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Abstract: The emergence of the Industrial Internet of Things (IIoT) has accelerated the adoption of 
Industrial Wireless Sensor Networks (IWSNs) for numerous applications. Effective communication 
in such applications requires reduced end-to-end transmission time, balanced energy consumption 
and increased communication reliability. Graph routing, the main routing method in IWSNs, has a 
significant impact on achieving effective communication in terms of satisfying these requirements. 
Graph routing algorithms involve applying the first-path available approach and using path redun-
dancy to transmit data packets from a source sensor node to the gateway. However, this approach 
can affect end-to-end transmission time by creating conflicts among transmissions involving a com-
mon sensor node and promoting imbalanced energy consumption due to centralised management. 
The characteristics and requirements of these networks encounter further complications due to the 
need to find the best path on the basis of the requirements of IWSNs to overcome these challenges 
rather than using the available first-path. Such a requirement affects the network performance and 
prolongs the network lifetime. To address this problem, we adopt a Covariance-Matrix Adaptation 
Evolution Strategy (CMA-ES) to create and select the graph paths. Firstly, this article proposes three best 
single-objective graph routing paths according to the IWSN requirements that this research focused on. 
The sensor nodes select best paths based on three objective functions of CMA-ES: the best Path based on 
Distance (PODis), the best Path based on residual Energy (POEng) and the best Path based on End-to-
End transmission time (POE2E). Secondly, to enhance energy consumption balance and achieve a bal-
ance among IWSN requirements, we adapt the CMA-ES to select the best path with multiple-objectives, 
otherwise known as the Best Path of Graph Routing with a CMA-ES (BPGR-ES). A simulation using 
MATALB with different configurations and parameters is applied to evaluate the enhanced graph 
routing algorithms. Furthermore, the performance of PODis, POEng, POE2E and BPGR-ES is com-
pared with existing state-of-the-art graph routing algorithms. The simulation results reveal that the 
BPGR-ES algorithm achieved 87.53% more balanced energy consumption among sensor nodes in 
the network compared to other algorithms, and the delivery of data packets of BPGR-ES reached 
99.86%, indicating more reliable communication. 

Keywords: industrial internet of things; Industry 4.0; industrial wireless sensor networks; Wire-
lessHART; graph routing; optimisation techniques; covariance-matrix adaptation evolution strat-
egy; best path 
 

1. Introduction 
As one of the key components of the Fourth Industrial Revolution (Industry 4.0) and 

the Industrial Internet of Things (IIoT) [1], IEEE 802.15.4-based Industrial Wireless Sensor 
Networks (IWSN) are a promising paradigm for smart industrial automation, due to their 
advantages of flexibility, low deployment costs and self-organising capabilities. They can 
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potentially significantly improve industrial efficiency and productivity at sites such as oil 
refineries, steel mills, and chemical plants [2]. WirelessHART, ISA 100.11a, and WIA-PA 
are the three major industrial communication standards designed for Process Automation 
(PA) in IWSN applications. As they are intended for industrial automation, they have 
stringent requirements with regard to communication reliability, balance of energy con-
sumption and end-to-end transmission time [1,2]. A typical IWSN infrastructure based on 
IEEE 802.15.4 operating in the 2.4 GHz ISM band consists of battery-powered wireless 
sensor nodes connected through various Access Points (APs) to a gateway as a local des-
tination [2,3]. The Gateway (𝐺௪) establishes a connection with the network control sys-
tem for the plant automation, which is referred to as the Network Manager (NM). The 
NM is accountable for network configuration, communication scheduling between network 
devices, routing management, and system health monitoring and reporting [2]. Centralisation 
of the IWSN allows better control of network operations and reduces the cost of devices [4]. 

Routing is an essential task of the NM, and the routes it builds are key to the goals of 
reliability, latency and balanced energy consumption [2,4]. All IWSN standards specify 
routing algorithms of two types, Source Routing (SR) and Graph Routing (GR), of which 
the latter is the more widely used and is exclusively considered herein. GR employs a 
first-path approach with path redundancy, to transmit data packets from a source node 
to a 𝐺௪ [2,5]. There are, however, some challenges, as outlined below. 

Firstly, industrial environments often generate high levels of noise which may lead 
to a decline in performance of the routing algorithm [6]. However, the reliability of wire-
less communication can be improved using multi-channel Time Division Multiple Access 
(TDMA) and channel hopping. Where sufficient reliability cannot be achieved by the 
MAC layer [7], redundant routes can be applied by the GR algorithm at the network layer 
[2]. Retransmission is an effective method for increasing reliability, but it also increases 
end-to-end transmission time [8]. 

Secondly, industrial automation imposes stringent end-to-end delay requirements on 
data communication. Such delays are increased further by conflicts between transmis-
sions where two paths share a sensor node (sender or receiver) [9]. IWSNs do not permit 
multiple transmissions to take place simultaneously on the same channel; hence, a channel 
can only support one transmission at a time across the network. A conflict delay occurs 
when a data packet is delayed because it conflicts with another data packet that is sched-
uled in the current time slot [9]. 

Lastly, the workload of sensor nodes around a 𝐺௪ must also be considered since, 
due to centralisation in IWSNs, nodes closer to the 𝐺௪ are often overburdened with high 
traffic loads as compared to those further away. This is because packets from the entire 
region are forwarded through the former to reach the 𝐺௪, leading to an imbalance in en-
ergy consumption that reduces the life-time of the network [8]. 

When designing the best path for a routing algorithm for IWSN, all of these chal-
lenges must, hence, be addressed through striking a balance between them. For example, 
when monitoring systems are used in the industrial domain, sensor nodes with limited 
power are used in real-world IWSN. This includes monitoring of nuclear plants and fur-
naces, which could be dangerous applications. Multiple functions may be carried out by 
sensor nodes. For example, in a temperature monitoring system, the alerting objective is es-
sentially non-critical; however, if the monitored temperature exceeds a certain level, the alert-
ing system may be required to function as a safety system, placing additional demands on the 
sensor nodes, particularly those near the gateway. As a result, balancing the energy consump-
tion of sensor nodes, increasing communication reliability, and reducing delay are essential 
requirements of real-life IWSNs. However, these requirements can be relatively difficult to 
achieve due to interference and noise in industrial environments, which cause constant redun-
dancy, high latency as a result of redundancy, and unbalanced energy consumption. 

To address them adequately, optimisation or high-level procedure algorithms are re-
quired. The use of optimisation techniques for creating and selecting best paths in a cen-
tralised manner may thus be useful for IWSN and future IIoT protocols. 
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The main optimisation techniques currently used include Swarm Intelligence (SI), 
Evolution Strategies (ES), and physical-based algorithms [10]. Optimisation techniques 
typically set an objective function to find the best solution subject to specific criteria [10]. 
Path optimisation techniques thus play an important role in IWSN, as best routing can 
promote balanced energy consumption, reduced end-to-end transmission time, and im-
proved network reliability [11]. 

However, many traditional path optimisation methods are based on Dynamic Pro-
gramming (DP), which uses a Breadth-First Search (BFS), and Dijkstra which only consid-
ers path length to find a best path [5,12,13]. These traditional routing techniques are good 
for obtaining best solutions, but they each focus on just one requirement of IWSNs and 
ignore the rest. Dynamic programming is also difficult to link to complex routing prob-
lems [10]. 

Nevertheless, previous research (e.g., [10,11]) has also shown that optimisation tech-
niques are useful for finding the best routing in Wireless Sensor Networks (WSNs), of 
which IWSNs are a special case [14]. The aim of these path optimisation techniques is to 
find reliable paths which are energy-efficient [11] by creating an objective function to bal-
ance the predetermined requirements which, in the case of IWSNs, are energy consump-
tion, communication reliability, and end-to-end transmission time [14]. 

The main contribution of this research is the development of a graph routing algo-
rithm of IWSNs based on a Covariance-Matrix Adaptation Evolution Strategy (CMA-ES) 
[15]. To the best of our knowledge, this the first GR algorithm that specifically adopts 
evolution strategies to select best paths for IWSNs. This article’s GR algorithm focuses 
specifically on GR in WirelessHART networks. GR creates paths in a mesh topology, with 
path redundancy and multi-hop providing additional network reliability in industrial en-
vironments. CMA-ES was employed to select the best paths in this form of GR. This is a 
state-of-the-art optimisation technique in terms of evolutionary computation based on popu-
lation methods. It has, therefore, been adopted as a standard tool for continuous optimisation 
in many research laboratories [16] and industrial environments worldwide. 

Firstly, the current research proposes three best paths of GR with single-objective 
functions, depending on the Euclidean distance between sensor nodes (which this article 
calls PODis), their residual energy (which this article calls POEng) and actual end-to-end 
transmission time for each data packet between the transmitter and receiver based on the 
propagation model in the WirelessHART network (called POE2E in this article). The best re-
ceiver node for each hop along the best paths of all objective functions is carefully chosen on 
the basis of a Shortlist, which retains a list of the neighbours of each sensor node within its 
effective communication range in the 𝐺௪ direction. As a result, this helps to reduce overheads 
on the network and the energy required to maintain live sensor nodes throughout the entire 
network. 

Secondly, after computing these objective functions, it is necessary to converge on 
the best solution by means of the proposed algorithm which we call best Path Graph Rout-
ing with CMA-ES (BPGR-ES), which uses multiple-objectives to select the final best path. 
This approach, which constitutes BPGR-ES, can be compared with best single-objective 
paths (PODis, POEng and POE2E) and existing uplink routing algorithms, using the fol-
lowing performance metrics: average Energy Imbalance Factor (EIF); Packet Delivery Ra-
tio (PDR); Packet Miss Ratio (PMR); total consumed energy and End-to-End Transmission 
(E2ET). 

The remainder of this article is structured as follows: Section 2 presents the back-
ground and literature review, which includes an analysis of the state-of-the-art research 
on graph routing algorithms in IWSNs, optimisation techniques applied to state-of-the-
art routing algorithms in wireless networks, and an overview of CMA-ES; Section 3 pro-
vides a detailed description of the model of best paths for graph routing based on CMA-
ES selection, which is the main focus of this research; Section 4 presents the simulation 
setup and performance evaluation; Section 5 concludes the article. 
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2. Background and Literature Review 
2.1. Graph Routing Algorithms 

Several algorithms have been proposed for GR to improve adherence to the tight re-
quirements of IWSN. According to [13], energy usage in WirelessHART can be effectively 
balanced by creating a pre-emptive Energy-Balanced Graph-Routing algorithm (EBGR) 
for the network node. The suggested algorithm initially applies a BFS set of rules to sepa-
rate the network into different levels. Subsequently, a graph-routing algorithm re-distrib-
utes the energy usage to nodes that have fewer routing activities, by decreasing the links 
to the nodes that have more such activities. The EBGR approach enhances energy usage 
and improves network lifetime but can lead to increased overhead across the entire net-
work, since the created graphs are re-structured in each round. This is inefficient compared 
to other approaches, such as the Enhanced Least-Hop First Routing (ELHFR) proposed in [5], 
which uses the mesh network topology of WirelessHART to apply BFS to select neighbours. 
ELFHR takes advantage of the fact that the WirelessHART network manager has enough re-
sources to create routing paths, using least-hop as a metric for all network nodes. Thus, ELFHR 
does not have to search for the quickest paths to all network nodes, instead focusing only on 
those specific nodes considered branches of the breadth-first tree. 

IWSN lifetimes are shown to be adversely impacted by irregular and early energy 
exhaustion of separate network nodes. Therefore, previous solutions for effective energy 
balanced network routing included the implementation of several sinks linked through 
either wireless or interconnected structures to balance the energy usage of nodes. The au-
thors in [12], propose an Energy-Balancing Routing algorithm based on Energy Consump-
tion (EBREC) to address this, where nodes select others to communicate with based on 
their possible function, but this does lead to a delay in network communication. The pro-
posal is compliant with existing WirelessHART standards and can therefore be easily im-
plemented into current wireless systems; however, the authors did not consider other fac-
tors that could also result in energy depletion in WirelessHART networks, such as con-
flicts during network communications. 

Similarly, the authors in [17] stated that the effectiveness of WirelessHART in indus-
trial settings is often constrained by energy levels and communication requirements. Pre-
vious recommendations included the use of the minimum transmission power coopera-
tive routing algorithm, which lessens energy usage for a specific network route while 
providing minimum throughput guarantees. However, this algorithm does not consider 
the closest nodes’ remaining energy and transmission capacity, under high traffic load. 

According to [9], several industrial standards such as WirelessHART use time slotted 
channel hopping, which is a TDMA network topology to ensure consistent communica-
tion. However, network communications can be delayed in such cases by conflicts during 
transmissions on a general device. Previously proposed solutions included the use of a 
local set of rules that proactively chooses the next hop by which to send a packet; however, 
these authors argued that the proposed decentralised methods do not offer end-to-end delay 
assurances and thus cannot be implemented with the latest standards for IWSN. They instead 
suggest a conflict-aware routing protocol, which is a traditional method for real-time routing 
in WirelessHART networks. This approach integrates communication conflicts and planning 
with routing decisions to enhance real-time communications. 

Recently, different reinforcement learning models in the WSNs were used for data 
delivery, energy consumption, and latency optimisation. In one of these models, known 
as Q-Routing, the network nodes learn which of their neighbors delivers the best routes 
for a destination node. However, this model cannot be used for centralised networks be-
cause it does not provide path redundancy, and the nodes cannot select the routes. The 
Q-Learning Reliable Routing with Multiple Agents (QLRR-MA) approach is presented in 
[18], which builds routing graphs in a centralised way using the Q-Routing model. The 
approach results demonstrated that in a significant number of cases, average network la-
tency is reduced. 
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Similarly, [19] offers the graph routing algorithm Q-learning Graph Routing Lifetime 
Enhanced (QGRLE) to improve lifetime, latency, and reliability performance IWSNs met-
rics. The proposed algorithm periodically reconstructs the routing graph while reliability 
metrics, lifetime, and latency experience dynamic optimisation. As for the power re-
sources, they are fully used considering the nodes’ residual energy. After conducting sim-
ulations, the QGRLE algorithm was effective and improved lifetime and latency perfor-
mance. 

The multipath routing (MPR) algorithm is proposed in [20] that provides the indus-
trial wireless mesh networks with low-cost planning, high reliability, and low-level la-
tency. The algorithm builds three primary paths, each consisting of multiple nodes with 
different hops’ numbers. While the multipath routing algorithm prioritises the data trans-
mission over the shortest path, the alternative paths are always ready to tolerate the trans-
mission errors. The multipath routing algorithm was simulated according to three existing 
algorithms, including [18]. The MPR algorithm demonstrated results that the significant 
reduction in average network latency, enhancement of expected network lifetime, and the 
ratio of data packet deliver. 

However, previous solutions have typically focused on the suggestion of network 
routes based on traditional route optimisation methods, with the exception of two works 
[18,19] that suggested using Q-learning with graph routing of IWSNs. Therefore, the pos-
sibility remains open of applying a further stage of optimisation to IWSN GR routing to 
compute best paths that balance all requirements. The current work uses this strategy to 
bridge the gap between communication reliability, reducing end-to-end transmission time 
and balancing energy consumption to increase the lifetime of the network. 

2.2. Optimisation Techniques Applied to Routing 
In recent years, there has been growing interest in applying optimisation techniques 

to route algorithms to determine the best path. These techniques achieve the best paths by 
minimising the hop count, in addition to maximising transmission rates or minimising 
propagation or queuing delays. In this section, we present some state-of-the-art research 
that employed optimisation techniques to improve the performance of the routing algo-
rithms. A survey on optimisation techniques for WSNs was recently conducted in [11], 
although the routing algorithms described are not related to IWSNs. 

To achieve best paths, the authors in [21] combined Ant Colony Optimisation (ACO) 
with a minimum hop count scheme. ACO determines the best path for routing the data 
packets in a WSN by using the number of hop counts originating from the source node to 
the sink node. The routing algorithm used in [21] has optimisation capabilities that deter-
mine the shortest path, which in turn, minimises time delays and reduces energy con-
sumption. Meanwhile, [22] uses Ticket-Based Routing (TBR) in WSNs in smart grids to 
ensure that the forwarding of packets is effective. However, a significant limitation of TBR 
is that it suffers major setbacks during best routing path discovery. Therefore, to address 
this, the authors combined TBR and genetic algorithms, which reduces the number of tick-
ets and delays. 

To solve the problem of uneven energy consumption, the authors in [23] use genetic 
algorithms and fruit fly algorithms. These algorithms are applied to cluster the nodes in 
the network, while the Dijkstra algorithm [24] is used to determine the specific best path. 
This combination of algorithms optimises the whole network, improving the network life-
time by 50% and boosting the whole network coverage by 10%. The authors in [25] demon-
strate how the Tunicate Swarm Grey Wolf Optimisation (TSGWO) algorithm, assisted by 
IoT agents, can be deployed in WSNs to find a best routing solution. Multipath routing 
protocols in a network are used to transmit data simultaneously from a single source or 
node to multiple destinations. Such protocols are typically aided by IoT assisted agents, 
particularly in WSNs. In [25], the IoT agent-assisted-TSGWO algorithm considers factors 
such as link time, delays, energy and distance to discover the shortest path in routing. The 
authors suggested a routing algorithm [26], that combines the Butterfly Optimisation 
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Algorithm (BOA) with ACO in WSNs. The authors argue that this combination improves 
throughput and reduces energy consumption by means of clustering to achieve overhead 
routing. Consequently, network lifetime and performance are optimised during imple-
mentation. While [27] proposes Ad hoc demand Multipath Distance Vector routing with 
an Adaptive Grey Wolf optimization algorithm (AOMDV_AGWO) to improve the energy 
efficiency of WSNs. AOMDV_AGWO applied a genetic algorithm to clustering with ad 
hoc on-demand multipath distance vector routing with Adaptive Grey Wolf Optimization 
(AGWO). Where the AGWO technique predicts the optimal path, made from ad hoc on-
demand multipath distance vector routing protocol. This technique is used to provide ef-
ficient shortest-path communication. 

2.3. CMA-ES 
Drawing upon the principles of biological evolution, the algorithm of the Covariance 

Matrix Adaptation Evolution Strategy (CMA-ES) [15] uses continuous stochastic search 
methods. Usually, CMA-ES adopts a multivariate normal mutation distribution method 
to revise the covariance matrix of variables to achieve the objective function (𝑓). There is 
similarity between the performance of this algorithm and the reverse matrix in the New-
ton method [28], however, this algorithm does not require gradient analytic computing 
which has difficulty finding the best solution due to lack of differentiability [16]. 

To solve problems of optimisation, the general algorithm samples several independ-
ent points from a given distribution, 𝑃. These points are appraised according to their per-
formance, 𝑓, from which the distribution parameters are updated. This process continues 
until the termination criterion is achieved. In the CMA-ES algorithm, 𝑃 is a multivariate 
normal distribution that is a generalisation of the one dimensional (univariate) normal 
distribution to higher dimensions. Consequently, if every linear combination of a vector’s 𝑛 components have a univariate normal distribution, the distribution of the random vec-
tor is regarded to be 𝑛-variate normal. The entropy of the mean values, variances and 
covariances make normal distribution a suitable candidate for randomised searches be-
cause the distributions in ℜ௡ are the largest, and there is no differentiation between the 
coordinate directions. Therefore, CMA-ES samples a multivariate normal distribution to 
create a population of new search points (set of individuals). In every iteration, 𝑔 new 
individuals 𝑥௜௚ ∈ ℜ௡  are calculated as: 𝑥௜௚ାଵ = 𝑚௚ + 𝜎௚ × 𝑁௜௚(0, 𝐶௚) 𝑖 = 1, … , 𝜆 (1) (1)

where 𝑚௚ denotes the approximated mean value, 𝜎௚ > 0 is the standard deviation—step-size 
at the 𝑔୲୦ iteration, 𝑁௜௚(0, 𝐶௚)  is a normal distribution with the mean 0 and 𝜆 is a popula-
tion size, 𝐶௚ the 𝑛 ×  𝑛 covariance matrix of the search distribution. Therefore, a mutation 
arises randomly when the covariance matrix is perturbed; resulting in the matrix being itera-
tively revised, prompting a search for areas in which the objective values are anticipated to be 
lower. Once a population of individuals are generated, 𝑓 is used to assess them, then they are 
sorted and transformed as described in (1). All distribution parameters (𝑚௚, 𝐶௚, 𝜎௚) are re-
vised after each iteration. Further details of CMA-ES algorithm can be found in [15]. 

3. Description the Model of Best Paths for Graph Routing Based on CMA-ES Selection 
3.1. Overview 

This work focuses on how sensor nodes in IWSN monitoring systems create the up-
link graph that they use when transmitting sensor data to the 𝐺௪, where details of the GR 
algorithm mechanism are in [8]. Mesh topologies were selected because IWSNs are com-
monly of this type, with static sensor nodes powered by batteries [2]. The network is thus 
assumed to operate with this topology during the simulations. Nodes are also assumed to 
inform the NM about poor connections with neighbours, so that the NM can remove these 
connections from the network topology. Our GR algorithm was then evaluated against 
the three requirements of IWSN applications: high communication reliability, balanced 
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energy consumption, and low end-to-end transmission time [2,4]. In order to evaluate 
these requirements, the following metrics have been defined. 
• The average EIF is defined as the standard variance of the residual energy of all nodes 

in the network. It is used to demonstrate how effective a GR algorithm is in terms of 
achieving an energy balance. The EIF is calculated as 

𝐸𝐼𝐹 = ൮ 1𝑛 ඩ෍൫𝑅𝐸௜  − 𝑅𝐸௔௩௚൯ଶ ௡
௜ୀଵ ൲ (2)

where 𝑛 is the number of nodes, 𝑅𝐸௜ is node 𝑖’s residual energy, and 𝑅𝐸௔௩௚ is the 
average residual energy of all nodes. 

• Reliability is evaluated using PDR, which is the ratio of data packets that successfully 
reach the 𝐺௪ to the total number of data packets sent by the source nodes. 

• In addition, the PMR is defined as the ratio of data packets that failed to make it to 
the 𝐺௪ 

• The latency of each data packet is evaluated using E2ET, which is the time required 
for a data packet to travel from the source node to the 𝐺௪ 

3.2. Covariance Matrix Adaptation Evolution Strategy (CMA-ES) for Graph Routing in IWSN 
CMA-ES, introduced in [15], is an effective evolutionary algorithm for global optimi-

sation problems by finding the optimiser, 𝑥, of a real-valued objective function 𝑓. CMA-
ES employs two evolution paths to realise the necessary exploitation and exploration dur-
ing the search process, which are the updating of the covariance matrix and the learning 
of the covariance matrix. 

This article’s model selects the best path for graph routing in a WirelessHART net-
work based on CMA-ES, as presented in Figure 1, which portrays a schematic view of the 
proposed routing model. The main operations include generating sampling, evaluation of 
the best path based on three objective functions 𝑓஽, 𝑓ா and 𝑓ாଶா், covariance matrix ad-
aptation, path evolution and global step size adaptation and the output of best single-ob-
jective paths, PODis, POEng and POE2E. The final step is the adaptation of CMA-ES to select 
the final best path for Graph Routing with multiple-objectives (BPGR-ES). 
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Figure 1. Schematic view of proposed Graph Routing model. 

3.2.1. Objective Functions of the Best Path 
The objective functions are used in our model to select the best path for each source 

node in the WirelessHART network. To achieve the first objective which is called 𝑓஽, the 
Euclidean distance between the sensor nodes and their neighbours heading in the 𝐺௪ di-
rection is calculated. Subsequently, this is utilised to select the best next hop to minimise 
transmission distance [29]. The second objective function is the residual energy for each 
node. Which is used to avoid dead nodes and to minimise the energy consumption. This is 
known as 𝑓ா. The third objective function is 𝑓ாଶா் where the end-to-end transmission time is 
then considered in the selection of the best next hop as a way to reduce conflict delay. The 
pseudo code of the three single objective functions of CMA-ES, considered to select the best 
GR path, is shown in Algorithm 1 and discussed in greater detail in the following. 
1. Minimum communication distance between the source node and receiver node to-

ward 𝐺௪, (𝑓஽): This is defined as the minimum distance between the currently send-
ing node and its neighbours in the 𝐺௪ direction and achieved by minimising 𝐷, the 
currently sending node, with the lowest communication cost. Thus, 𝑓஽ = 𝑀𝑖𝑛 ቀ𝐷௉௔௧௛ி௥௢௠௡௢ௗ௘௜,௝ቁ (3)

where 𝐷௉௔௧௛ி௥௢௠௡௢ௗ௘௜,௝ is the Euclidean distance between the currently sending node 𝑖 and its neighbour node 𝑗 toward the 𝐺௪ in Shortlist and is used in this model ra-
ther than the neighbouring table to build all the best paths. 
After the deployment of sensor nodes in the WirelessHART network area, each sen-

sor node submits its neighbour table to the Data Link Layer (DLL) in the NM. The routing 
formation prior to the transfer of data at the Network Layer (NL) can therefore use this 
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neighbour table and a connected graph to construct a routing table for each sensor node. 
As wireless conditions change frequently in industrial environments, the NM must also 
frequently reconfigure and re-disseminate the routing graphs, which leads to increased 
energy and bandwidth consumption. To address this, as shown in the pseudo code in 
Algorithm 2, this model saves the storage space required and reduces the large overhead 
for the routing table by allowing the source sensor to select its neighbouring sensor node 
closest to the 𝐺௪, being the Shortlist, while the neighbouring table for each source node 
retains all its neighbours in each direction in the network area within an effective commu-
nication range. To build the Shortlist in this model for each sensor node in the network (as 
shown in lines 5–6 of Algorithm 2), the current node reads the neighbouring table at the 
DLL, then identifies the Euclidean distance between the current node and the 𝐺௪ in line. 
The current node verifies if the 𝐺௪ is available in the neighbouring table in lines 7–8. This 
indicates that the current node can communicate directly with the 𝐺௪ as each sensor node 
has a communication range. From lines 11–15, the current node selects its neighbour nodes 
for the Shortlist where the distance between neighbour node of the current node and 𝐺௪ 
is less than distance between the current node and 𝐺௪. 

Algorithm 1: Objective Functions of Select the Best Paths of Graph Routing algorithms 
based on of CMA-ES. 
1: Input: 
2:    𝑆ℎ𝑜𝑟𝑡𝑙𝑖𝑠𝑡 𝑜𝑓 𝑆𝑜𝑢𝑟𝑐𝑒 𝑆𝑒𝑛𝑠𝑜𝑟 𝑁𝑜𝑑𝑒 
3: Output: 
4:    𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑝𝑎𝑡ℎ𝑠 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝐶𝑀𝐴𝐸𝑆 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 
5: 𝑭𝒐𝒓 𝑆ℎ𝑜𝑟𝑡𝑙𝑖𝑠𝑡஽௜௦௧௔௡௖௘ 
6:       Calculate 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 (𝐹𝑖𝑛𝑎𝑙 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛, 𝑁𝑜𝑑𝑒(𝑆ℎ𝑜𝑟𝑡𝑙𝑖𝑠𝑡஽௜௦௧௔௡௖௘)) 
7:     𝑰𝒇 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 <  𝑚𝑖𝑛𝐷  
8:         𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒𝐷 = 𝑆ℎ𝑜𝑟𝑡𝑙𝑖𝑠𝑡஽௜௦௧௔௡௖௘; 
9:                Find 𝑀𝑖𝑛𝐷 =  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒; 
10:    End 
11: End 
12: 𝑭𝒐𝒓  𝑆ℎ𝑜𝑟𝑡𝑙𝑖𝑠𝑡ா௡௘௥௚௬ 
13:       𝑰𝒇 𝑁𝑜𝑑𝑒(𝑆ℎ𝑜𝑟𝑡𝑙𝑖𝑠𝑡ா௡௘௥௚௬). 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑛𝑒𝑟𝑔𝑦 >= 𝑀𝑎𝑥𝐸 
14:       𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒𝐸 = 𝑆ℎ𝑜𝑟𝑡𝑙𝑖𝑠𝑡ா௡௘௥௚௬; 
15:          Find 𝑀𝑎𝑥𝐸 = 𝑁𝑜𝑑𝑒(𝑆ℎ𝑜𝑟𝑡𝑙𝑖𝑠𝑡ா௡௘௥௚௬). 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑛𝑒𝑟𝑔𝑦; 
16:   End 
17: End 
18: 𝑭𝒐𝒓  𝑆ℎ𝑜𝑟𝑡𝑙𝑖𝑠𝑡ாଶா் 
19:       𝐷𝑒𝑙𝑡𝑎 = 𝐹𝑖𝑛𝑑𝐷𝑒𝑙𝑡𝑎𝐹𝑟𝑜𝑚𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝑀𝑜𝑑𝑒𝑙(); 
20:       Calculate 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 (𝐹𝑖𝑛𝑎𝑙 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛, 𝑁𝑜𝑑𝑒 (𝑆ℎ𝑜𝑟𝑡𝑙𝑖𝑠𝑡஽௜௦௧௔௡௖௘)) 
21:       Calculate 𝐸2𝐸𝑇 = (𝑐1 ∗ 𝑛𝑜𝑑𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟) + (𝑐2 ∗ 𝑑 ∗ 𝑑𝑒𝑙𝑡𝑎);  
22:      𝑰𝒇 𝐸2𝐸𝑇 <= 𝑚𝑖𝑛𝐷𝑒𝑙𝑎𝑦 
23:           𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒𝐷𝑒𝑙𝑎𝑦 = 𝑆ℎ𝑜𝑟𝑡𝑙𝑖𝑠𝑡ாଶா்; 
24:          Find 𝑀𝑖𝑛𝐷𝑒𝑙𝑎𝑦 = 𝐸2𝐸𝑇; 
25:     End 
26: End 
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Algorithm 2: Build Shortlist of Sensor Nodes. 
1: Input: 
2:     𝑆𝑜𝑢𝑟𝑐𝑒 𝑁𝑜𝑑𝑒 
3: Output: 
4:         𝑆ℎ𝑜𝑟𝑡𝑙𝑖𝑠𝑡 𝑏𝑎𝑒𝑠𝑑 𝑜𝑛 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑖𝑛𝑔 𝑇𝑎𝑏𝑙𝑒 
5:    𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐻𝑜𝑝 =  𝑆𝑜𝑢𝑟𝑐𝑒 𝑁𝑜𝑑𝑒 
6:    𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐻𝑜𝑝 𝑟𝑒𝑎𝑑 𝑛𝑒𝑖𝑔𝑏𝑜𝑢𝑟𝑖𝑛𝑔 𝑇𝑎𝑏𝑙𝑒 
7: 𝑭𝒐𝒓 
8:    𝑰𝒇 𝑁𝑜𝑑𝑒(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐻𝑢𝑝). 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑖𝑛𝑔𝑇𝑎𝑏𝑙𝑒 == 𝐺௪ 
9:   Calculate 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 between (𝑁𝑜𝑑𝑒(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐻𝑜𝑝), 𝐺௪); 
10:    𝑭𝒐𝒓 
11:      𝑁𝑜𝑑𝑒(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐻𝑜𝑝). 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑖𝑛𝑔𝑇𝑎𝑏𝑙𝑒 
12:           Calculate 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝐻𝑢𝑝 𝑏𝑒𝑡𝑤𝑒𝑒𝑛(𝑁𝑜𝑑𝑒(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐻𝑜𝑝), 𝑁𝑜𝑑𝑒 (𝐷𝑁𝑜𝑑𝑒)) 
13:       𝑰𝒇 𝐷𝑖𝑠𝑡𝑎𝑛𝑡_𝐻𝑢𝑝 <  𝐷𝑖𝑠𝑡𝑎𝑛𝑡 
14:                 Add  𝑁𝑜𝑑𝑒 (𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐻𝑜𝑝) 𝑡𝑜 Sℎ𝑜𝑟𝑡𝑙𝑖𝑠𝑡 
15:       End 
16:    End 
17:  End 
18: End 

2. Maximum Residual Energy (𝑓ா): This is defined as the residual energy in the sensor 
nodes after they perform sensing, communication operations and computation. Sen-
sor nodes with higher residual energy tend to be selected as the next hop in the best 
path, as maximising 𝑓ா, each sensor node periodically uploads its residual energy to 
NM. Thus, 𝑓ா = 𝑀𝑎𝑥 ൫𝐸஼௨௥௥௘௡௧௜൯ (4)

where 𝐸஼௨௥௥௘௡௧௜ is the residual energy of sensor node 𝑖. To ensure the quality of com-
munication and increase reliability in the IWSNs, each currently sending node looks 
in Shortlist 𝑁 to locate the sensor node with maximum energy in the required path 
rather than examining the neighbouring table. 

3. End-to-End transmission time between the source node and receiver node toward 
the 𝐺௪, (𝑓ாଶா்): The End-to-End transmission time measure proposed in this re-
search refers to the time required for a given pair of nodes in the WirelessHART net-
work to exchange a data packet. WirelessHART is a TDMA-based network protocol. 
Each communication is time-synchronised and this provides a timescale for nodes in 
the network. A fixed-length timeslot shared by all network devices is the basic time 
unit of communication activity. Seeing that all hardware clocks are imperfect, those 
at different nodes may drift away from each other. For this reason, the observed time 
or time interval durations may differ for each node in the network. The timeslot hence 
provides a time base for scheduling the transmission of process data. In Wire-
lessHART, a timeslot has a duration of 10 ms, which is sufficient to send or receive 
one packet per channel and its accompanying acknowledgement, including the 
guard-band times required for network-wide synchronisation. 
Several mechanisms are applied in wireless networks for time synchronisation. In 

this research, in order to obtain a definitive means of identifying the time required for 
data packet exchange between any two sensor nodes in the WirelessHART network, a 
Two-way Time Message Exchange (TTME) clock offset estimation model was applied be-
tween each pair of nodes in the sensor network, as in [30]. This allowed the development 
of an equation that simulates the actual transmission time for each packet between the trans-
mitter and the receiver based on the propagation model in a WirelessHART network [7], as 
shown in Figure 2. The uplink-downlink time was modelled using the following equation: 
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Figure 2. Two-way time message exchange between node 𝑖 and node 𝑗. 

𝑇௜,௝ =  𝑐1𝜏௜ + 𝑐2𝐷௜௝𝜕௟ (5)

where 𝑐1 ∈ ሾ0,1ሿ and 𝑐2 ∈ ሾ0,1ሿ are the node’s processing delay time and channel delay 
time coefficients, respectively, 𝜏௜ is the processing time required by node 𝑖 to process a 
data packet, 𝐷௜௝ is the distance between the transmitter node 𝑖 and the receiver node 𝑗 
and 𝜕௟ ∈ ሾ0,1ሿ is the delay time required to transfer a data packet from the transmitter 
node 𝑖 and the receiver node 𝑗 through channel 𝑙. 𝑓ாଶா் = 𝑀𝑖𝑛൫𝑇௜,௝൯ (6)

where the 𝑀𝑖𝑛൫𝑇௜,௝൯ of 𝑓ாଶா், is the minimum time required from source node 𝑖 to re-
ceiver node 𝑗 in the Shortlist 𝑁. 

At the end of the CMA-ES, there are three best GR paths, specifically PODis, POEng 
and POE2E. Finally, to select the final best BPGR-ES path and achieve a balance between 
the three objectives above and energy consumption between sensor nodes in the network, 
we adapt the CMA-ES to select the final best path based on three objectives by means of 
Algorithm 3, which is discussed in greater detail in the next section. 

Algorithm 3: Selection Best Path of Graph Routing (BPGR-ES). 
1: Input: 
2:    𝑃𝑂𝐷𝑖𝑠;  𝑃𝑂𝐸𝑛𝑔; 𝑃𝑂𝐸2𝐸 
3: Output: 
4:    𝐹𝑖𝑛𝑎𝑙 𝐵𝑒𝑠𝑡 𝑃𝑎𝑡ℎ (BPGR-ES) 
5: 𝑰𝒇  𝑖𝑠𝑒𝑞𝑢𝑎𝑙 ((𝑃𝑂𝐷𝑖𝑠, 𝑃𝑂𝐸𝑛𝑔) && (𝑃𝑂𝐸𝑛𝑔, 𝑃𝑂𝐸2𝐸)) 
6:              𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ =   𝑃𝑂𝐸2𝐸; 
7: End 
8:    𝑰𝒇  𝑖𝑠𝑒𝑞𝑢𝑎𝑙(𝑃𝑂𝐸𝑛𝑔, 𝑃𝑂𝐷𝑖𝑠) 
9:               𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ =  𝑃𝑂𝐷𝑖𝑠; 
10:     𝑬𝒍𝒔𝒆 𝒊𝒇   𝑖𝑠𝑒𝑞𝑢𝑎𝑙(𝑃𝑂𝐷𝑖𝑠, 𝑃𝑂𝐸2𝐸) 
11:               Best𝑃𝑎𝑡ℎ =  𝑃𝑂𝐸2𝐸; 
12:    𝑬𝒍𝒔𝒆 𝒊𝒇  𝑖𝑠𝑒𝑞𝑢𝑎𝑙(𝑃𝑂𝐸𝑛𝑔, 𝑃𝑂𝐸2𝐸)  
13:               𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ = 𝑃𝑂𝐸𝑛𝑔; 
14:  End 
15: 𝑰𝒇  𝑖𝑠𝑛𝑜𝑡𝑒𝑞𝑢𝑎𝑙 ((𝑃𝑂𝐷𝑖𝑠, 𝑃𝑂𝐸𝑛𝑔) &&(𝑃𝑂𝐸𝑛𝑔, 𝑃𝑂𝐸2𝐸)) 
16:    𝐶ℎ𝑒𝑐𝑘 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 ℎ𝑜𝑝𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ𝑠  
17:     𝑆𝑒𝑙𝑒𝑐𝑡 𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ 𝑤ℎ𝑖𝑐ℎ ℎ𝑎𝑠 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑛𝑢𝑚𝑏𝑒r 𝑜𝑓 𝑡ℎ𝑒 ℎ𝑜𝑝𝑠 
18:       𝑰𝒇 𝑎𝑙𝑙 𝑝𝑎𝑡ℎ𝑠 𝑂𝑅 𝑡𝑤𝑜 𝑝𝑎𝑡ℎ𝑠 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 ℎ𝑜𝑝𝑠 
19:           𝐶ℎ𝑒𝑐𝑘 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑙𝑎𝑠𝑡 𝑛𝑜𝑑𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝐺ௐ 𝑖𝑛 𝑡ℎ𝑒𝑠𝑒 𝑝𝑎𝑡ℎ𝑠  
20:       𝑆𝑒𝑙𝑒𝑐𝑡 𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ 𝑤ℎ𝑖𝑐ℎ ℎ𝑎𝑠 ℎ𝑒𝑖𝑔ℎ 𝑒𝑛𝑒𝑟𝑔𝑦 𝑓𝑜𝑟 𝑙𝑎𝑠𝑡 𝑛𝑜𝑑𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡ℎ𝑒 𝐺ௐ   
21:  End 
22: End 
  

𝑺𝒆𝒏𝒔𝒐𝒓 𝒏𝒐𝒅𝒆 𝒋 
𝑺𝒆𝒏𝒔𝒐𝒓 𝒏𝒐𝒅𝒆𝒊 

𝐷௜௝ 

𝑈𝑝𝑙𝑖𝑛𝑘 𝐷𝑜𝑤𝑛𝑙𝑖𝑛𝑘 
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3.2.2. CMA-ES Adaptation for BPGR-ES Final Best Path Selection 
To meet the final best path selection criterion in an actual WirelessHART network, 

data packets are forwarded via the final best path, as shown in Algorithm 3. In relation to 
the pseudo-code for the selection of the final best BPGR-ES paths, there are two situations 
in which the final best path must be selected, namely equality or inequality, which apply 
to all best paths, based on PODis, POEng and POE2E. 

In the case of equality, as shown in lines 6–8 in Algorithm 3, there are two cases: if all 
objectives of the objective functions for transmission are achieved in one path, this will be 
the best path. Hence, this must be selected as the final best path. In the second case in lines 
8–14, if there are two potential best paths that have the same path, priority will be given 
to any one of them as the final best path where two objectives of the objective functions 
are achieved. In a situation where there is inequality between the best paths, as observed 
in lines 15–21, the final best path with the least number of hops will be selected to reduce 
energy consumption and increase reliability. However, as a number of best paths may 
have the same number of hops, a further check on the residual energy of the last sensor 
node around the 𝐺௪ is added to achieve balanced energy consumption. Subsequently, 
priority is given to the best path which has the highest residual energy at the last sensor 
node before the 𝐺௪. 

4. Simulation Experiments 
4.1. Simulation Setup 

Simulations were conducted using MATLAB R2020b over a Windows 10 workstation 
running on an Intel (R) core™ i7 processor with 16 GB RAM. The uplink GR algorithm 
was applied to a mesh topology model for the WirelessHART network and randomly 
generated the sensor nodes, as shown in Figure 3. The topology consisted of one red rhom-
bus, which is the 𝐺௪ positioned in the centre of the network area; two blue squares are 
the APs, located 10 m to the right and 10 m to the left of the 𝐺௪; along with 50 wireless 
sensor nodes placed at random [31]. The connections between the 𝐺௪ and the various 
APs were considered to be reliable and wired. The sensor nodes were battery-powered 
and stationary after deployment, as this is common in real industrial environments [32]. 
Each sensor node was also assigned a unique ID. For any WirelessHART network, the 
maximum packet size sent should be 133 bytes [2]. Each node in a system was assumed 
to be homogeneous in terms of having the same size and energy. The maximum energy 
of each node was thus assumed to be 0.5 J [8]. The energy model described in [8] As real 
IWSN are subject to different wireless channel conditions, a general path loss model for 
Received Signal Strength Indicator (RSSI) estimation was incorporated. A packet loss 
physical layer probability model, and O-QPSK modulation were also included in the 
propagation model [7] based on the WirelessHART standard. A TDMA scheduling 
scheme was also employed in the simulation, with all simulations utilising the same 
scheme to allow for fair comparisons. Table 1 shows the system parameters. 

 
Figure 3. A network topology example with 50 sensor nodes. 
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Table 1. System Parameters. 

Parameters Value 
Simulation area 100 × 100 mଶ and 200 × 200 mଶ 

Number of nodes 50 and 100 
Nodes positions Random 

Gateway (𝐺௪) One 𝐺௪ 
Access points (APs) Two APs 

Physical layer IEEE 802.15.4 (2006) 
Propagation Model O-QPSK 

Communication range 35 and 75 m 
Transmission power 0 dBm 
Node initial energy 0.5 J 

Maximum Packet size 133 Bytes 
Radio frequency 2.4 GHz 

Medium Access Control (MAC) TDMA with 10 ms time slot 

The CMA-ES algorithm does not require tuning of the parameters with the exception of 
population size 𝜆, where strategy parameters are considered a part of the algorithm design. 
This is a feature of CMA-ES. The aim is to have a well-performing algorithm as observed in 
[15]. Therefore, we set 𝜆 = 4 + ⌊3 log (𝓃)⌋ as suggested in [15] where 𝓃 is the number of the 
variables that are in the Shortlist in this model. The parameter 𝜎 specifies the direction of the 
algorithm was considered as 0.3 × (𝑉𝑎𝑟𝑀𝑎𝑥 − 𝑉𝑎𝑟𝑀𝑖𝑛), where 𝑉𝑎𝑟𝑀𝑎𝑥, 𝑉𝑎𝑟𝑀𝑖𝑛 are up-
per and lower bound to the Shortlist decision, respectively. Each simulation begins with the 
initialisation of the NM, 𝐺௪ and APs. The NM then builds the configurations for the relevant 
network (routes and links), based on its knowledge of each node in the network, including its 
location and its battery status. This data is derived from the health reports sent by the sensor 
nodes every 15 min. When a new node joins the network, it receives network configurations 
from the NM after each update. Each simulation was run for 4 h. Table 2 shows the CMA-ES 
parameters. 

Table 2. CMA-ES Parameters. 

Parameters Value 
Population size (𝜆) 4 + ⌊3 log (𝓃)⌋ 

Number of the variables (𝓃) Shortlist 
Specifies the direction (𝜎) 0.3 × (𝑉𝑎𝑟𝑀𝑎𝑥 − 𝑉𝑎𝑟𝑀𝑖𝑛) 𝑉𝑎𝑟𝑀𝑎𝑥 Upper bound to the Shortlist decision 𝑉𝑎𝑟𝑀𝑖𝑛 Lower bound to the Shortlist decision 

To study how the PODis, POEng, POE2E and BPGR-ES perform under various network 
sizes and different numbers of sensor nodes, extensive simulations were conducted to evalu-
ate their performance in four scenarios as compared with the baseline uplink algorithms in [5] 
and [12], specifically the Enhanced Least-Hop First Routing (ELHFR) algorithm and the En-
ergy-Balancing Routing algorithm based on Energy Consumption (EBREC). 

Transmission power was first set to 0 dBm and a maximum communication range of 
35 m for a 100 × 100 mଶ network area. The transmission power was then increased to 10 
dBm with a maximum communication range of 75 m, permitting a 200 × 200 mଶ network 
area [7]. In each case, 50 or 100 sensor nodes were used to verify the algorithms’ performance 
under varying node densities [33]. As each run of the simulation presented a different node 
topology with respect to the spatial distribution of sensor nodes, the performance metrics gen-
erated were for different values. Several simulations were therefore conducted to verify 
whether algorithms produced similar performance levels over 15 random topologies in order 
to obtain the statistical mean for the results. The total consumed energy, average EIF, PDR, 
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PMR and E2ET results for several repetitions of the simulation for each algorithm were ob-
tained. 

4.2. Evaluation Results and Analysis 
4.2.1. Network Reliability Evaluation 

The two critical factors used to evaluate the reliability of the network in this research 
are PDR and PMR, as shown in Figure 4. With an increase in the delivery of data packets 
to the 𝐺௪, the packet miss ratio decreased. 

 
(a) (b) 

Figure 4. PDR and PMR boxplots for different topologies: (a) PDR and PMR results of the 100 × 100 𝑚ଶ network area of 50 and 100 nodes; (b) PDR and PMR results of the 200 × 200 𝑚ଶ network area 
of 50 and 100 nodes. 

In both the 50-node and the 100-node topologies across the two network sizes, BPGR-
ES presented the highest PDR and lowest PMR. As shown in Figure 4, as the number of 
sensor nodes increased, the PDR decreased very little across most algorithms. This is rea-
sonable, because, as the number of sensor nodes increased, the traffic load in the network 
intensified, causing congestion in some areas and data packet loss throughout the net-
work. As a result, the PDR was negatively affected. Nonetheless, as Figure 4 demonstrates, 
the proposed BPGR-ES approach still attained the highest PDR and lowest PMR as com-
pared to other options, even with such increases in the number of sensor nodes across 
different network sizes. This is because BPGR-ES allows communication with all neigh-
bours in the 𝐺௪ direction that are on the Shortlist regardless of whether these are at the 
same level or lower levels, according to Euclidean distance. Therefore, this increases the 
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availability of sensor nodes and, hence, reduces the PMR and increases the PDR. This also 
observed in all single-objective best paths, which also used the Shortlist. 

Furthermore, BPGR-ES selects the neighbour used in the next hop from the Shortlist 
to help ensure delivery of the packet within its deadline, as well as achieving the most 
reliable possible paths through retransmission of data packets where the next-hop step is 
unable to receive the data packet. The number of lost packets due to path redundancy is, 
therefore, reduced, improving network throughput. Taking these important parameters 
into account explains the observed reduction in the packet miss ratio. BPGR-ES presented 
similar PDRs for the 50-node topology throughout various network sizes, although it ex-
hibited a slight decline in PDR of approximately 1.01% in the 100-node topology of the 
larger network size. Generally, all best POE2E, POEng and PODis paths exhibited good 
PDR results with a maximum of 98.94% and a minimum of 98.67%, while the PMR was 
approximately 1.43% as a maximum of the POEng (see Figure 4b). The ELHFR algorithms 
produced lower PDR results of approximately 1.93% for the 50-node topology in both 
network sizes. Nevertheless, since this only permits sensor nodes to establish connections 
with neighbours located at lower levels in the BFS tree, fewer neighbours are typically 
available in the lower levels [5]. In denser networks, ELHFR reduces the PDR by approx-
imately 1.95% because it does not guarantee path redundancy for every sensor node while 
increasing the PMR. 

4.2.2. Energy Consumption Evaluation 
The performance of the proposed BPGR-ES approach was evaluated with respect to 

energy consumption in terms of both total consumed energy and average EIF of the en-
ergy balance. This is important, as the IWSNs are centralised, making balancing energy 
consumption between sensor nodes a key target [4]. 

As shown in Figure 5, the BPGR-ES algorithm reduced the total energy consumption 
of the 50-node topology across different network sizes in contrast to the other algorithms. 
However, in the denser networks, the total consumed energy appeared extremely similar 
between the proposed BPGR-ES approach and EBREC. This is due to the fact that the 
EBREC algorithm considers the remaining energy when communicating with the nodes 
in the network. Nevertheless, the BPGR-ES approach fares better concerning total con-
sumed energy because, as shown in Figure 4, the network connection is better, with 99.77–
98.78% data packet delivery. 
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(a) 

 
(b) 

Figure 5. Total Consumed Energy for different topologies: (a) energy consumption results of the 100 
× 100 mଶ network area of 50 and 100 sensor nodes; (b) energy consumption results of the 200 × 200 mଶ network area of 50 and 100 sensor nodes. 

Notably, upon increasing sensor nodes, total energy consumption of PODis is evi-
dently reduced due to the larger number of sensor nodes nodes, with the shortest path 
being chosen in the quickest way, thereby significantly reducing energy consumption. 
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This stems from reliance upon the Shortlist defining the neighbours per sensor node with 
the least Euclidean distance to the 𝐺௪. Yet, this significantly increases the network sensor 
nodes’ energy consumption imbalance, (see Figure 6). Thus, the PODis fails to balance 
energy consumption. It should be noted that this is logical because the energy consump-
tion of the sensor nodes nearest the 𝐺௪ increases due to its constant selection of the short-
est path depending on the Euclidean distance from the source nodes farther from the 𝐺௪. 
In POEng, total consumed energy sharply increased for all different network sizes com-
pared to other algorithms, as shown in Figure 5. Moreover, because it selects neighbouring 
sensor nodes with the highest residual energy from a Shortlist without taking into account 
the distance from the 𝐺௪, this increases the number of hops. This causes increased energy 
consumption compared to other algorithms, where proximity to the 𝐺௪ is not considered 
to reduce the number of hops noticed while the simulation is running. Typically, the num-
ber of the hops in POEng is more than other paths. Consequently, as shown in Figure 6, 
the high energy consumption of the POEng evidently affects energy consumption imbal-
ance among the network nodes. 

The average EIF of the proposed BPGR-ES approach was also significant being the 
smallest among those tested according to the results in Figure 6. The high use of the sensor 
nodes around the 𝐺௪ as compared to other nodes resulted in a reduction in the average 
residual energy, which led to an increase in the average EIF. This suggests that in the 
BPGR-ES algorithm, the energy of all the nodes in the network is closer to the average 
energy than in the other approaches, as the BPGR-ES approach selects the best path. This 
is based on the highest remaining energy of the sensor node around the 𝐺௪ only where 
all best paths have the same number of hops. Therefore, the proposed BPGR-ES algorithm 
achieves a better balance in terms of energy consumption than other algorithms. How-
ever, while all sensor nodes in the EBREC algorithm route their data packets via nodes 
that have greater residual energy, this is insufficient to ensure a balance in energy con-
sumption between sensor nodes in the network. In particular, if several sensor nodes se-
lect the same node to forward their data packets to, this node will take on a critical role, 
which can lead to imbalances in energy consumption in the network. In addition, the 
ELHFR algorithm significantly increases average EIF due to its consideration of least-hop 
as the only selection metric. This does not consider the increased energy consumption of 
the nodes around the 𝐺௪, as sensor nodes closer to the 𝐺௪ become overburdened with 
high traffic loads compared to those further away. Therefore, these overloaded nodes will 
expire much faster than the other sensor nodes due to such imbalances in energy con-
sumption. 

(a) (b) 
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Figure 6. Average of energy imbalance factor for different topologies: (a) average EIF results of the 
100 × 100 mଶ network area of 50 and 100 sensor nodes; (b) average EIF results of the 200 × 200 mଶ 
network area of 50 and 100 sensor nodes. 

4.2.3. End-to-End Transmission Time Evaluation 
A further experiment examined the proposed approaches in terms of end-to-end 

transmission time (E2ET). Monitoring systems often have delay needs of fewer than 100 
ms, whereas factory automation has even stricter delay requirements ranging from 2 to 25 
ms [34].  

Figure 7 shows the various E2ET results for the network topologies for a 10,000-
round run of each algorithm. The simulation results clearly show that the E2ET results of 
all algorithms increased with the 100-node topology across different network sizes com-
pared to the 50-node topology, where the increased network traffic prompted a rise in the 
nodes’ multi-hop behaviours and path redundancy. Consequently, an increase in the 
E2ET occurred due to several data packet retransmissions from the sensor node to the 𝐺௪, 
which caused queuing and other delays. 

It is nevertheless evident that the POE2E of GR gave the lowest E2ET results com-
pared with all other topologies, where the highest transmission time of POE2E in a 100 × 
100  network area reached 11 ms, while that in the 200 × 200 𝑚ଶ network area reached 
17 ms, as shown in Figure 7. This is justifiable for the following reasons: the POE2E syn-
chronises the time required to select the data packet transmission time between a source 
node and receiver node to form the next hop in the best path and improves the packet 
delivery by preventing the use of unreliable paths. All delays due to retransmission of lost 
packets are, therefore, reduced. Moreover, the POE2E decreases the congestion at the 
nodes by selecting the neighbours that can best deliver the data packet within its deadline. 
This is achieved by using a Shortlist to choose the next hop from the available neighbours, 
hence facilitating faster delivery of data packets and reducing the delay. Even if transmis-
sion of the network data packets is broken, the intermediate nodes will not spend any time 
searching for the next hop for the retransmission of data packets, which accelerates packet 
forwarding procedures in terms of reaching the 𝐺௪. This was also observed in the E2ET 
results of the PODis, where transmission times reached 15 ms and 21 ms, as shown in 
Figure 7, with 50 and 100 sensor nodes, respectively. Some delays occurred in the E2ET 
results of the PODis approach compared with POE2ET because the PODis approach se-
lects best paths as the shortest paths, increasing network traffic, especially of sensor nodes 
around the 𝐺௪, and prompting delays. In addition, the BPGR-ES approach selects best 
paths as in the POE2ET approach in one case if this is the best path between all of the best 
single-objective paths but prioritises the balance of energy consumption in the other cases. 
Thus, as shown in Figure 7, compared to the POE2ET approach, transmission time in-
creased up to 21 ms for different network topologies of BPGR-ES.  

Figure 7 illustrates a significantly sharp increase in the E2ET results of POEng, with the 
transmission time reaching 55 ms. The main reason for this is the increased number of hops, 
which caused data packets to arrive at the 𝐺௪ with a noticeable delay. In the ELHFR and 
EBREC algorithms, however, data packets could not avoid heavily congested regions. 
Therefore, it may have taken a long time for them to look up options in the neighbouring 
table to locate the next hop node in the path. Consequently, this increased the transmission 
time due to the retransmission of multiple data packets striving to reach the 𝐺௪. 
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(b) 

Figure 7. End-to-End transmission time for different topologies: (a) E2ET results of 100 × 100 mଶ 
network area of 50 and 100 sensor nodes; (b) E2ET results of 200 × 200 mଶ network area of 50 and 
100 sensor nodes.  

4.3. Performance Comparison  
Table 3 presents the performance comparison based on the results in Section 4.2, com-

paring the proposed POE2ET, POEng, PODis, and BPGR-ES approaches with the state-of-
the-art GR algorithms. In terms of the following items, their criteria of paths, reliability, 
balance of energy consumption, and transmission time. The following list of items will be 
discussed: 
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• Criteria of paths: the primary path and formula specified by the GR algorithm for 
each sensor node (i.e., which is the path by which a sensor node will attempt to send 
a data packet for the first time) and what is the criterion for this selection;  

• Reliability: the ratio of delivery of the data packets to the 𝐺௪ measured by averaging 
the PDR results for each algorithm across the different topologies; 

• Balance of energy consumption: the ration of energy consumption balance between 
all of sensor nodes in the network area determined by averaging the EIF results for 
each algorithm across the various topologies; 

• Transmission time: the time it takes each algorithm to send a data packet from a 
source sensor node to the 𝐺௪ determined by lower time and higher time in the E2ET 
results for each algorithm across the different topologies. 

Table 3. Performance comparison of proposed best paths with GR algorithms. 

GR Algorithms  Criteria of Paths Reliability Balance of Energy 
Consumption 

Transmission Time 

POE2ET 
Lower transmission time of 

CMA-ES 98.8% 75.1% Between 4 to 17 ms 

POEng Highest residual energy of 
CMA-ES 

98.75% 57.88% Between 7 to 55 ms 

PODis 
Shortest distance of CMA-

ES 98.84% 37.33% Between 5 to 21 ms 

BPGR-ES 
Multiple Objectives of 

CMA-ES 99.57% 87.73% Between 5 to 25 ms 

EBREC [12] Highest residual energy of 
BFS 

98.6% 86.28% Between 8 to 53 ms 

ELHFR [5] Highest received signal 
level of BFS 97.78% 51.2% Between 7 to 48 ms 

5. Conclusions and Future Work 
This research adopts a Covariance-Matrix Adaptation Evolution Strategy (CMA-ES) 

to establish best paths of a graph routing algorithm for Industrial Wireless Sensor Net-
works (IWSNs) that also provide path redundancy. Firstly, this research proposed three 
best paths, each based on a single-objective function for CMA-ES according to the differ-
ent performance requirements of IWSNs considered in this research: the best Path based 
on the Distance between sensor nodes in the direction of the gateway (PODis), the best 
Path based on residual Energy (POEng) and the best Path based on the End-to-End trans-
mission time (POE2E). Secondly, this research proposes the best Path of Graph Routing-
Evolution Strategy (BPGR-ES) algorithm, which selects the best hops on the basis of mul-
tiple objectives to achieve balanced energy consumption as well as a balance among IWSN 
requirements. This research has evaluated the three best single-objective paths (PODis, 
POEng and POE2E) and the best path with multiple objectives (BPGR-ES) across several 
different topologies in order to examine the total consumed energy, End-to-End Trans-
mission (E2ET), average Energy Imbalance Factor (EIF), Packet Delivery Ratio (PDR) and 
Packet Miss Ratio (PMR). 

The results revealed a reduction in E2ET across all topologies for the POE2ET algo-
rithm. Additionally, the PDR values were good for all proposed approaches: 99.57%, 
98.84%, 98.75% and 98.8% for BPGR-ES, PODis, POEng and POE2E, respectively. Despite 
the fact that total consumed energy for PODis outperformed BPGR-ES in small networks 
and that total consumed energy for BPGR-ES and EBREC was somewhat similar in dense 
networks, the BPGR-ES algorithm achieved an 87.73% better energy balance among all 
sensor nodes in the network in terms of average EIF. It is also noteworthy that all the best 
single-objective paths of GR did not achieve balanced energy consumption over a mesh 
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topology. It is also noteworthy that all the best single-objective paths of GR did not achieve 
balanced energy consumption over a mesh topology. Future work will, therefore, strive 
to implement the best single-objective paths of GR with unequal clustering topology to 
evaluate its performance. Lastly, research directions to explore include the development 
of the GR to build the best paths on the basis of mobility, scheduling, and real-time re-
quirements, simulation experiments using other IWSN standards, and the evaluation of 
several state-of-the-art graph routing algorithms in real IWSN deployments. 
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