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Abstract. Two-way time of flight (ToF) ranging is one of the most in-
teresting approaches for localization in wireless sensor networking since
previous ToF ranging approaches using commercial off-the-shelf (COTS)
devices have achieved good accuracy. The COTS-based approaches were,
however, evaluated only in line-of-sight conditions. In this paper, we ex-
tend ToF ranging using multiple IEEE 802.15.4 channels. Our results
demonstrate that with multiple channels we can achieve good accuracy
even in non line-of-sight conditions. Furthermore, our measurements sug-
gest that the variance between different channels serves as a good esti-
mate of the accuracy of the measurements, which can be valuable infor-
mation for applications that require localization information.

1 Introduction

Localization of sensor nodes is an important problem, because sensor data is
in many cases useless without the knowledge about the location from where it
was obtained. Therefore a lot of effort has been devoted to solve the localization
problem [6, 12, 13, 17]. There is, however, still no generic solution, i.e., a solution
that is also accurate when nodes are not in line-of-sight (LoS), for commercial
off-the-shelf (COTS) devices. The localization problem can be divided into two
sub-problems: collection of localization measurements, and computation of the
actual positions based on the collected measurements. In this paper we focus on
the former.

Our key idea to improve the accuracy of ToF-based ranging when nodes
are not in LoS is to use multiple channels for estimating the time of flight.
We present experiments that show that picking one channel only, can lead to
very inaccurate results. For larger distances of about 50 meters the difference
between estimations with the best and the worst channel can differ by up to
20 meters. Our main contribution is that we demonstrate that using multiple
channels enables us to achieve good ranging accuracy also when nodes are not
placed in LoS of each other. Under non-LoS conditions, the multi-path effect can
be substantial which can lead to longer ToF measurements than required for the
actual distance between sender and receiver. Our estimation method that we call
the k-sigma method compensates for this effect by using the variance between
measurements from different channels, i.e., the inter-channel variance.
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In this paper, we extend the two-way time-of-flight (ToF) approach by Ma-
zomenos et al. for relative ranging with COTS devices [14]. Mazomenos et al.
have achieved very accurate localization estimations for nodes placed in LoS
but have not tackled the problem when nodes are not in LoS. One additional
contribution of our paper is that we confirm their LoS results using a hard-
ware platform with the commonly used CC2420 radio while they used a TI
EZ430-RF2500 development platform. Since the CC2420 radio is IEEE 802.15.4
compliant we can make use of hardware acknowledgements which reduces the
timing uncertainties when the receiver’s software processes the received packet
and acknowledges the ranging packet. In the general case, when we have a sce-
nario with both LoS and non LoS, our solution outperforms the one proposed by
Mazomenos et al.[14], achieving a 30% smaller overall root mean square (RMS)
estimation error. We also present results that suggest that the inter-channel
variance can serve as an estimate for the accuracy of the distance estimation.
Such information is useful input for algorithms that compute positions based on
distance estimations.

Our results also highlight the advantages of using a stable clock source. To-
wards this end, we use the radio’s clock instead of that of the CPU. We show that
this way, variations in temperature affect our measurements to a small extent
only. Furthermore, the variance in clock speed between devices is lower which
avoids the need for pairwise calibration.

The paper proceeds as follows. In the next section we present two-way time
of flight ranging. In Section 3 we present the design and implementation of
our system. The following section describes our algorithms for estimating the
distance based on ranging measurements of multiple channels. Section 5 presents
the experimental results that support our claims. Before concluding we discuss
related work in Section 6.

2 Two-way Time of Flight Ranging

The basic idea of the ToF ranging is to estimate the distance between two nodes
based on the measurements of the propagation time that is linearly correlated
to the physical distance between the nodes when nodes are in LoS. Two-way
ToF ranging, as opposed to one-way, does not require tight time synchronization
between sender and receiver, which is a difficult problem in WSNs [4].

We can compute the distance according to Equation 1 where c is the speed
of light, t̂RTT is an average of multiple round-trip-time measurements, and toff
is an offset time accounting for all processing delays in the system. This includes
the time for the sender to transmit the packet, the time the receiver needs to
process it, and send the acknowledgment.

d =
c

2
(t̂RTT − toff ) (1)

From Equation 1 we can derive the following two objectives for designing
a two-way ToF ranging system: Accurate measurements of the time of flight
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between pairs of nodes, and that the delay toff should be as close to a constant
as possible. Towards this end, we need a stable clock source with high resolution
and precision, efficient time stamping of the ranging packets and predictable
execution times.

A single measurement is not sufficient: in fact, the resolution of a clock with
frequency ftimer Hz allows for a spatial precision equal to ∆d = c

2·ftimer
. For

a 8 MHz clock, the resulting spatial resolution is 18.737 m. To achieve a better
resolution, it is possible to perform a series of measurements and compute the
average, a technique also used by Mazomenos et al. [14]. This way, sub-clock
precision can be achieved.

3 System Design and Implementation

In this section we describe the design and implementation of our ranging system.
We use an off-the-shelf sensor node called Z1 from Zolertia [23], a variant of the
Tmote Sky. As the Tmote Sky, the Z1 node features an MSP430 processor and
an IEEE 802.15.4-compliant CC2420 radio.

3.1 The Hardware Platform

The clock source of the timer used to measure the RTT plays a special role. The
internal oscillator of the MSP430 processor is a digitally controlled oscillator
(DCO) and exhibits a high variance and instability. It is possible to setup the
DCO with precalibrated settings at defined nominal frequencies [8]. Since the
DCO’s frequency depends on temperature and supply voltage, it must, however,
be periodically recalibrated against a stable clock source. On our Z1 nodes, we
use the 8 MHz internal clock of the radio as a timer source to avoid the need for
compensating for clock skew.

The radio clock’s signal is generated with a crystal oscillator with a minimum
accuracy is 40 ppm [7]. This corresponds to an uncertainty of ±0.32 kHz on the
radio clock frequency. This should be compared to that of the MSP430’s internal
DCO, which is 400 kHz according to the datasheet, or 6.5 kHz according to
measurements performed by Mazamenos et al.

Our approach uses a special debug mode of the radio which outputs the radio
clock on the Clear Channel Assessment (CCA) pin, and requires the nodes to
be slightly modified to route this signal to the timer source input, as shown in
Figure 1. This modification can also be applied to a Tmote Sky. This way, we
exploit the most stable clock source available on the sensor board. Furthermore,
the signals from the radio chip are synchronous with this clock. These signals
include the Start of Frame Delimiter (SFD) which enables us to use the radio
clock as a timer source to measure time intervals between the SFDs of the
sender’s ranging packet and the receiver’s acknowledgment. When the radio is
not used for ranging purposes, the system restores the CCA pin to its normal
functionality.
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Fig. 1. Hardware modification on the Zolertia Z1. In order to route the clock radio to
the MCU timer unit, we use a cable to connect the marked vias.

In order to reduce the uncertainty in software processing on the receiver side,
we exploit that the CC2420 radio chip has an automatic acknowledgment feature
for packets correctly framed according to the standard. In contrast to Mazomenos
et al. who implement the acknowledgement functionality in software [14], we use
this hardware acknowledgement mechanism to reduce variability of the delay
toff in Equation 1.

3.2 RTT Measurement

Fig. 2. RTT measurement transaction time-line.

Figure 2 shows the time-line of a single two-way ToF transaction. The de-
tailed process is as follows:

1. Node A prepares a ranging packet with the appropriate “acknowledgment
required” attribute set.

2. Node A’s radio sends the ranging packet. After the SFD field is transmitted,
the packet is timestamped. The timestamp is stored in ttAB .
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3. Node B receives the packet. After tack, it sends an acknowledgment packet
back to node A.

4. Node A receives the acknowledgment. As soon as the SFD is decoded, the
packet is timestamped and the reception timestamp is stored in trBA.

5. Node A computes the round-trip-time, given by tRTT = trBA − ttAB , and
stores it in a buffer.

Figure 2 also shows that:

tRTT = 2tp + ttA + tack + tBSHR − tASHR. (2)

From Equation 1 and Equation 2, we can derive that toff is composed as
follows:

toff = ttA + tack + tBSHR − tASHR. (3)

Since we use automatic acknowledgements and an IEEE 802.15.4 radio with
a given bandwidth of 250 kbit/s, all constants of Equation 3 are independent of
the MCU’s DCO, and depend only on the internal crystal oscillator of the radio
chip.

The time measurement for the round-trip-time tRTT , is obtained from the
number of clock cycles ncycles counted by the timer between the two SFDs.

tRTT =
ncycles
ftimer

. (4)

Here, ftimer is the frequency of the radio’s internal crystal oscillator. In our case
ftimer = 8 MHz. As outlined in the previous section we compute ncycles as the
average of several round-trip-time measurements.

4 Distance Estimation

In this section we describe our k-sigma distance estimation method. It uses inter-
channel variability of ToF measurements to achieve accurate distance estimation
also when nodes are not in LoS. The method uses two parameters that must be
calibrated before deployment. We use a calibration method that takes real-world
measurements as input to estimate the parameters to be used in subsequent
deployments. Note that we do not need to calibrate for each different node or for
different pairs of nodes because the deviations in clock speed between different
sensor nodes are small, which we confirm in our evaluation in Section 5.

From Equation 1 and Equation 4, we derive that the distance d can be
expressed as in Equation 5.

d =
c

2

(
ncycles
ftimer

− toff
)
. (5)

Mazomenos et al. use the average of many short distance measurements to
derive the delay toff . We take a different approach, and assume that the offset
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toff is the sum of a constant processing delay tproc and a variable delay tmulti

that is caused by multi-path propagation. See Equation 6.

toff = tproc + tmulti. (6)

Fig. 3. The relation between the delay tioff , and the inter-channel standard deviations
σi for each measurement i in our data sets. We use this relation to estimate the total
delay t∗off as the sum of the constant delay tproc caused by processing times, and the
variable delay tmulti = kσ caused by multi-path effects. We use linear regression to
estimate the constants tproc and k.

We compute the empirical value of toff for each measurement i in the data
from the experiments presented in Section 5, as tioff =

ncycles

ftimer
− 2di

c , where
di is the true distance for that measurement, and ncycles is the average of the
measurements from all channels. We also compute the inter-channel standard
deviation σi for each measurement. Figure 3 shows the relation between σi and
tioff for the data. The figure supports the assumption that the offset toff can be
modeled as the sum of a constant, and a variable delay. It also suggests that we
can approximate toff by a linear function in σ:

t∗off (σ) = tproc + tmulti = tproc + kσ. (7)

We use linear regression to estimate the constants k and tproc. These two
parameters are the output of our calibration method. The input data is composed
of the multi channel ToF measurements together with their corresponding true
distances.

The k-sigma method can be optimized for a specific known environment,
or for a generic unknown environment. For example, if the deployment target
environment is known, and homogeneous in the sense that all nodes have either
LoS or not, we can optimize k-sigma for this by using calibration data from a
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similar environment. On the other hand, if the environment is not known, or is
mixed such that some nodes have LoS and others do not, it is important that the
calibration data come from both LoS and non-LoS situations. This is exemplified
in Sections 5.2 through 5.4.

When nodes are deployed, Equation 8 is used to compute the distance esti-
mation d∗.

d∗ =
c

2

(
ncycles
ftimer

− tproc − kσ
)

(8)

In Equation 8, we obtain ncycles and σ directly from the measurements. tproc
and k are the values from the calibration phase discussed above.

5 Experimental Evaluation

In this section we present experimental results that support the main claims
of our paper. First, we evaluate the impact of our choice to use an external,
crystal-controlled clock source, rather than the internal clock provided by the
DCO. Second, by comparing our results to those of Mazomenos et al., we show
that our method provides as accurate results as state-of-the art methods for
ToF ranging when nodes are in LoS. Third, we demonstrate the benefit of using
multiple channels as opposed to using a single channel, by showing that different
channels can give rise to different ToF measurements. Fourth, we present results
that show that our method is able to provide accurate estimations even when
nodes are not in LoS. Finally, we present results that suggest that we can use
the inter-channel standard deviation of the ToF to estimate the accuracy of the
distance estimations.

We use data collected from four different scenarios: (1) Outdoors in a field
where nodes are positioned in LoS. (2) Outdoors, but with one node on each side
of a corner of a brick building in non-LoS. (3) Indoors, in an office corridor with
LoS. (4) Indoors, non-LoS around corners, and through walls. We refer to these
sets as los-out, nlos-out, los-in, and nlos-in, respectively. For each experiment we
perform about 1000 measurements from each of the 16 different 802.15.4 radio
channels.

Leave-one-out cross-validation is a well known validation technique often used
in the field of Machine Learning [19]. Using this technique, if the data contains
n observations, then n−1 observations are used to estimate the constants k and
tproc (see Section 4), and the single remaining observation is used to evaluate the
accuracy of the estimation. This is then repeated until each observation has been
used for evaluation exactly once. All results regarding our estimation method are
obtained by using this technique if not mentioned otherwise.

We compare the k-sigma method to that presented by Mazomenos et al.,
by first estimating toff using a short-distance calibration measurement. Then
we use this value to compute the distance estimations according to Equation 1.
In their paper, they also present a filtering method. Their method, however, is
not appropriate for our data because our measurements have a much smaller
variance. Applying their filter to our measurements results in lower accuracy.
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5.1 Clock Source Stability

In the experiments in this section, we analyze the impact of using a stable
clock source. As an example of a stable clock source, we use the CC2420’s clock
which has a signal generated by a 8 MHz crystal-controlled oscillator. We provide
experimental results to compare this clock with the digitally-controlled oscillator
(DCO) provided by the MCU. The results show that the stable clock provided
by the CC2420 radio is a better choice than the DCO, because it enables us to
calibrate only once to estimate tproc and k as discussed in Section 4, as opposed
to calibrating for each pair of nodes. It is also insensitive to temperature changes,
and avoids therefore the need for recalibration which would be necessary with
the DCO.

RTT distribution. In this experiment we perform several series of RTT mea-
surements, using several pairs of nodes. Nodes are placed at a distance of 15 cm
from one another. We switch the timer clock source between the radio clock and
the DCO clock every 512 measurements until a total of 4096 measurements are
performed for each source.

Figure 4 shows the results from three different pairs. The DCO measurements
have a difference of up to almost 30 clock cycles which would lead to very different
estimated distances: according to Equation 5 to more than 500 meters. The
corresponding difference for the more stable clock source is 0.02 clock cycles,
or 0.40 m, which is a great improvement over the DCO approach. With DCO
measurements, it would be necessary to calibrate each node pair in the system
to account for clock differences across different nodes. With our approach, this
is not necessary.

Moreover, the distributions of the RTTs acquired with the DCO clock are
much wider than the ones acquired with the crystal sourced clock. The standard
deviation of the former is at least twice the latter. This is also evident in Figure 4
where DCO measurements span across at least 6 different RTT values, while
the radio clock measurements span less than the half. This, however, does not
necessarily imply that we can obtain more accurate distance estimations with
the crystal sourced clock, because one can compensate a low clock stability by
increasing the number of RTT measurements.

Temperature drift. In this experiment, we analyze the behavior of the DCO
and the CC2420’s crystal-controlled oscillator at different temperatures. We
place a pair of nodes 15 cm apart. The nodes sample the temperature using
the MCU’s internal temperature sensor every 512 RTT measurements. When
sampling, we also switch the timer clock source between the radio clock and the
DCO clock. We first heat the measuring node and then let it cool down to room
temperature. Figure 5 shows the RTTs measured with the two clock sources, in
relation to the node temperature. We can see that the effect of the temperature
on the RTTs measurements depends on the clock source used. Heating the node
affects the DCO measurements heavily, while it has a limited impact on the



Multi-Channel Two-way Time of Flight Sensor Network Ranging 9

0

500

1000

1500

2000

2500

3000

7450 7460 7470 7480 7490 7500

N
u

m
b

e
r 

o
f 

s
a

m
p

le
s

RTT (Clock ticks)

Pair 3

DCO
Crystal osc.

0

500

1000

1500

2000

2500

3000

7450 7460 7470 7480 7490 7500

N
u

m
b

e
r 

o
f 

s
a

m
p

le
s

Pair 2

DCO
Crystal osc.

0

500

1000

1500

2000

2500

3000

7450 7460 7470 7480 7490 7500
N

u
m

b
e

r 
o

f 
s
a

m
p

le
s

Pair 1

DCO
Crystal osc.

Fig. 4. RTT measurements distributions with DCO and crystal clock source for three
pairs of nodes. The low standard deviation of the crystal source avoids the need for
pairwise calibration of nodes.

measurements with the stable clock. The difference between the DCO measure-
ments at 30 ◦C and 60 ◦C is almost 30 clock cycles while the difference across the
stable clock measurements is below 0.1 clock cycles. With DCO measurements,
we would need to recalibrate the estimation algorithm to take into account the
varying temperature. On the other hand, the effects of the temperature on the
stable clock are negligible.
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Fig. 5. The impact of the temperature is high on the DCO but low on the crystal
oscillator.
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5.2 A Line-of-Sight Scenario

We compare the results presented by Mazomenos et al. [14] to those of the k-
sigma method for LoS measurements. In this experiment we use only the los-out
data set as input to the k-sigma method for estimating the parameters tproc
and k, and hence, in this experiment the calibration environment is similar to
the target environment. Note that in this LoS scenario, we do not expect more
accurate results with our system than the results they report. First, using the
radio’s clock improves simplicity and flexibility but not accuracy. Second, our k-
sigma method targets generic environments rather than scenarios where all nodes
are in LoS. The purpose of the experiment is to show that the performance of
our method, if optimized for a LoS scenario, is comparable to that of the method
proposed by Mazomenos et al.
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Fig. 6. A comparison of the results presented by Mazomenos et al. and the k-
sigma method. Here, only the los-out data set is used to estimate the constants tproc
and k for our method. loc1 and loc2 refer to the experiments at Location 1, and
Location 2 in their paper [14].

Figure 6 shows the comparison. The values labeled loc1 and loc2 correspond
to the outdoor experiments at Location 1 and Location 2 in the paper by Ma-
zomenos et al. At these locations, they obtain RMS errors of 0.75 meter, and
2.23 meter, respectively. We obtain an RMS error of 2.02 meter, which is similar
to their results. It should be noted that we are not able to obtain as good results
with their method on our data sets, as can be seen in Section 5.4.

5.3 One Channel is not Enough

Different channels are subject to different effects caused by multi-path propaga-
tion. The variance between measurements from different channels can therefore
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be large. Figure 7 shows an example of this: Circles indicate the estimated dis-
tance when we use measurements from single channels for the los-out data set.
For some measurements, there is a big difference between the best and the worst
single-channel estimation. This is true in particular for longer distances. For ex-
ample, when the true distance is 50 meters, the estimations differ by more than
20 meters between the worst and the best channel. This indicates that it is not
enough to use a single channel, if we want to ensure relatively low estimation
errors. One way to improve estimations is by using the smallest value of the dif-
ferent channels. This is indicated by the line that goes through the lower circles
in the graph. The k-sigma method, however, produces even better results, as
shown in Figure 6, by using the inter-channel standard deviation to estimate the
measurement error.

While more measurements increase the accuracy of the estimation, our results
show that our improvements stem from the fact that we use multiple channels.
We have experimentally verified that using more measurements would not lead
to such improvements.
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Fig. 7. One channel is not enough. Circles indicate estimated distance for an individual
channel. Picking the wrong channel can yield inaccurate results.

5.4 A General Scenario

In the experiments in this section we show that the k-sigma method produces
accurate distance estimations also in the general case, i.e., when no assumptions
are made on whether nodes are in LoS of each other, or not. First, we use all
our data sets to estimate the constants tproc and k using leave-one-out cross-
validation. Figure 8 depicts the results. We note the following two things: some
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estimations are not very accurate, and the estimations on the los-out data set
are worse than those presented in Figure 6. The reason for the latter is that
we, in Figure 6, only use measurements from a single environment, causing the
k-sigma method to optimize for that environment. Here, on the other hand, we
have incorporated measurements from several different environments to optimize
the k-sigma method for the general case.
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Fig. 8. Distance estimation with the k-sigma method in the general case. The method
obtains accurate estimations also when nodes are not in LoS. Labels indicate to which
data set measurements belong.

Regarding the first observation above, Figure 9 shows a comparison between
the method proposed by Mazomenos et al. and the k-sigma method, both using
the same measurements and hence also the same stable clock, i.e., only the meth-
ods themselves differ. For their method, we have selected the channel resulting
in the smallest ToF measurements as described in 5.3. We obtain improvements
for all data sets, and an overall improvement of 30%. The overall RMS errors are
4.5 meter, and 6.4 meter for our method and the one proposed by Mazomenos et
al., respectively. We also see that the k-sigma method outperforms their method
for the two non-LoS data sets nlos-in and nlos-out. This is because the ToF
measurements in these data sets are very inaccurate, and the k-sigma method
is often able to remedy this, while the method used by Mazomenos et al. is
not. The k-sigma method does this by exploiting the statistical relation between
the inter-channel standard deviation of the ToF measurements, and the mea-
surement error due to multi-path propagation, to estimate appropriate values of
toff as explained in Section 4.



Multi-Channel Two-way Time of Flight Sensor Network Ranging 13

0

5

10

15

20

los-out nlos-out los-in nlos-in all

R
M

S
 (

m
)

k-sigma, max error
Mazomenos, max error

k-sigma, RMS error
Mazomenos, RMS error

Fig. 9. Comparison between the k-sigma method and the one used by Mazomenos et
al. using the same data. The k-sigma method obtains lower maximum errors, lower
RMS errors for all different data sets, and an overall improvement of 30%.

We perform a second experiment to evaluate how well the k-sigma method
performs in environments from which no data have been available during cali-
bration. Instead of leaving out one single measurement, we leave out whole data
sets, one at a time, and use that set to evaluate the method. The results are
given as RMS error in Table 1, which also shows the corresponding values for
the k-sigma method from Figure 9, for comparison purposes.

Evaluation method los-out nlos-out los-in nlos-in

leave-set-out 3.1 5.4 2.6 7.0

leave-one-out 2.9 5.7 2.5 6.7

Table 1. RMS errors (in meters) for the experiment where whole data sets are left out
together with the results previously presented for the k-sigma method in Figure 9.

The experiments show that in our scenarios, the k-sigma method obtains ac-
curate estimations even in environments from which no data has been used in the
calibration phase to determine the parameters of the k-sigma method. The re-
sults show, however, that using data collected from the deployment environment
provides more accurate estimations.

5.5 Estimating the Accuracy

Although we can obtain improved results using the k-sigma method, we yield
inaccurate results in some scenarios. From Figure 9 we see that we obtain a max-
imum error of 11 meters. Given this imperfection, information of the expected
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estimation accuracy can be valuable. This information can be used in localization
algorithms to, e.g., weight measurements according to their estimated accuracy.

Under non-LoS conditions, the multi-path effect can be substantial which can
lead to longer ToF measurements than required for the actual distance between
sender and receiver. The fact that different channels can yield different propa-
gation paths suggests that it is possible to use the variance of the ToF between
the channels to determine the estimation accuracy.
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Fig. 10. The color at point (x,y) indicates the probability of having an absolute er-
ror less than y meters, given that the standard deviation for the measurements from
different channels is greater than x. The probability for high errors increases with the
standard deviation. We believe that the abrupt change around x = 0.5 is an artifact
of having few samples with a standard deviation above this value.

We use our data sets to approximate the cumulative probability distribution
for the measurement error given a lower limit for the inter-channel standard
deviation. That is, P (|e| ≤ y | σ ≥ x), where |e| is the absolute measurement
error, and σ the inter-channel standard deviation. The approximated distribution
is shown in Figure 10. According to the figure, it is more probable to have a high
accuracy if the channel standard deviation is low while a high channel standard
deviation indicates low accuracy. This suggests that the standard deviation can
be used to determine the estimation accuracy.

6 Related Work

Many different localization measurement techniques have been proposed [6, 12,
13, 17]. Most of them only work under quite strict assumptions about the envi-
ronment. Examples of such assumptions are that nodes are positioned in LoS
of each other [20], and the existence of special, tightly synchronized anchor
nodes [21]. Moreover, many solutions require additional hardware, e.g., ultra
sound transceivers [16] or special directional antennas [15].

One technique that does not require specialized hardware, nor strict assump-
tions regarding the environment is RF based two-way ToF as proposed by Ma-
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zomenos et al. [14]. Inspired by Mazomenos’ scheme, we also implement a two-
way ranging scheme but improve it in several aspects as discussed in the paper.

There are previous efforts using ToF to estimate distances in wireless sensor
networks, for example, by Lanzisera et al. [10], Pichler et al. [18] and Karalar
and Rabaey [9]. All these efforts rely on special hardware in terms of FPGAs for
advanced signal processing or the simultaneous reception of signals on several
channels. Localization using ToF is more accurate with UWB radios due to the
physical properties of UWB signals, in particular the large bandwidth. Therefore,
there are a number of approaches using UWB-based positioning including those
by Gezici et al. [5] and Alsindi et al. [2]. Alcock et al. have also combined UWB
positioning and MAC layer communication [1].

Similar to our work, Bardella et al. exploit multichannel transmissions to
reduce the negative effect of multi-path on distance estimation [3]. In contrast
to us, they focus on RSSI-based distance estimation rather than ToF.

There are other studies on localization that have considered non LoS signals.
Li has proposed a model for angle-of-arrival estimation for mobile phones that
requires a sufficient number of base stations [11]. Similar to Li and many others,
Venkatraman el al. [22] also target mobile phone systems rather than resource-
constrained wireless sensor networks.

7 Conclusions

In this paper we have presented a two-way time-of-flight ranging method for
distance estimation in sensor networks. Our main contribution is that we show
that by using multiple channels we also achieve good estimates when nodes are
not placed in line-of-sight.
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