536 research outputs found

    Experimental Demonstration of Quantum Fully Homomorphic Encryption with Application in a Two-Party Secure Protocol

    Get PDF
    A fully homomorphic encryption system hides data from unauthorized parties while still allowing them to perform computations on the encrypted data. Aside from the straightforward benefit of allowing users to delegate computations to a more powerful server without revealing their inputs, a fully homomorphic cryptosystem can be used as a building block in the construction of a number of cryptographic functionalities. Designing such a scheme remained an open problem until 2009, decades after the idea was first conceived, and the past few years have seen the generalization of this functionality to the world of quantum machines. Quantum schemes prior to the one implemented here were able to replicate some features in particular use cases often associated with homomorphic encryption but lacked other crucial properties, for example, relying on continual interaction to perform a computation or leaking information about the encrypted data. We present the first experimental realization of a quantum fully homomorphic encryption scheme. To demonstrate the versatility of a a quantum fully homomorphic encryption scheme, we further present a toy two-party secure computation task enabled by our scheme

    Group Signatures with Message-Dependent Opening: Formal Definitions and Constructions

    Get PDF
    This paper introduces a new capability for group signatures called message-dependent opening. It is intended to weaken the high trust placed on the opener; i.e., no anonymity against the opener is provided by an ordinary group signature scheme. In a group signature scheme with message-dependent opening (GS-MDO), in addition to the opener, we set up an admitter that is not able to extract any user’s identity but admits the opener to open signatures by specifying messages where signatures on the specified messages will be opened by the opener. The opener cannot extract the signer’s identity from any signature whose corresponding message is not specified by the admitter. This paper presents formal definitions of GS-MDO and proposes a generic construction of it from identity-based encryption and adaptive non-interactive zero-knowledge proofs. Moreover, we propose two specific constructions, one in the standard model and one in the random oracle model. Our scheme in the standard model is an instantiation of our generic construction but the message-dependent opening property is bounded. In contrast, our scheme in the random oracle model is not a direct instantiation of our generic construction but is optimized to increase efficiency and achieves the unbounded message-dependent opening property. Furthermore, we also demonstrate that GS-MDO implies identity-based encryption, thus implying that identity-based encryption is essential for designing GS-MDO schemes

    Snarky Signatures: Minimal Signatures of Knowledge from Simulation-Extractable SNARKs

    Get PDF
    We construct a pairing based simulation-extractable SNARK (SE-SNARK) that consists of only 3 group elements and has highly efficient verification. By formally linking SE-SNARKs to signatures of knowledge, we then obtain a succinct signature of knowledge consisting of only 3 group elements. SE-SNARKs enable a prover to give a proof that they know a witness to an instance in a manner which is: (1) succinct - proofs are short and verifier computation is small; (2) zero-knowledge - proofs do not reveal the witness; (3) simulation-extractable - it is only possible to prove instances to which you know a witness, even when you have already seen a number of simulated proofs. We also prove that any pairing based signature of knowledge or SE-NIZK argument must have at least 3 group elements and 2 verification equations. Since our constructions match these lower bounds, we have the smallest size signature of knowledge and the smallest size SE-SNARK possible

    Noninteractive Zero Knowledge for NP from (Plain) Learning With Errors

    Get PDF
    We finally close the long-standing problem of constructing a noninteractive zero-knowledge (NIZK) proof system for any NP language with security based on the plain Learning With Errors (LWE) problem, and thereby on worst-case lattice problems. Our proof system instantiates the framework recently developed by Canetti et al. [EUROCRYPT\u2718], Holmgren and Lombardi [FOCS\u2718], and Canetti et al. [STOC\u2719] for soundly applying the Fiat--Shamir transform using a hash function family that is correlation intractable for a suitable class of relations. Previously, such hash families were based either on ``exotic\u27\u27 assumptions (e.g., indistinguishability obfuscation or optimal hardness of certain LWE variants) or, more recently, on the existence of circularly secure fully homomorphic encryption (FHE). However, none of these assumptions are known to be implied by plain LWE or worst-case hardness. Our main technical contribution is a hash family that is correlation intractable for arbitrary size-SS circuits, for any polynomially bounded SS, based on plain LWE (with small polynomial approximation factors). The construction combines two novel ingredients: a correlation-intractable hash family for log-depth circuits based on LWE (or even the potentially harder Short Integer Solution problem), and a ``bootstrapping\u27\u27 transform that uses (leveled) FHE to promote correlation intractability for the FHE decryption circuit to arbitrary (bounded) circuits. Our construction can be instantiated in two possible ``modes,\u27\u27 yielding a NIZK that is either computationally sound and statistically zero knowledge in the common random string model, or vice-versa in the common reference string model

    Increasing the power of the verifier in Quantum Zero Knowledge

    Get PDF
    In quantum zero knowledge, the assumption was made that the verifier is only using unitary operations. Under this assumption, many nice properties have been shown about quantum zero knowledge, including the fact that Honest-Verifier Quantum Statistical Zero Knowledge (HVQSZK) is equal to Cheating-Verifier Quantum Statistical Zero Knowledge (QSZK) (see [Wat02,Wat06]). In this paper, we study what happens when we allow an honest verifier to flip some coins in addition to using unitary operations. Flipping a coin is a non-unitary operation but doesn't seem at first to enhance the cheating possibilities of the verifier since a classical honest verifier can flip coins. In this setting, we show an unexpected result: any classical Interactive Proof has an Honest-Verifier Quantum Statistical Zero Knowledge proof with coins. Note that in the classical case, honest verifier SZK is no more powerful than SZK and hence it is not believed to contain even NP. On the other hand, in the case of cheating verifiers, we show that Quantum Statistical Zero Knowledge where the verifier applies any non-unitary operation is equal to Quantum Zero-Knowledge where the verifier uses only unitaries. One can think of our results in two complementary ways. If we would like to use the honest verifier model as a means to study the general model by taking advantage of their equivalence, then it is imperative to use the unitary definition without coins, since with the general one this equivalence is most probably not true. On the other hand, if we would like to use quantum zero knowledge protocols in a cryptographic scenario where the honest-but-curious model is sufficient, then adding the unitary constraint severely decreases the power of quantum zero knowledge protocols.Comment: 17 pages, 0 figures, to appear in FSTTCS'0

    Noninteractive Zero Knowledge Proof System for NP from Ring LWE

    Get PDF
    A hash function family is called correlation intractable if for all sparse relations, it hard to find, given a random function from the family, an input output pair that satisfies the relation. Correlation intractability (CI) captures a strong Random Oracle like property of hash functions. In particular, when security holds for all sparse relations, CI suffices for guaranteeing the soundness of the Fiat-Shamir transformation from any constant round, statistically sound interactive proof to a non-interactive argument. In this paper, based on the method proposed by Chris Peikert and Sina Shiehian, we construct a hash family that is computationally correlation intractable for any polynomially bounded size circuits based on Learning with Errors Over Rings (RLWE) with polynomial approximation factors and Short Integer Solution problem over modules (MSIS), and a hash family that is somewhere statistically intractable for any polynomially bounded size circuits based on RLWE. Similarly, our construction combines two novel ingredients: a correlation intractable hash family for log depth circuits based on RLWE, and a bootstrapping transform that uses leveled fully homomorphic encryption (FHE) to promote correlation intractability for the FHE decryption circuit on arbitrary circuits. Our construction can also be instantiated in two possible modes, yielding a NIZK that is either computationally sound and statistically zero knowledge in the common random string model, or vice-versa in common reference string model. The proposed scheme is much more efficient

    A study of statistical zero-knowledge proofs

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 1999.Includes bibliographical references (p. 181-190).by Salil Pravin Vadhan.Ph.D

    Functional Commitments for All Functions, with Transparent Setup and from SIS

    Get PDF
    A *functional commitment* scheme enables a user to concisely commit to a function from a specified family, then later concisely and verifiably reveal values of the function at desired inputs. Useful special cases, which have seen applications across cryptography, include vector commitments and polynomial commitments. To date, functional commitments have been constructed (under falsifiable assumptions) only for functions that are essentially *linear*, with one recent exception that works for arbitrarily complex functions. However, that scheme operates in a strong and non-standard model, requiring an online, trusted authority to generate special keys for any opened function inputs. In this work, we give the first functional commitment scheme for nonlinear functions---indeed, for *all functions* of any bounded complexity---under a standard setup and a falsifiable assumption. Specifically, the setup is ``transparent,\u27\u27 requiring only public randomness (and not any trusted entity), and the assumption is the hardness of the standard Short Integer Solution (SIS) lattice problem. Our construction also has other attractive features, including: *stateless updates* via generic composability; excellent *asymptotic efficiency* for the verifier, and also for the committer in important special cases like vector and polynomial commitments, via preprocessing; and *post-quantum security*, since it is based on SIS
    • 

    corecore