14 research outputs found

    Energy-Aware Planning-Scheduling for Autonomous Aerial Robots

    Full text link
    In this paper, we present an online planning-scheduling approach for battery-powered autonomous aerial robots. The approach consists of simultaneously planning a coverage path and scheduling onboard computational tasks. We further derive a novel variable coverage motion robust to airborne constraints and an empirically motivated energy model. The model includes the energy contribution of the schedule based on an automatic computational energy modeling tool. Our experiments show how an initial flight plan is adjusted online as a function of the available battery, accounting for uncertainty. Our approach remedies possible in-flight failure in case of unexpected battery drops, e.g., due to adverse atmospheric conditions, and increases the overall fault tolerance.Comment: 8 pages, 6 figures, IROS'2

    DYNAMIC EXTENSION OF NETWORK FOR CYBER AND COMMUNICATION

    Get PDF
    CubeSat-backboned networks maybe the key in providing access to highly dynamic networks since they are cost effective and durable. In this thesis, we examine the efficiency of a CubeSat network for an operational area with multiple unmanned aerial vehicles as relays. Also, we assume the vehicles are equipped with directed antenna technology. A successful communication link between the CubeSat and ground nodes is established using commercial off-the-shelf components. From our research results, we conclude that an advancement in directed antenna technology and more capable commercial-of-the-shelf transceivers are needed to achieve faster, more reliable, and more secure networks.Lieutenant Junior Grade, Turkish NavyApproved for public release; distribution is unlimited

    Coverage path planning methods focusing on energy efficient and cooperative strategies for unmanned aerial vehicles

    Get PDF
    The coverage path planning (CPP) algorithms aim to cover the total area of interest with minimum overlapping. The goal of the CPP algorithms is to minimize the total covering path and execution time. Significant research has been done in robotics, particularly for multi-unmanned unmanned aerial vehicles (UAVs) cooperation and energy efficiency in CPP problems. This paper presents a review of the early-stage CPP methods in the robotics field. Furthermore, we discuss multi-UAV CPP strategies and focus on energy-saving CPP algorithms. Likewise, we aim to present a comparison between energy efficient CPP algorithms and directions for future research

    Multi-Robot Persistent Coverage in Complex Environments

    Get PDF
    Los recientes avances en rob贸tica m贸vil y un creciente desarrollo de robots m贸viles asequibles han impulsado numerosas investigaciones en sistemas multi-robot. La complejidad de estos sistemas reside en el dise帽o de estrategias de comunicaci贸n, coordinaci贸n y controlpara llevar a cabo tareas complejas que un 煤nico robot no puede realizar. Una tarea particularmente interesante es la cobertura persistente, que pretende mantener cubierto en el tiempo un entorno con un equipo de robots moviles. Este problema tiene muchas aplicaciones como aspiraci贸n o limpieza de lugares en los que la suciedad se acumula constantemente, corte de c茅sped o monitorizaci贸n ambiental. Adem谩s, la aparici贸n de veh铆culos a茅reos no tripulados ampl铆a estas aplicaciones con otras como la vigilancia o el rescate.Esta tesis se centra en el problema de cubrir persistentemente entornos progresivamente mas complejos. En primer lugar, proponemos una soluci贸n 贸ptima para un entorno convexo con un sistema centralizado, utilizando programaci贸n din谩mica en un horizonte temporalnito. Posteriormente nos centramos en soluciones distribuidas, que son m谩s robustas, escalables y eficientes. Para solventar la falta de informaci贸n global, presentamos un algoritmo de estimaci贸n distribuido con comunicaciones reducidas. 脡ste permite a los robots teneruna estimaci贸n precisa de la cobertura incluso cuando no intercambian informaci贸n con todos los miembros del equipo. Usando esta estimaci贸n, proponemos dos soluciones diferentes basadas en objetivos de cobertura, que son los puntos del entorno en los que m谩s se puedemejorar dicha cobertura. El primer m茅todo es un controlador del movimiento que combina un t茅rmino de gradiente con un t茅rmino que dirige a los robots hacia sus objetivos. Este m茅todo funciona bien en entornos convexos. Para entornos con algunos obst谩culos, el segundom茅todo planifica trayectorias abiertas hasta los objetivos, que son 贸ptimas en t茅rminos de cobertura. Finalmente, para entornos complejos no convexos, presentamos un algoritmo capaz de encontrar particiones equitativas para los robots. En dichas regiones, cada robotplanifica trayectorias de longitud finita a trav茅s de un grafo de caminos de tipo barrido.La parte final de la tesis se centra en entornos discretos, en los que 煤nicamente un conjunto finito de puntos debe que ser cubierto. Proponemos una estrategia que reduce la complejidad del problema separ谩ndolo en tres subproblemas: planificaci贸n de trayectoriascerradas, c谩lculo de tiempos y acciones de cobertura y generaci贸n de un plan de equipo sin colisiones. Estos subproblemas m谩s peque帽os se resuelven de manera 贸ptima. Esta soluci贸n se utiliza en 煤ltimo lugar para una novedosa aplicaci贸n como es el calentamiento por inducci贸n dom茅stico con inductores m贸viles. En concreto, la adaptamos a las particularidades de una cocina de inducci贸n y mostramos su buen funcionamiento en un prototipo real.Recent advances in mobile robotics and an increasing development of aordable autonomous mobile robots have motivated an extensive research in multi-robot systems. The complexity of these systems resides in the design of communication, coordination and control strategies to perform complex tasks that a single robot can not. A particularly interesting task is that of persistent coverage, that aims to maintain covered over time a given environment with a team of robotic agents. This problem is of interest in many applications such as vacuuming, cleaning a place where dust is continuously settling, lawn mowing or environmental monitoring. More recently, the apparition of useful unmanned aerial vehicles (UAVs) has encouraged the application of the coverage problem to surveillance and monitoring. This thesis focuses on the problem of persistently covering a continuous environment in increasingly more dicult settings. At rst, we propose a receding-horizon optimal solution for a centralized system in a convex environment using dynamic programming. Then we look for distributed solutions, which are more robust, scalable and ecient. To deal with the lack of global information, we present a communication-eective distributed estimation algorithm that allows the robots to have an accurate estimate of the coverage of the environment even when they can not exchange information with all the members of the team. Using this estimation, we propose two dierent solutions based on coverage goals, which are the points of the environment in which the coverage can be improved the most. The rst method is a motion controller, that combines a gradient term with a term that drives the robots to the goals, and which performs well in convex environments. For environments with some obstacles, the second method plans open paths to the goals that are optimal in terms of coverage. Finally, for complex, non-convex environments we propose a distributed algorithm to nd equitable partitions for the robots, i.e., with an amount of work proportional to their capabilities. To cover this region, each robot plans optimal, nite-horizon paths through a graph of sweep-like paths. The nal part of the thesis is devoted to discrete environment, in which only a nite set of points has to be covered. We propose a divide-and-conquer strategy to separate the problem to reduce its complexity into three smaller subproblem, which can be optimally solved. We rst plan closed paths through the points, then calculate the optimal coverage times and actions to periodically satisfy the coverage required by the points, and nally join together the individual plans of the robots into a collision-free team plan that minimizes simultaneous motions. This solution is eventually used for a novel application that is domestic induction heating with mobile inductors. We adapt it to the particular setting of a domestic hob and demonstrate that it performs really well in a real prototype.<br /

    Collaborative autonomy in heterogeneous multi-robot systems

    Get PDF
    As autonomous mobile robots become increasingly connected and widely deployed in different domains, managing multiple robots and their interaction is key to the future of ubiquitous autonomous systems. Indeed, robots are not individual entities anymore. Instead, many robots today are deployed as part of larger fleets or in teams. The benefits of multirobot collaboration, specially in heterogeneous groups, are multiple. Significantly higher degrees of situational awareness and understanding of their environment can be achieved when robots with different operational capabilities are deployed together. Examples of this include the Perseverance rover and the Ingenuity helicopter that NASA has deployed in Mars, or the highly heterogeneous robot teams that explored caves and other complex environments during the last DARPA Sub-T competition. This thesis delves into the wide topic of collaborative autonomy in multi-robot systems, encompassing some of the key elements required for achieving robust collaboration: solving collaborative decision-making problems; securing their operation, management and interaction; providing means for autonomous coordination in space and accurate global or relative state estimation; and achieving collaborative situational awareness through distributed perception and cooperative planning. The thesis covers novel formation control algorithms, and new ways to achieve accurate absolute or relative localization within multi-robot systems. It also explores the potential of distributed ledger technologies as an underlying framework to achieve collaborative decision-making in distributed robotic systems. Throughout the thesis, I introduce novel approaches to utilizing cryptographic elements and blockchain technology for securing the operation of autonomous robots, showing that sensor data and mission instructions can be validated in an end-to-end manner. I then shift the focus to localization and coordination, studying ultra-wideband (UWB) radios and their potential. I show how UWB-based ranging and localization can enable aerial robots to operate in GNSS-denied environments, with a study of the constraints and limitations. I also study the potential of UWB-based relative localization between aerial and ground robots for more accurate positioning in areas where GNSS signals degrade. In terms of coordination, I introduce two new algorithms for formation control that require zero to minimal communication, if enough degree of awareness of neighbor robots is available. These algorithms are validated in simulation and real-world experiments. The thesis concludes with the integration of a new approach to cooperative path planning algorithms and UWB-based relative localization for dense scene reconstruction using lidar and vision sensors in ground and aerial robots
    corecore