent state to be more accom-
modating regarding the classification.

5 Methodology

The main objective of this paper is to investigate the efficiency of a SIN applied
to MD signatures for two use cases: gait-based person identification and action
recognition. Both data sets were recorded using the same low-power FMCW
radar, produced by INRAS [1], in an empty indoor environment. The action
recognition data set was recorded to study the performance of radar sensors
versus camera sensors.

5.1 Preprocessing

Radar: The MD signature is first achieved by calculating a two-dimensional
Fourier transform on the range-Doppler map. Afterwards the absolute values
are converted to decibels and are summed over the range dimensions. The raw
MD signature contains 256 Doppler channels per time step (with 15 fps). Each of
these channels represents a speed ranging from −3.8 m/s to 3.8 m/s. The static
channels representing the highest and lowest speeds are removed, without any
loss of relevant information. Subsequently, the resulting sequence is thresholded
by fixing every point under a certain value. After thresholding, a logarithmic
scaling step is applied to compress high activated values, which results in a
lower variance. Finally, each Doppler channel will be normalized separately for
each sequence. Fig. 2 displays the different results of the preprocessing steps to
transform a raw MD signature to the fully preprocessed MD signature.

Camera: As the video camera data is only used for basic action recognition,
there is no need for highly detailed images. Taking this in consideration, the
images were first converted to gray scale and then rescaled from 640x480 pixels
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to 30x20 pixels. The resulting images are then normalized using the mean pixel
values. Finally, the camera images are processed by a small convolutional net-
work, as shown in Fig. 4. A partial copy of the camera data set was also created
with half of the image occluded (left side). This area will serve as an artificial
screen to check the performance between a camera sensor and a radar sensor in
less than ideal circumstances. The intermediate results of the preprocessing and
an example of an occluded image are shown in Fig. 3.

Fig. 2: A 3 second MD signature, each figure shows the results of a preprocessing step,
with first (a) showing the raw signature. (b) is then obtained by removing the static
channels. (c) is the normalized MD signature of (b) and still displays a lot of noise.
This is then solved by applying thresholding (d) and finally the variance in the high
activated areas is reduced by log scaling (e).

Fig. 3: Camera images from the Actions data set: From left to right we have the raw
image (a), conversion to gray scale with rescaling (b), normalized image (c) and the
occluded version of the image (d).

Camera
20x30x1

2x2 conv,
32

2x2
pooling

2x2 conv,
64

2x2
pooling

2x2 conv,
64

2x2
pooling

256
Dense

Fig. 4: Convolutional neural network to compress the camera images to lower dimen-
sional vectors.
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Sensor Fusion: The high-dimensional radar and camera data are represented
by vectors after their respective preprocessing steps. A straightforward form of
sensor fusion is obtained by concatenating them. However, both vectors might
contain duplicate information. This is filtered out by sending the concatenated
vectors through a dense layer. The resulting vector can then be mapped by the
SIN to obtain a latent space containing the information of both sensors.

5.2 Model

We implemented the SIN, using the theory mentioned in Sec. 4, in Tensorflow.
An outline of the model is shown in Fig. 5. The data will be fed into the Recur-
rent Neural Network (RNN), which is used as a generative model to create the
latent space. Afterwards these states will go through the emission and transition
MLPs to find a prediction for respectively the observations and the next latent
state. These three predictions and the actual data are then used to calculate the
likelihood. Once the SIN is trained, a classification model is applied on the la-
tent states from the generative model. Three different classification models were
tested and can be seen in Fig. 6.

Generative
Model 
RNN

Emission
Function 

(MLP) 

Transition
Function 

(MLP) 

Input Latent States 
zt 

Predicted 
Latent States 

zt+1

Predicted 
Observations 

xt

Likelihood

Fig. 5: An outline of the SIN: A generative model is coupled with two MLPs that
represent the transition and emission functions.

Latent States

512 Dense

512 RNN

Sliding
window 

5 times steps 

512 Dense 512 Dense

512 Dense 512 Dense

512 Dense

512 RNN 512 Dense Majority
Voting

Predictions

Predictions

Predictions

Latent States

Latent States

Fig. 6: Three different possible classification models from top to bottom: a MLP, a
RNN, and a RNN with majority voting.
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6 Experiments

First the efficiency of the model for gait based identification is investigated using
the IDRad data set. Afterwards the results of the action recognition data set will
be discussed, comparing both camera and radar sensors.

6.1 Person Identification

The IDRad contains recordings of 5 people. Each test person was required to
walk for 20 minutes in random directions with abrupt stops and turns in 2 empty
rooms. Each model is trained using sequences of 3 seconds, which allows us to
compare our results with [19].

Analysis of the Generative Model: The classification models are trained on
the latent space created by the SIN. However, this model is trained on the likeli-
hood of the reconstruction of the data and is thus independent of the targets of
the data. This means that the performance of the classification depends on how
well the SIN generalizes the latent space regarding the classification, making the
training time of the SIN a hyperparameter. Fig. 7 shows the impact of the train-
ing time of the SIN on both the classification loss as well as the reconstruction
likelihood. While the structured inference network keeps improving over time,
the classification model reaches its peak performance in the 100 to 200 epochs
interval.
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Fig. 7: These figures display the impact of the training time of the SIN on the validation
error rate of the classification and on the validation log-likelihood of the SIN itself. It
can be seen that while the log-likelihood keeps improving over time, this is not the case
for the classification error. The best performing classification models are thus trained
on the latent states of SINs with a training time between 100 to 200 epochs.

Results: The structured inference network was trained for 150 epochs and re-
peated between 10 and 20 times for each experiment.
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Table 1 illustrates the impact of the preprocessing. We can see that the results
improve when removing the static channels. The results do not improve when
adding either the thresholding or log scaling preprocessing step. However when
combining both these preprocessing steps, we are able to obtain the best per-
forming models. This is due to the variance of the reconstruction being lowered
in the low activated areas by thresholding and in the high activated areas by log
scaling. The results thus only improve when both variances are lowered.

Table 2 shows the results of the different classification models on the latent
state. Each classification model was tested on the same latent space created by
a SIN. Here can be seen that the RNN model outperforms both other models.

Finally, Table 3 compares the results found in [19] using a DCNN and prin-
ciple component analysis with an SVM versus a basic RNN, a SIN and a SIN
with different priors. It can be seen that the previous benchmark is improved
by up to 12% on the validation set and 11% on the test set using the extra log
scaling preprocessing step and a SIN.

Preprocessing Validation Test

Raw 40.90 ± 3.24% 32.72 ± 2.21%
Remove Static 21.24 ± 1.25% 29.59 ± 1.57%
Remove Static + Thresholded 22.11 ± 3.13% 32.86 ± 3.53%
Remove Static + Log Scaled 32.37 ± 6.54% 38.78 ± 3.26%
Full Preprocessing 11.92 ± 0.92% 10.44 ± 0.76%

Tbl. 1: The impact of adding or removing a subsequent preprocessing step on the
error rate. The error rate displays the mean and standard deviation of results over the
5 runs.

Classification Model Validation Test

MLP 23.14% 18.39%
RNN 11.64% 10.34%
RNN MV 11.78% 10.17%

Tbl. 2: The performance of the different classification models by their error rate.

Model Validation Test

PCA + RF [19] 48.86% 38.59%
DCNN [19] 24.70% 21.54%
RNN 15.26 ± 1.62% 12.20 ± 0.26%
SIN + RNN 12.24 ± 1.49% 10.66 ± 0.74%
SIN multiple priors + RNN 11.92 ± 0.92% 10.44 ± 0.76%

Tbl. 3: The performance of the two types of structured inference networks and the
results of the DCNN as stated in [19]. The error rate displays the mean and standard
deviation of results over the 5 runs.
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6.2 Action Recognition

The data used in this experiment contains radar and camera data of actions
generated by 3 people. It consists of 540 samples of 3 seconds each. Each sample
represents either a person walking, sitting down or falling. For these experiments
the same optimal preprocessing was used as described in Sec. 5.1.

Correlation Between Camera and Radar Sequences: The structured in-
ference network can be used to check for correlation between the two sensors.
This is done by training the model on the reconstruction of the first sensor’s
data and using the second sensor as input. The results of reconstructing MD sig-
natures out of camera sequences can be seen in Fig. 8. While these are not exact
reconstructions, the shape of the MD signatures are very similar, confirming the
correlation that the log-likelihood of the model suggested.
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Fig. 8: Artificially generated MD signatures created from camera sequences (b) and
(d) versus the original MD signatures (a) and (c).

Input Validation Test

Radar 3.78 ± 1.29% 6.33 ± 3.13%
Camera 0.11 ± 0.33% 0.67 ± 0.74%
Camera SL 4.78 ± 1.61% 5.56 ± 2.19%
Radar and Camera 0.11 ± 0.33% 0.72 ± 0.73%
Radar and Camera SL 3.33 ± 1.17% 3.39 ± 1.43%

Tbl. 4: The performance with different sensors by their error rate. SL implies that a
screen was artificially inserted on the left side of the camera images, occluding half of
the image.
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Results: Tbl. 4 shows difference in results between the radar and camera sensor.
The camera data performs better than the radar, with an error rate of 0.67%
compared to 6.33 %. However, the radar data performs equally well when half of
the camera image is occluded. Then by combining the radar and camera data,
the problem of the screen was partially alleviated resulting in error rates or 3.33
%, which is 2 to 3 % lower than the individual sensors.

7 Conclusion and Future Work

We propose to use a classification model on top of the latent space created by
a structured inference network and show it outperforms previous methods such
as a deep convolutional neural network. This is illustrated on novel use cases of
high dimensional camera and radar sequences, where we also show its potential
to be used for sensor fusion.

It is noted that the performance of the classification model naturaly depends
on the amount of trained epochs of the structured inference network, since the
latent space is created without consideration of the targets. A possible solu-
tion for this could be the unsupervised model mentioned in [8], which combines
the strengths of a structured variational auto-encoder with a GMM. Another
research point is to apply this model on more challenging radar data, such as
walking around with an object or walking in a furnished room.
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