7,337 research outputs found

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network

    Multi-Channel Two-way Time of Flight Sensor Network Ranging

    Get PDF
    Two-way time of flight (ToF) ranging is one of the most interesting approaches for localization in wireless sensor networking since previous ToF ranging approaches using commercial off-the-shelf (COTS) devices have achieved good accuracy. The COTS-based approaches were, however, evaluated only in line-of-sight conditions. In this paper, we extend ToF ranging using multiple IEEE 802.15.4 channels. Our results demonstrate that with multiple channels we can achieve good accuracy even in non line-of-sight conditions. Furthermore, our measurements suggest that the variance between different channels serves as a good estimate of the accuracy of the measurements, which can be valuable information for applications that require localization information

    On the Existence of an MVU Estimator for Target Localization with Censored, Noise Free Binary Detectors

    Full text link
    The problem of target localization with censored noise free binary detectors is considered. In this setting only the detecting sensors report their locations to the fusion center. It is proven that if the radius of detection is not known to the fusion center, a minimum variance unbiased (MVU) estimator does not exist. Also it is shown that when the radius is known the center of mass of the possible target region is the MVU estimator. In addition, a sub-optimum estimator is introduced whose performance is close to the MVU estimator but is preferred computationally. Furthermore, minimal sufficient statistics have been provided, both when the detection radius is known and when it is not. Simulations confirmed that the derived MVU estimator outperforms several heuristic location estimators.Comment: 25 pages, 9 figure
    • …
    corecore