6 research outputs found

    Enhancing graph routing algorithm of industrial wireless sensor networks using the covariance-matrix adaptation evolution strategy

    Get PDF
    The emergence of the Industrial Internet of Things (IIoT) has accelerated the adoption of Industrial Wireless Sensor Networks (IWSNs) for numerous applications. Effective communication in such applications requires reduced end-to-end transmission time, balanced energy consumption and increased communication reliability. Graph routing, the main routing method in IWSNs, has a significant impact on achieving effective communication in terms of satisfying these requirements. Graph routing algorithms involve applying the first-path available approach and using path redundancy to transmit data packets from a source sensor node to the gateway. However, this approach can affect end-to-end transmission time by creating conflicts among transmissions involving a common sensor node and promoting imbalanced energy consumption due to centralised management. The characteristics and requirements of these networks encounter further complications due to the need to find the best path on the basis of the requirements of IWSNs to overcome these challenges rather than using the available first-path. Such a requirement affects the network performance and prolongs the network lifetime. To address this problem, we adopt a Covariance-Matrix Adaptation Evolution Strategy (CMA-ES) to create and select the graph paths. Firstly, this article proposes three best single-objective graph routing paths according to the IWSN requirements that this research focused on. The sensor nodes select best paths based on three objective functions of CMA-ES: the best Path based on Distance (PODis), the best Path based on residual Energy (POEng) and the best Path based on End-to-End transmission time (POE2E). Secondly, to enhance energy consumption balance and achieve a balance among IWSN requirements, we adapt the CMA-ES to select the best path with multiple-objectives, otherwise known as the Best Path of Graph Routing with a CMA-ES (BPGR-ES). A simulation using MATALB with different configurations and parameters is applied to evaluate the enhanced graph routing algorithms. Furthermore, the performance of PODis, POEng, POE2E and BPGR-ES is compared with existing state-of-the-art graph routing algorithms. The simulation results reveal that the BPGR-ES algorithm achieved 87.53% more balanced energy consumption among sensor nodes in the network compared to other algorithms, and the delivery of data packets of BPGR-ES reached 99.86%, indicating more reliable communication

    Low power radio networks

    Get PDF
    Low power radio networks are the networks which depend upon wireless radio links and consume very low energy for their operation. These networks suit best for applications where frequent renewal of power supply is not possible. Power supply has always remained a major concern in radio networks. An efficient low power consuming network is always recommended for greater mobility and lifetime of the network. This thesis introduces low power radio networks, their features and applications. Energy concerns and various techniques that can be used for energy conservation are discussed, along with the security techniques that can be used to make the system reliable. Different technologies available in the market and their features and applications are considered. Included is a detailed study of the IEEE 802.15.4 standard. A simulation study of the CSMA/CA algorithm and topology discovery algorithms is presented

    Multiple Two-Way Time Message Exchange (TTME) Time Synchronization for Bridge Monitoring Wireless Sensor Networks

    No full text
    Wireless sensor networks (WSNs) have been widely used to collect valuable information in Structural Health Monitoring (SHM) of bridges, using various sensors, such as temperature, vibration and strain sensors. Since multiple sensors are distributed on the bridge, accurate time synchronization is very important for multi-sensor data fusion and information processing. Based on shape of the bridge, a spanning tree is employed to build linear topology WSNs and achieve time synchronization in this paper. Two-way time message exchange (TTME) and maximum likelihood estimation (MLE) are employed for clock offset estimation. Multiple TTMEs are proposed to obtain a subset of TTME observations. The time out restriction and retry mechanism are employed to avoid the estimation errors that are caused by continuous clock offset and software latencies. The simulation results show that the proposed algorithm could avoid the estimation errors caused by clock drift and minimize the estimation error due to the large random variable delay jitter. The proposed algorithm is an accurate and low complexity time synchronization algorithm for bridge health monitoring

    Proceedings of the NASA Conference on Space Telerobotics, volume 2

    Get PDF
    These proceedings contain papers presented at the NASA Conference on Space Telerobotics held in Pasadena, January 31 to February 2, 1989. The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research

    Cumulative index to NASA Tech Briefs, 1970-1975

    Get PDF
    Tech briefs of technology derived from the research and development activities of the National Aeronautics and Space Administration are presented. Abstracts and indexes of subject, personal author, originating center, and tech brief number for the 1970-1975 tech briefs are presented

    A descriptive model for determining optimal human performance in systems. Volume 3 - An approach for determining the optimal role of man and allocation of functions in an aerospace system

    Get PDF
    Optimal role of man in space, allocation of men and machines in aerospace systems, and descriptive model for determining optimal human performanc
    corecore