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Abstract

Zero-knowledge interactive proofs, introduced by Goldwasser, Micali, and Rackoff, are fas-
cinating constructs which enable one party (the "prover") to convince another party (the
"verifier") of an assertion, with the property that the verifier learns nothing other than the
fact that the assertion being proven is true. In addition to being powerful tools for construct-
ing secure cryptographic protocols, zero-knowledge proofs yield rich classes of computational
problems that are of both complexity-theoretic and cryptographic interest.

This thesis is a detailed investigation of statistical zero-knowledge proofs, which are zero-
knowledge proofs in which the condition that the verifier "learns nothing" is interpreted in
a strong statistical sense. We begin by showing that the class SZK of problems possessing
such proofs has two natural complete problems. These problems essentially amount to
approximating the statistical difference or the difference in entropies between two "efficiently
sampleable" distributions. Thus, they give a new characterization of SZK which makes no
reference to interaction or zero knowledge. They also simplify the study of statistical zero
knowledge, as questions about the entire class SZK can be reduced to examining these two
particular complete problems.

Using these complete problems as tools, we proceed to answer a number of fundamental
questions about zero-knowledge proofs, including:

" Transforming any statistical zero-knowledge proof against an honest verifier (i.e., a
verifier that follows the specified protocol) into one which is zero knowledge even
against cheating verifiers that deviate arbitrarily from the specified protocol. This
transformation applies to public-coin computational zero-knowledge proofs as well.

" Constructing statistical zero-knowledge proofs for complex assertions built out of sim-
pler assertions already shown to be in SZK. Via the complete problems, these closure
properties translate to new methods for manipulating "efficiently sampleable" distri-
butions, which may be of independent interest.

" Obtaining simpler proofs of most previously known results about statistical zero
knowledge, such as: Okamoto's result that SZK is closed under complement; Fortnow,
Aiello, and Histad's upper bounds on the complexity of SZK; and Okamoto's result
that every statistical zero-knowledge proof can be transformed into a public-coin one.

Thesis Supervisor: Shafi Goldwasser
Title: RSA Professor of Computer Science
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Chapter 1

Introduction

1.1 The magic of zero-knowledge proofs

The notion of a proof plays a central role in mathematics and computer science. Proofs

are the main fruits of a mathematician's labor; the goal of modern mathematics is not just

to determine which mathematical statements are true but to prove that they are so. In

theoretical computer science, the fundamental "P vs. NP" question essentially amounts to

asking whether proofs are computationally harder to find than they are to verify.

Given their importance, it is natural to ask "What does one learn from a proof?" By

definition, upon verifying a proof, one should be convinced that the assertion being proven is

true. But a proof can actually reveal much more than that. Indeed, proofs in mathematics

are valued for providing a great deal of insight in addition to validating a particular theorem.

And, at a minimum, it seems inherent in the notion of a proof that after verifying a proof,
one leaves not just with confidence that the assertion is true, but also with the ability to

present the same proof to others and convince them of the assertion.

Zero-knowledge proofs, introduced by Goldwasser, Micali, and Rackoff [GMR89], are

fascinating constructs which somehow escape the confines of this intuition - they are

proofs which are convincing but reveal nothing other than the validity of the assertion

being proven. In particular, after verifying a zero-knowledge proof, one does not gain the

ability to convince someone else of the same statement!

In order to achieve this seemingly impossible goal, Goldwasser, Micali, and Rackoff

introduce two new elements to the notion of a proof - interaction and randomization.

Whereas classically a proof is a static object that can be written down and later verified,
now a proof is viewed as interactive protocol between two communicating parties, a prover

and a verifier. Both parties can be randomized (i.e., they can "flip coins"), so the verifier can

present the prover with "random challenges" and the prover can give "random responses."

At the end, the verifier should be convinced (with high statistical confidence) that the

assertion is true. Amazingly, it is possible to guarantee that the verifier learns essentially

nothing else from the interaction.
Goldwasser, Micali, and Rackoff gave several possible interpretations of the condition

that the verifier "learns nothing." This thesis is a detailed investigation of statistical zero-

knowledge proofs, which are zero-knowledge proofs in which "learns nothing" is interpreted

in a strong statistical sense. In the course of this investigation, we will address and answer

11



CHAPTER 1. INTRODUCTION

several fundamental questions about statistical zero-knowledge proofs and completely char-
acterize the types of "assertions" that possess statistical zero-knowledge proofs. Some of
our results also apply to perfect and computational zero-knowledge proofs, which are those
obtained by different interpretations of the condition that the verifier "learns nothing."

1.2 Informal definitions

It is remarkable that zero-knowledge proofs can even be defined in a meaningful and realiz-
able manner. In this section, we give a high-level sketch of the notions needed to formalize
them, beginning with what we mean by "assertion."

In order to facilitate their complexity-theoretic study, "assertions" are thought of as
strings written in some fixed alphabet, and their interpretations are given by a language
L identifying the "valid assertions." For example, assertions about 3-colorability of graphs
can be formalized by interpreting every string x as a graph Gx and taking the language L to
be the set of x for which Gx is 3-colorable. So, the string x represents the assertion "x c L,"
which translates to the statement "Gx is 3-colorable." We also think of the language L as
defining the following decision problem: given a string x, decide whether it is in L or not.
Therefore, we will use the terms "assertion," "language," and "problem" interchangeably
in our informal discussion.

The complexity class NP consists of those languages possessing efficiently verifiable
"classical" proofs. That is, a language L is in NP if there is an efficient proof-verification
algorithm (called a verifier) satisfying the following two conditions:

" Completeness: For every valid assertion (i.e., every string in L), there exists a proof
that the verifier will accept.

" Soundness: For every invalid assertion (i.e., every string not in L), no "proof" can
make the verifier accept.

By "efficient," we mean that the verifier should run in time polynomial in the length of
the assertion (written as a string). We consider such proofs "classical" because the proof
is a fixed, written string given in its entirety to the verification algorithm which checks it
deterministically.

Interactive proofs, introduced by Goldwasser, Micali, and Rackoff [GMR89] serve the
same purpose as classical proofs - to convince a verifier with limited computational power
that some assertion is true. However, as mentioned above, this is no longer accomplished by
giving the verifier a fixed, written proof, but rather by having the verifier to interact with a
prover that has unbounded computational power. After the parties exchange messages for
some number of rounds, the verifier decides whether to accept or reject. We still require that
the verifier's computation time be polynomial in the length of the assertion, but now both
the prover and verifier may be randomized. The following two relaxations of the classical
notions of completeness and soundness guarantee that an interactive proof is "convincing":

* Completeness: For every valid assertion, there is a prover strategy that will make
the verifier accept with high probability.

12



1.2. INFORMAL DEFINITIONS

e Soundness: For every invalid assertion, the verifier will reject with high probability,
no matter what strategy the prover follows.

The complexity class IP is the class of languages possessing interactive proofs. Clearly,
every language that possesses a classical proof also possesses an interactive proof (in which

the prover simply sends the verifier the classical proof). But the converse is not clear; inter-

active proofs are potentially much more expressive than classical ones. In fact, it has been

shown that many more languages possess interactive proofs than classical ones [LFKN92,
Sha92]. That is, IP is much larger than NP (given widely believed complexity-theoretic

assumptions).
A zero-knowledge proof is an interactive proof in which the verifier learns nothing from

the interaction with the prover, other than the fact that the assertion being proven is

true. This is guaranteed by requiring that whatever the verifier sees in the interaction

with the prover is something it could have efficiently generated on its own. That is, there

should be a polynomial-time algorithm, called a simulator, that "simulates" the verifier's

view of the interaction with the prover (e.g., all the messages exchanged between the two

parties). Recall that the interaction between the prover and verifier is probabilistic. Thus,
the simulator is also probabilistic, and we require that it generates an output distribution

that is "close" to what the verifier sees when interacting with the prover (when the assertion

being proven is true). Intuitively, this means that the verifier learns nothing because it can

run the simulator instead of interacting with the prover.

Three different interpretations of "close" were suggested in [GMR89] and these lead to

the three forms of zero knowledge commonly considered in the literature:

* Perfect zero knowledge: Requires that the distributions are identical.

" Statistical zero knowledge: Requires that the distributions are statistically close.

* Computational zero knowledge: Requires that the distributions cannot be dis-

tinguished by any polynomial-time algorithm.

PZK, SZK, and CZK are the classes of languages possessing perfect, statistical, and

computational zero-knowledge proofs, respectively. Perfect and statistical zero knowledge

capture much stronger requirements than computational zero-knowledge, in that the zero-

knowledge condition is meaningful regardless of the computational power of the verifier. 1

Amazingly, every problem having a classical proof also has a computational zero-knowledge

proof; that is NP C CZK [GMW87]. In fact, so does every problem with an interactive

proof; that is, IP = CZK [IY87, BGG+88]. 2

In contrast, it is unlikely that every problem in NP possesses a perfect or statistical

zero-knowledge proof [For89, AH91, BHZ87]. This is the price paid for the strong security

guarantee offered by these types of zero-knowledge proofs. Still, as we will see, a number

of important, nontrivial problems possess statistical zero-knowledge proofs, and these are

sufficient for some cryptographic applications.

'Although the verifier need only run in polynomial time to verify an interactive proof, a dishonest verifier

may be willing to invest additional computation power to gain additional knowledge from the proof. Perfect

and statistical zero-knowledge proofs guarantee that this will not help.
2Both of these results require the standard assumption that "one-way functions" exist.
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CHAPTER 1. INTRODUCTION

1.3 Motivation for our study

1.3.1 Complexity Theory

Statistical zero knowledge, though defined with cryptography in mind, is a rich domain
for complexity-theoretic investigations. The first indication of this comes from the fact
that statistical zero-knowledge proofs have been given for a number of important com-
putational problems: QUADRATIC RESIDUOSITY and NONRESIDUOSITY [GMR89], GRAPH
ISOMORPHISM and NONISOMORPHISM [GMW91], a problem equivalent to DISCRETE LOGA-
RITHM [GK93], and approximate versions of the SHORTEST VECTOR and CLOSEST VECTOR
problems for lattices [GG98a]. These problems have attracted a great deal of attention in
the theoretical computer science and cryptography literature, and statistical zero knowl-
edge captures a nontrivial property shared by all of them. Moreover, no efficient (i.e.,
polynomial-time) algorithms are known for solving these problems and they are widely be-
lieved to be computationally hard. On the other hand, it is unlikely that any problem
possessing a statistical zero-knowledge proof is NP-hard [For89, AH91, BHZ87]. Thus, the
class SZK, of problems possessing statistical zero-knowledge proofs, holds an intriguing
position in complexity theory, lying somewhere between the tractable problems and the
NP-hard problems.

In this thesis, we will show that SZK possesses two natural "complete problems," called
STATISTICAL DIFFERENCE and ENTROPY DIFFERENCE. Both of these problems involve
comparing probability distributions given by efficient sampling procedures. The fact that
they are "complete" means that the computational complexity of these problems is equiv-
alent to that of entire class SZK. As a consequence, many results about statistical zero
knowledge directly translate to methods for manipulating efficiently samplable distributions
and conversely. Indeed, in this thesis we will make use of this correspondence in both di-
rections. These complete problems are of independent interest, so the fact that they are
complete for SZK gives further evidence that statistical zero knowledge captures a rich and
natural class of computational problems.

1.3.2 Cryptography

As one might imagine, zero-knowledge proofs have vast applicability in cryptography. One
of the first examples of their utility was the construction of Identification Schemes by Feige,
Fiat, and Shamir [FFS88]. The premise is that one party, Alice, should be able to identify
herself repeatedly to a second party, Bob. For example, Bob can be thought of as an internet
service provider or a remote computer network on which Alice has an account. The most
common solution for this problem is for Alice to choose a password that Bob keeps stored
in a secure password file. When Alice wishes to identify herself to Bob, she simply sends
her password to Bob, who checks it against the file. The difficulty with this solution is
that an adversary can, by impersonating Bob, obtain Alice's password and later use this to
misrepresent himself as Alice.

Zero-knowledge proofs provide an elegant solution to this problem. Instead of choosing
a password, Alice generates a true mathematical statement S for which only she knows the
proof (and such that it is difficult for an adversary to come up with a proof for S). Bob stores
this statement. When Alice wishes to identify herself to Bob, she gives Bob a zero-knowledge
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1.3. MOTIVATION FOR OUR STUDY

proof that S is true. This identifies Alice as the one who knows a proof for S, while Bob

(or an adversary impersonating Bob) does not learn the proof for S and hence cannot later

misrepresent himself as Alice. There are some subtleties in making this approach work,
but these can be handled, and the example illustrates the potential cryptographic power

of zero-knowledge proofs. The advantage of using statistical zero-knowledge proofs in a

cryptographic protocol is that they provide an extremely strong security guarantee, in that

they remain convincing and reveal nothing even when the parties involved have unlimited

computational power.

More generally, zero-knowledge proofs are a tool for forcing parties to behave "honestly"

in cryptographic protocols. Participants can prove to each other that their actions are con-

sistent with a specified protocol without revealing any of the secret information they possess

(such as cryptographic keys). To exploit this idea in its full generality, Goldreich, Micali,
and Wigderson [GMW91, GMW87] and Yao [Yao86] use the fact that all NP statements

can be proven in computational zero knowledge (i.e., NP C CZK), as shown in [GMW91].

As mentioned earlier, the strong security guarantee of statistical zero-knowledge proofs

makes it unlikely that SZK C NP [For89, AH91, BHZ87], but statistical zero-knowledge

proofs can and have been used in specific cryptographic protocols, such as the identification

schemes of Feige, Fiat, and Shamir [FFS88] mentioned above.

This issue of parties deviating from the protocol already arises within zero-knowledge

proofs themselves. For the first few chapters of this thesis, we will focus on honest-verifier

zero-knowledge proofs, which are those in which the verifier is only guaranteed to learn

nothing if it follows the specified protocol. Focusing on honest-verifier proofs will greatly

facilitate our investigation and will be essential in our proofs of several results, such as the

completeness theorems mentioned earlier. But clearly such proofs are unsuitable for most

cryptographic applications. One of the main results of this thesis is a method for trans-

forming every honest-verifier statistical zero-knowledge proof into one robust even against

verifiers that deviate arbitrarily from the specified protocol. By this transformation (given

in Chapter 6), our results about honest-verifier zero knowledge proofs automatically trans-

late to general zero-knowledge proofs. Moreover, it suggests a methodology for constructing

general zero-knowledge proofs: first construct an honest-verifier proof (which is often an eas-

ier task) and then use our transformation to make it robust against cheating verifiers. Our

transformation also applies to wide class of computational zero-knowledge proofs (namely,
"public coin" proofs).

Another important role statistical zero knowledge can play from the perspective of cryp-

tography is that it provides the cleanest model for the study of zero-knowledge proofs. Sta-

tistical zero-knowledge proofs tend to be easier to analyze and manipulate than other forms

of zero-knowledge proofs, and general theorems about them can be proven without making

any complexity-theoretic assumptions. In contrast, other forms of zero-knowledge proofs,
such as computational zero-knowledge proofs and zero-knowledge "arguments" 3 are usually

constructed based on intractability assumptions such as the existence of "one-way func-

tions" (e.g., the hardness of factoring). Thus, a natural methodology is to first understand

3Zero-knowledge arguments, introduced by Brassard, Chaum, and Crepeau [BCC88], are a variant of zero-
knowledge proofs in which the soundness requirement is weakened to only require that it is computationally
hard to convince the verifier of a false statement. We will not discuss these further in this thesis.
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CHAPTER 1. INTRODUCTION

a phenomenon with respect to statistical zero knowledge and then attempt to translate
the techniques and results to other forms of zero knowledge. This approach has seen suc-
cess in the past (e.g., [Ost9l] leading to [OW93]) and our transformation of honest-verifier
zero-knowledge proofs into general ones is another example.

It should be noted that, if one assumes the existence of one-way functions, essentially all
questions about computational zero knowledge have been resolved. However, we regard it
as important to understand which aspects of computational zero knowledge rely inherently
on intractability assumptions and which do not. Moreover, minimizing the use of hard
problems in constructing zero-knowledge proofs tends to lead to more efficient construc-
tions and higher levels of security. Our approach of first proving results about statistical
zero knowledge and then attempting to translate them to computational zero knowledge is
compelling in these respects.

1.4 Results & structure of this thesis

Chapter 2 - Definitions. We give an introduction to statistical zero knowledge. After
an informal example, we formally define statistical zero-knowledge proofs and identify some
of the issues that arise with the definitions. In particular, we note that until Chapter 6,
we focus on honest-verifier statistical zero knowledge. As mentioned above, this restriction
will be convenient for the first few chapters, but will be removed completely in Chapter 6.

Chapter 3 - Complete Problems. We introduce the problems STATISTICAL DIFFER-
ENCE and ENTROPY DIFFERENCE and prove that they are complete for (honest-verifier)
SZK. These complete problems will be our main tools in obtaining further results about
statistical zero knowledge. When proving general theorems about statistical zero knowledge,
we will be able to focus on these specific complete problems, and largely avoid working with
the rather unwieldy general definition of statistical zero-knowledge proofs. STATISTICAL
DIFFERENCE was shown to be complete for statistical zero knowledge in joint work with
Amit Sahai [SV97] and ENTROPY DIFFERENCE in joint work with Oded Goldreich [GV99].
The material in Chapter 3 is a combination of techniques and results from the corresponding
two papers.

Chapter 4 - Applications of the Complete Problems. We present a number of
immediate applications of the complete problems and the techniques used in their proof.
For example, we show that every problem possessing an (honest-verifier) statistical zero-
knowledge proof also has a very communication-efficient one, in which only two messages
are exchanged and the error parameters are exponentially small. We also exhibit some
strong closure properties of statistical zero-knowledge, obtain efficient algorithms for ma-
nipulating the statistical properties of samplable distributions, and prove some results about
"knowledge complexity." In addition, the complete problems yield simpler proofs of most
previously known results about the complexity of statistical zero knowledge. For example,
in Section 4.2, we show how Okamoto's result from [Oka96] that (honest-verifier) SZK is
closed under complement follows immediately from the completeness theorems. We also
apply some of the same techniques to obtain results about perfect and computational zero-
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1.4. RESULTS & STRUCTURE OF THIS THESIS

knowledge proofs. Most of the material in this chapter was obtained in joint work with

Amit Sahai [SV97, SV99].

Chapter 5 - Private Coins vs. Public Coins. We show that every problem pos-

sessing an (honest-verifier) statistical zero-knowledge proof also possesses a public-coin one

- that is, a statistical zero-knowledge proof in which the verifier's messages consist merely

of random coin flips. This was originally proven by Okamoto [Oka96]. However, we give a

remarkedly simpler proof. The result of this chapter is useful because public-coin interactive

proofs are much easier to analyze and manipulate than general "private-coin" interactive

proofs. Indeed, this result provides an essential starting point for the following chapter.

We also give the first transformation from private coins to public coins which applies to

a wide class of computational zero-knowledge proofs. Namely, we show how to transform

3-message (honest-verifier) computational zero-knowledge proofs into public-coin ones.

The transformations from private coins to public coins presented in this chapter are

based on joint work with Oded Goldreich [GV99] and discussions with Amit Sahai.

Chapter 6 - Coping with Cheating Verifiers. We show how to transform any

honest-verifier statistical zero-knowledge proof into one which remains statistical zero-

knowledge even against cheating verifier strategies. The same transformation applies to

public-coin computational zero-knowledge proofs. The transformation is obtained by aug-

menting any public-coin honest-verifier proof with a new protocol for two mutually dis-

trustful parties to select a random string. This Random Selection Protocol may be of

independent interest. The material in this chapter is joint work with Oded Goldreich and

Amit Sahai [GSV98].

Chapter 7 - Noninteractive SZK. We examine "noninteractive" statistical zero-

knowledge proofs, which are ones in which the need for interaction is removed via an aug-

mentation to the model. We exhibit two natural complete problems for NISZK, the class

of problems possessing noninteractive statistical zero knowledge proofs. These complete

problems are closely related to those for SZK. We then use these problems to relate the

complexities of NISZK and SZK, and explore the possibility that every statistical zero-

knowledge proof can be transformed into a noninteractive one. This chapter consists of

results obtained with Oded Goldreich and Amit Sahai [GSV99].

Chapter 8 - Conclusions. We summarize what has been achieved in the thesis, and

discuss possible avenues for further research.

Historical remark. The results in this thesis are not presented in chronological order. We

have shuffled the historical order to yield what seems to be the most natural presentation,
given the benefits of hindsight. In reality, Okamoto's transformation from private coins to

public coins [Oka96] preceeded all the results in this thesis, and indeed sparked much of

this work. The completeness of STATISTICAL DIFFERENCE [SV97], its applications given

in Chapter 4 [SV97, SV99], and the honest-verifier to cheating-verifier transformation of

Chapter 6 [GSV98] all originally used Okamoto's theorem as a starting point. We later
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introduced ENTROPY DIFFERENCE in [GV99] in order to give a simpler proof of Okamoto's
theorem.

18



Chapter 2

Definitions

2.1 An example

Before giving the formal definitions, we illustrate the notion of a zero-knowledge proof

with an elegant example: the (honest-verifier) perfect zero-knowledge proof for GRAPH

NONISOMORPHISM. The proof system is due to Goldreich, Micali, and Wigderson [GMW91],
and uses ideas from an earlier proof system for QUADRATIC NONRESIDUOSITY, due to

Goldwasser, Micali, and Rackoff [GMR89].

Definition 2.1.1 If G = (V, E) is an undirected graph and ir is a permutation on V,
then ir(G) denotes the graph obtained by permuting the vertices of G according to ir. That

is, ir(G) = (V, E'), where E' = {(ir(u),ir(v)): (u,v) E E}. If G and H are graphs on

the same vertex set, and there exists a r such that -r(G) = H, we say that G and H are

isomorphic and write G2H. 7r is called an isomorphism between G and H, and H is said to

be an isomorphic copy of G. GRAPH ISOMORPHISM is the language GI = {(G, H): G2H}.

GRAPH NONISOMORPHISM (GNI) is the complement of GI.1

It is easy to see that GRAPH ISOMORPHISM is in NP; an easily verifiable proof that two

graphs are isomorphic is an isomorphism between them. In contrast, no classical proofs

are known for GRAPH NONISOMORPHISM. Nevertheless, GRAPH NONISOMORPHISM does

possess a very efficient interactive proof.2 The interactive proof is based on two observations.

First, if two graphs are nonisomorphic, then their sets of isomorphic copies are disjoint.

Second, if two graphs are isomorphic, then a uniformly selected isomorphic copy of one

graph is indistinguishable from a uniformly selected isomorphic copy of the other. Thus,
the interactive proof, given in Protocol 2.1.2, tests whether the prover can distinguish

uniformly selected isomorphic copies of the two graphs.

'To formally define GI and GNI as sets of strings, one must specify how graphs are encoded as strings,
but any reasonable encoding will work for our purposes. Typically, encoding issues are easily managed and
hence we will usually ignore them in this thesis. Also note that if two graphs are on different vertex sets of
the same size, we have implicitly defined them to be nonisomorphic. This convention is inessential.

2There has been some recent evidence that GRAPH NONISOMORPHISM is in NP, in fact based on the
existence of an efficient interactive proof for GRAPH NONISOMORPHISM [KvM99].
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Protocol 2.1.2: Interactive proof (P, V) for GRAPH NONISOMORPHISM

Input: Graphs Go = (Vo, Eo) and G1 = (V, E1 )

1. V: Uniformly select b E {0, 1}. Uniformly select a permutation 7r on Vb.
Let H = Wr(Gb). Send H to P.

2. P: If Go0 H, let c = 0. Else let c = 1. Send c to V.

3. V: If c = b, accept. Otherwise, reject.

Proposition 2.1.3 ([GMW91]) Protocol 2.1.2 is an interactive proof system for GRAPH
NONISOMORPHISM.

Proof Sketch: If Go and G1 are nonisomorphic, then G 02H if and only if b = 0. So
the prover strategy specified above will make the verifier accept with probability 1. Thus,
completeness is satisfied.

On the other hand, if Go and G1 are isomorphic, then H has the same distribution
when b = 0 as it does when b = 1. Thus, b is independent of H and the prover has at most
probability at most 1/2 of guessing b correctly no matter what strategy it follows. This
shows that the protocol is sound. 11

A few remarks about the proof system are in order. The first is that the verifier's
confidence that the graphs are nonisomorphic after one execution of the protocol is not very
high, as the prover can suceed with probability 1/2 even when the graphs are isomorphic.
However, this error probability can be made reduced to 1 /2k by repeating the protocol k
times (sequentially or in parallel) and requiring that the prover succeeds in all k repetitions.
Second, the proof system is very communication efficient; only two messages are exchanged
and the prover sends only one bit to the verifier (more generally, k bits to achieve soundness
1/ 2k). Finally, note that it is crucial for soundness that the verifier's random coin flips are
kept "private." If the bit b is made public and revealed to the prover, soundness will
no longer hold. Surprisingly, every private-coin interactive proof (like the one above) can
be transformed into a public-coin one; that is, one in which the verifier's coin flips are
completely visible to the prover [GS89]. We will present an analogous transformation for
statistical zero-knowledge proofs in Chapter 5.

We now informally argue that, when the graphs are nonisomorphic, the verifier learns
nothing else from the above protocol. The only message sent from the prover to the verifier
is the guess c. We have already shown that, when the graphs are nonisomorphic, the prover
guesses correctly with probability 1. That means that, with probability 1, c is simply equal
to b, which is a value the verifier already knows (since it chooses b itself)! Note that this
intuition only refers to a verifier that follows the specified protocol. There is nothing to
force a cheating verifier to select H by first picking one of the two input graphs and then
permuting its vertices. So we have no reason to believe that a cheating verifier "already

20



2.1. AN EXAMPLE

knows" whether H is isomorphic to Go or G 1 , and thus we will only prove that the proof
system is honest-verifier zero knowledge.

To formalize this intuition, we must exhibit a simulator, as required by the definition of

zero knowledge. The simulator must be an efficient probabilistic algorithm whose output is

similar to the verifier's view of the interaction, when given a pair of nonisomorphic graphs
as input. The verifier's view of the interaction includes not just the messages exchanged

between the verifier and prover (H and c), but also includes the verifier's random coin

tosses (the permutation 7r and the bit b). By convention, the output of the simulator is

of the form (Mi, m 2 ,... ,m k;r), where the mi's are the simulated messages, and r is the

simulation for the verifier's random coins. In light of the above discussion, the simulator,
given in Algorithm 2.1.4, simply mimics the verifier's protocol and assumes that the prover

guesses correctly.

Algorithm 2.1.4: Simulator for GRAPH NONISOMORPHISM Proof System

Input: Graphs Go = (Vo, Eo) and G1 = (V1 , E1 )

1. Uniformly select b E {0, 1}. Uniformly select a permutation ir on V. Let

H = 7r(Gb).

2. Let c = b.

3. Output (H, c; b, ir)

From the fact that the prover guesses correctly with probability 1 in the protocol, it

follows immediately that the output distribution of the simulator is identical to the verifier's

view of the interaction (when the input graphs are nonisomorphic and the verifier follows

the protocol). Thus, we have:

Proposition 2.1.5 ([GMW91]) Protocol 2.1.2 is an honest-verifier perfect zero-knowledge

proof system for GRAPH NONISOMORPHISM.

As mentioned before, the probability that the prover can convince the verifier to accept

when the graphs are isomorphic can be reduced by repeating the proof system many times.

Luckily, both forms repetition (parallel and sequential) preserve honest-verifier perfect zero

knowledge; a simulator for the repeated proof system can be obtained by running the original

simulator many times. With cheating verifiers, however, things are more subtle. Sequential

repetition preserves zero knowledge against cheating verifiers, but parallel repetition does

not [GK96b].
Although we have only exhibited an honest-verifier zero-knowledge proof system for

GRAPH NONISOMORPHISM, Goldreich, Micali, and Wigderson [GMW91] show how to aug-

ment this particular protocol to make it perfect zero-knowledge even against cheating veri-

fiers. Later in this thesis, we will present general method for making zero-knowledge proofs
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robust against cheating verifiers which could be used instead (though the result will be
statistical, rather than perfect, zero knowledge).

Having seen just this one beautiful example of a zero-knowledge proof, one might wonder
whether the same ideas can be used to construct zero-knowledge proofs for other problems.
As mentioned earlier, the GRAPH NONISOMORPHISM proof system is based on ideas drawn
from an earlier proof system for QUADRATIC NONRESIDUOSITY [GMR89]. Although both
of these proof systems seem to be exploiting algebraic properties of permutation groups or
quadratic residues modulo a composite, actually at the heart of correctness is simply the re-
lationship between two probability distributions. In the case of GRAPH NONISOMORPHISM,
these distributions are those obtained by taking a random isomorphic copy of Go or G1,
respectively. In Chapter 3, we use this observation to abstract and generalize Protocol 2.1.2.
We then prove that the resulting proof system is "universal" for statistical zero knowledge,
in the sense that every statistical zero-knowledge proof can be transformed into one "of the
same form".

2.2 Notation and preliminaries

Strings and promise problems. Throughout this thesis, all strings are over the binary
alphabet {0, 1}. Often we will discuss non-binary strings or tuples of strings, but it is easy
to encode such objects as binary strings, and we implicitly assume that such an encoding
has been fixed. A unary string of length k is denoted 1k.

We will consider a wider class of decision problems than languages. Specifically, we
will allow some inputs to be "excluded." This is formalized by the notion of a promise
problem [ESY84]. A promise problem H is a pair (fy, UN) of disjoint sets of strings,
corresponding to YES instances and NO instances, respectively. This naturally yields the
following computational problem: Given a string x which is "promised" to be in fly U UN,
decide whether x E fy or x E fIN- Strings in HY UHN are called instances of H, and strings
not in fly U 1 1 N are said to violate the promise. The complement of a promise problem U is
the promise problem H, where Hy = HN and HN = fY. If C is a class of promise problems,
then co-C t{II : II E C}.

Algorithms. As we will only be doing complexity analysis at a fairly coarse-grained level,
the particular model of computation used is not crucial. Any standard model, such as the
multitape Turing machine, will do, and the reader is referred to any standard text on
complexity theory (e.g., [Sip97, Pap94]) for a more detailed discussion. We will describe
algorithms at a high level, ignoring implementation details such as encodings of inputs.
We measure the running time of a deterministic algorithm as a function of input length;
algorithm A runs in time t(-), if A takes at most time t(Ix|) on every input x. The complexity
class P is the class of promise problems solvable in polynomial time.

Randomized algorithms are obtained by allowing our algorithms the ability to flip an
unbiased "coin" upon request. To avoid assuming an a priori bound on the number of coin
flips an algorithm will make, we model this by giving the algorithm access to an infinite
string r E {0, 1}* in which every bit is selected uniformly and independently. Since the
number of bits in this string that are accessed is bounded by the algorithm's running time,
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we will often truncate r to be just a finite string containing only the random bits that are

used in a particular execution. If A is a randomized algorithm, we write A(x; r) for the

output of A on input x, using random coins r. A is said to have (strict) running time t(-)
if for every x and r, A takes time at most t(IxI). A is said to have expected running time

t(.) if for every x, the number of steps taken by A on input (x, r) has expectation at most

t(IxI), taken over the choice of r. For a fixed input x, we write either A(x) or Ax for the

probability distribution induced on the output A(x; r) obtained by choosing r uniformly at

random.
We say that a randomized algorithm A solves a promise problem H with 2-sided error

if for every instance x of H, A correctly decides whether x is a YES or NO instance with

probability at least 2/3 over the choice of r. BPP is the class of promise problems that

can be solved in (worst-case) polynomial time with 2-sided error.

We will also consider nonuniform polynomial-time algorithms, which are polynomial-

time algorithms that are given an extra "advice" string of length polynomial in its input.

More formally, a nonuniform polynomial-time algorithm A is specified by a polynomial-time

algorithm B together with strings {an}neN such that A(x) = B(x, alx) for all x and IanI
is bounded by some polynomial in n. Nonuniform probabilistic polynomial-time algorithms

are defined analogously, by taking B to be probabilistic polynomial time. Nonuniform

polynomial-time algorithms are equivalent to polynomial-sized families of circuits.

Reductions and completeness. Reductions are our means for comparing the complex-

ities of problems. A (Karp) reduction from a promise problem H to a promise problem F is

a polynomial-time computable function such that

x E Hy f (x) E Fy

X E UN = f(x) E N-

If such a reduction exists, we say that H (Karp-)reduces to F and write H <Karp F (or just

< F).
A Cook reduction from H to F is a polynomial-time algorithm that solves H when given

access to an oracle which solves F. That is, on input x, the oracle returns Y if x E Fy, N

if x E FN, and can respond either Y or N if x violates the promise. The reduction should

work regardless of how the oracle responds on inputs that violate the promise. If such a

reduction exists, we say that H Cook reduces to F and write H Cook F. Informally, the

existence of a (Karp or Cook) reduction from H to F means that H is computationally no

harder than F.
Let C be a class of promise problems. We say that C is closed under (Karp) reductions

(resp., Cook reductions) if H < F (resp., H Cook F) and F E C implies that H E C. A

promise problem F is C-hard (with respect to a given type of reduction) if every promise

problem in C reduces to F via that type of reduction. F is complete for C (or C-complete)

if (1) F E C, and (2) F is C-hard with respect to Karp reductions.

Probability distributions. If X is a probability distribution (or random variable) on a
def

universe U, then the support of X is Supp(X) = {x E U Pr [X = x] > 0}. We write

x +- X to denote the process of randomly choosing x according to the distribution X. If
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S is a set, then the uniform distribution is also written S, so x +- S denotes choosing x
uniformly in S.

The definition of statistical zero knowledge makes use of a standard measure of similarity
between probability distributions.

Definition 2.2.1 (statistical difference) If X and Y are probability distributions (or
random variables) on a discrete universe U, then the statistical difference (or variation
distance) between X and Y is defined to be

defStatDiff (X, Y) =max|Pr [X E S] - Pr [Y E S].
SCU

Various properties of this distance measure will play a major role in our investigation,
but, for now, we just list some basic facts about StatDiff (-, -) that show that it conforms
to an intuitive notion of the distance between probability distribution.

Fact 2.2.2 Let X, Y, and Z be any three probability distributions (on a common universe
U). Then

1. StatDiff (X, Y) ; 0, with equality if X and Y are identically distributed.

2. StatDiff (X, Y) 1, with equality if X and Y have disjoint supports.

3. StatDiff (X, Y) = StatDiff (Y, X).

4. StatDiff (X, Z) StatDiff (X, Y) + StatDiff (Y, Z).

5. For any function f, StatDiff (f (X), f(Y)) StatDiff (X, Y).

2.3 Zero-knowledge proofs

In this section, we give formal definitions for the notions of classical proofs (NP), interactive
proofs (IP), and honest-verifier zero-knowledge proofs.

Definition 2.3.1 (classical proofs - NP) A classical proof system for a promise prob-
lem H is given by a verification algorithm V and a polynomial p(.) such that

1. (Efficiency) V runs in (deterministic) polynomial time.

2. (Completeness) If x E ly, then there exists a y of length at most p(|xI) such that
V(x, y) accepts. y is called a proof (or witness) for x.

3. (Soundness) If x E UN, then for every y, V(x, y) rejects.

NP is the class of promise problems possessing classical proofs.

NP was originally defined in terms of nondeterministic Turing machines, but it is well
known that the above definition is equivalent. The purpose of the polynomial p(-) in the
above definition is to guarantee that the time for verifying a proof is polynomial in the
length of the assertion x.
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Recall that interactive proofs are obtained by replacing proofs with a "prover" that

"interacts" with a probabilistic "verifier". In order to make this precise, we must first

formalize the notion of an interactive protocol between two parties A and B. We do this

by viewing each party as a function, taking the history of the protocol (all the messages

previously exchanged) and the party's random coins, to the party's next message. Either

party can decide to halt the interaction (possibly accepting or rejecting at the same time),

and the other party is given an opportunity to compute one more message at that time.

Definition 2.3.2 (interactive protocols) An interactive protocol (A, B) is any pair of

functions. The interaction between A and B on common input x is the following random

process (denoted (A, B)(x)):

1. Uniformly choose random coins rA and rB (infinite binary strings) for A and B,
respectively.

2. Repeat the following for i = 1, 2,...:

(a) If i is odd, let mi = A(x,m1, ... ,mi1;rA).

(b) If i is even, let mi = B(x, mi,... ,mi1;rB)-

(c) If mi-1 E {accept, reject,halt}, then exit loop.

If the last message computed by A is accept (resp., reject), we say that A accepts

(resp., rejects), and similarly for B. We call such a protocol polynomially bounded if there

is a polynomial p(-) such that, on common input x, at most p(|x|) messages are exchanged,

and each is of length at most p(|x|) (with probability 1 over the choice of rA and rB).

In [GMR89], interactive protocols were defined in terms "interactive Turing machines,"

but that approach is too tied to a particular model of computation for our tastes. This

equivalent formulation in terms of functions was noted by Goldwasser and Sipser [GS89].

Now interactive proofs can be defined as a type of interactive protocol between a prover

(with no computational limitations) and a polynomial-time verifier. The completeness and

soundness conditions of classical proofs are replaced with probabilistic ones that guaran-

tee that the verifier gains statistical confidence that the assertion being proven is true.

The amount of confidence gained by the verifier is quantified by two quantities, called the

completeness and soundness errors, which in turn are functions of a security parameter k.

Definition 2.3.3 (interactive proofs - IP) Let (P, V) be an interactive protocol and

let U be a promise problem. (P, V) is said to be an interactive proof system for H with com-

pleteness error c : N -+ [0, 1] and soundness error s : N -+ [0, 1] if the following conditions

hold:

1. (Efficiency) (P, V) is polynomially bounded and V is polynomial-time computable.

2. (Completeness) If x C Hy, then V accepts with probability at least 1 - c(k) in

(P, V)(x, 1k)_

3. (Soundness) If x V Hy, then for any P*, V rejects with probability at least 1 - s(k)

in (P*, V)(x, 1lk).
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We require that c(k) and s(k) be computable in time poly(k) and that 1 - c(k) > s(k) +
1/poly(k). If c _ 0, then we say that the proof system has perfect completeness. IP is class
of promise problems possessing interactive proofs.

Note that the completeness and soundness errors of an interactive proof system can both
be reduced to 2 -k by repeating the proof system poly(k) times (sequentially or in parallel)
and having the new verifier accept according to majority/threshold rule.

Recall that the definition of zero knowledge is based on the notion of a simulator, which
is an algorithm that simulates the verifier's view of the interaction with the prover.

Definition 2.3.4 (view of an interactive protocol) Let (A, B) be an interactive proto-
col. B's view of (A, B) on common input x is the random variable (A, B)(x) = (mi1 ,... ,mt; r)
consisting of all the messages m 1 ,... , mt exchanged between A and B together with the sub-
string r of rB containing all the random bits that B has read during the interaction.3

Statistical zero knowledge requires that the statistical difference between the simulator's
output distribution and the verifier's view is so small that it does not become noticeable
even after polynomially many repetitions of the protocol. This is achieved by requiring
that the statistical difference is negligible. A function p : N -+ [0, 1] is negligible if for every
polynomial p : N -+ N, p(k) < 1/p(k) for sufficiently k.

We will allow our simulators to occasionally fail by outputting a string fail, and we
only measure the quality of the simulation conditioned on non-failure. Thus, we call a
probabilistic algorithm A useful if Pr [A(x) = f ail] 1/2 for all x and we define A(x) to
be the output distribution of A on input x, conditioned on A(x) $ f ail.

Definition 2.3.5 (honest-verifier zero knowledge - HVSZK, HVPZK) An inter-
active proof system (P, V) for a promise problem 11 is said to be honest-verifier statistical
zero knowledge if there is a useful probabilistic polynomial-time algorithm S and a negligible
function p(.) such that for all x E Uly and all k > 0,

StatDiff (§(x, 1k), (P, V)(x, ik)) i(k).

The negligible function p is called the simulator deviation. If p = 0, then (P, V) is said to
be honest-verifier perfect zero knowledge. HVSZK (resp., HVPZK) denotes the class of
promise problems possessing honest-verifier statistical (resp., perfect) zero-knowledge proofs.

Note that the simulation is only required to be accurate on YES instances of the promise
problem; that is, when the statement being proven is true. We wanted the definition to
capture the fact that the verifier should learn nothing from the "proof" (which is now
actually the strategy for P). For NO instances, there is no "correct" proof (as guaranteed
by soundness), so it would be somewhat strange to require that the verifier learns nothing
in this case. From a cryptographic point of view, this assymetry corresponds to the idea

3It may seem unnatural that our notation is assymetric in that it does not allow for indicating A's view
of the protocol. However, in this thesis, we will only be interested in B's view (as B corresponds to the
verifier in an interactive proof), and thus we have opted for a simpler notation at the expense of generality.
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that we only wish to protect parties that are behaving honestly; a prover that is trying to

prove a false statement is certainly not.

Computational zero-knowledge proofs are defined by requiring that simulator's out-

put and the verifier's view are merely indistinguishable by any polynomial-time algorithm,
rather than being statistically close. This is the natural computationally bounded analogue

of the definition of statistical difference.

Definition 2.3.6 (computational indistinguishability [GM84, Yao82])

Let X = {Xx,k}xGL,kEN and Y = {yx,k}xEL,kEN be ensembles of probability distributions

indexed by strings x in a set L and natural numbers k (the security parameter). X and

Y are said to be computationally indistinguishable if for every nonuniform probabilistic

polynomial-time algorithm ("distinguisher") D, there is a negligible function p(-) such that

Pr [D(x, 1 k, Xx,k) = 1] - Pr [D(x, 1 k, Yx,k) = 1] < p(k) Vx E L.

Definition 2.3.7 (honest-verifier zero knowledge - HVCZK) An interactive proof

system (P, V) for a promise problem II is said to be honest-verifier computational zero,

knowledge if there is a useful probabilistic polynomial-time algorithm S such that

{ S(x, 1k)}XEHy,kEN and {(P, V)(x, 1k)}xEfly,kEN

are computationally indistinguishable. HVCZK denotes the class of promise problems pos-

sessing honest-verifier computational zero-knowledge proofs.

A remark on nonuniformity. Note that we have allowed the distinguisher to be nonuni-

form in the definition of computational indistinguishability. While the definitions can be

made in the uniform setting, the theory of computational zero knowledge is "cleaner" with

a nonuniform definition. Already, some sort of nonuniformity is implicit in the notion of

zero knowledge, because the verifier and distinguisher are given the input x, which can be

regarded as nonuniform "advice". In addition, several researchers [FS89, GMR89, G094,

Ore87, TW87] have observed that that allowing some sort of nonuniformity (or "auxiliary

input") is important in proving some some basic results about zero knowledge.

For example, suppose we repeat an HVCZK proof several times, either sequentially

or in parallel. Intuitively, since one run of the simulator is computationally indistinguish-

able from one execution of the proof system, t independent runs of the simulator should

be computationally indistinguishable from t independent executions of the proof system,
and hence the repeated proof system should still be HVCZK. Unfortunately, this "fact"

that computational indistinguishability is preserved under taking many independent sam-

ples only is guaranteed when either the distinguishers are permitted to be nonuniform or

both distributions are polynomial-time samplable (see, e.g., [GS98]). Since the executions

of the proof system are not necessarily polynomial-time samplable, we must take nonuni-

form distinguishers. Having adopted a nonuniform definition, it can be proven using the

standard "hybrid" argument of [GM84] that honest-verifier computational zero knowledge

is preserved under both sequential and parallel repetition.
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As discussed in Chapter 6, nonuniformity becomes even more important when we discuss
cheating verifiers. It is possible to develop the theory of zero knowledge in the uniform
setting, as done by Goldreich [Gol93]; there, the definitions are modified to require that
it is infeasible to find YES instances x on which the prover leaks knowledge (rather than
requiring this for all YES instances x). Most of the results we prove about computational
zero knowledge also hold in that setting, but for simplicity, we only discuss the nonuniform
versions.

2.4 Contrast with the GMR definition

The definitions we have given above differ from the original definitions given by Goldwasser,
Micali, and Rackoff [GMR89] (henceforth called the GMR definitions) in several ways, which
we outline below.

Honest verifiers. The most important difference is that we have only defined honest-
verifier zero knowledge, which formalizes the requirement that the verifier should learn
nothing from the interaction if it follows the specified protocol. The general definition of zero
knowledge, which is important in cryptographic applications, requires that even cheating
verifiers which deviate from the protocol should learn nothing. Roughly speaking, this
is formalized by requiring that, for every (polynomial-time) verifier strategy, there exists a
corresponding simulator. However, there are a number of subtle issues in the definition. For
this reason, together with the fact that we will be focusing on honest-verifier zero knowledge
for the first few chapters of this thesis, we postpone the definitions of zero-knowledge proofs
for cheating verifers to Chapter 6. However, in informal discussions, we still will refer to
the classes of problems possessing proof systems that are zero-knowledge against cheating
verifiers, which we denote by SZK, PZK, and CZK. In that Chapter 6, we will show
how to transform any honest-verifier statistical zero-knowledge proof (and any public-coin
honest-verifier computational zero-knowledge proof) into one which are zero knowledge
even against cheating verifiers. That is, HVSZK = SZK. Fortnow [For89] was the first to
formally define and investigate honest-verifier zero-knowledge proofs (his terminology was
"trusted verifier").

The security parameter. Another difference between our definition and the GMR
definition is our use of a security parameter to control the error parameters (completeness,
soundness, and simulator deviation). The original definition measures these as a function
of the input length IxI, and in particular only requires that the simulator deviation be
negligible as a function of !xI. We feel that it is unnatural to tie the error parameters to the
input length in this manner, as one may wish to prove even short statements with very high
"security". The use of a separate security parameter to control the errors has appeared in
various places in the literature such as [BP89, KM089] and has become standard in the
literature on "noninteractive" zero-knowledge proofs (e.g., [FLS99, Kil94, KP98]).

With completeness and soundness errors, this definitional choice is mainly a philosophi-
cal one, as it does not change the class of problems possessing interactive proofs (since even
a constant error probability can be made exponentially small in k by repeating the proof
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system O(k) times.) With the simulator deviation, it is not a priori clear that, given a

proof system with simulator deviation that is a function of lxi, one can obtain one whose

simulator deviation is a function of a security parameter k (though we will prove it later in

this thesis).
One nice property of our security-parameter based definition is that it allows one to

prove that HVSZK is closed under reductions.

Proposition 2.4.1 If H has an honest-verifier statistical zero-knowledge proof with sim-

ulator deviation p(-), and 1 (Karp-)reduces to U, then F has an honest-verifier statistical

zero-knowledge proof with simulator deviation p(-). Thus, HVSZK and HVPZK are closed

under (Karp) reductions.

Proof: Let (P, V) be the statistical zero-knowledge proof for U and f be the reduction

from F to H. A statistical zero-knowledge proof (P', V') for F can be obtained as follows: On

common input (x, 1k), P' and V' execute the protocol (P, V) on common input (f(x), 1k).

A simulator for (P', V') with deviation p(-) can be obtained by running the simulator for

(P, V) on input (f (X), 1k).

The reason such a proposition cannot be proved so easily for the GMR definition is that

f (x) might be much shorter than x, which means p(lf (x)l), which is the simulator deviation

achieved by executing (P, V) and S on input f(x) (according to the GMR definition), might

not be negligible as a function of lxi. However, there are occasions when the security

parameter is irrelevant (e.g., perfect zero-knowledge proofs with constant completeness and

soundness errors), and, in those cases, we will often omit the security parameter from the

notation for sake of clarity.

Expected polynomial-time simulators. Two more differences between our definition

and GMR's is that they allow expected polynomial-time simulators, but do not allow the

simulator to fail. Following Goldreich [Gol95], we require strict polynomial-time simulators,
but do allow the simulator to fail. The reason for this modification is that strict polynomial-

time is better behaved and less controversial as formalization of "efficient computation" than

expected polynomial time. Our requirement is more stringent, because a strict polynomial-

time simulator which may fail can be converted into an expected polynomial-time one

which never fails (by running the simulator many times independently until it succeeds). In

fact, for statistical zero knowledge, one can remove the need for failure without passing to

expected polynomial time: running the simulator polynomially many times makes the failure

probability exponentially small, and this can be absorbed into the simulator deviation. In

contrast, it is not clear how to convert an expected polynomial-time simulator into a strict

polynomial-time simulator without incurring a nonnegligible increase in simulator deviation.

Weak statistical zero knowledge. A notion that captures all the ways in which the

GMR definition is weaker than ours (and more) is that of weak-HVSZK (analogous to

weak-SZK considered in [DOY97]):

Definition 2.4.2 (weak statistical zero knowledge - weak-HVSZK)

An interactive proof system (P, V) for a promise problem H is weak honest-verifier sta-

tistical zero knowledge if for every c > 0, there is a useful probabilistic polynomial-time
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algorithm Sc such that, for all but finitely many x E Ily,

StatDiff (s(x), (P, V)(x, 1xi)) <

weak-HVSZK denotes the class of promise problems possessing weak honest-verifier sta-
tistical zero-knowledge proofs.

Thus, the simulator deviation can be made smaller than any inverse polynomial, but
the simulator itself (and, in particular, its running time) can depend on the particular
polynomial. Any interactive proof with an expected polynomial-time simulator of negligible
simulator deviation (i.e., meeting the GMR definition for honest verifiers) also satisfies the
above definition: truncating simulator executions after Ix|c times the expected number of
steps increases the simulator deviation by at most 1/1xc. In Section 4.3, we will show how
to convert weak honest-verifier statistical zero-knowledge proofs into ones meeting the more
stringent Definition 2.3.5; that is, weak-HVSZK = HVSZK.

2.5 Complexity aspects of interactive proofs

There are a number of complexity issues that arise with interactive proofs and statistical
zero knowledge which we will address in this thesis. One issue that arose in the interactive
proof for GRAPH NONISOMORPHISM presented in Section 2.1 was that it was essential that
the verifier's random coins were kept hidden from the prover. Proof systems in which the
random coins used by the verifier at each round are revealed to the prover at the same
time are called public-coin proof systems. Since the verifier's messages are a deterministic
function of the input x and the coin flips, the prover can be given just the coin flips
themselves at each round without loss of generality.

Definition 2.5.1 (public-coin protocols [BM88]) An interactive protocol (A, B) is
public coin for B if in every execution of the protocol, the string of random coins accessed
by B can be written r 1r 2 .-. rt E {0, 1}*, so that B's i'th message m 2i equals ri E {0, }i,
fi is solely a function of (Xm1im 2 ,... ,m2i-1), and m2t+2 is the last message computed by
B. An interactive proof (P, V) is public coin if, for every P*, (P*, V) is public coin for V.

Public-coin proofs are also known as Arthur-Merlin games, so we often denote the
prover in such proof systems by M (for "Merlin") and the verifier by A (for "Arthur").
Sometimes we will refer to general interactive proofs as private-coin proofs to emphasize
the difference with public-coin ones. Public-coin proof systems are extremely computation
efficient for the verifier, as the only computation the verifier needs to do is to compute its
last message m2t+2 (accept or reject) and possibly the number of coins to send at each
round (which is usually a simple function of lxi). Amazingly, every problem possessing an
interactive proof also possesses a public-coin interactive proof [GS89]. In Chapter 5, we will
prove an analogous theorem for statistical zero-knowledge proofs, a result first obtained by
Okamoto [Oka96].
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Some other important complexity measures for interactive proofs are the amount of

interaction, as measured by the number of messages exchanged, 4 and the number of bits of

communication.

Definition 2.5.2 (number of messages & communication) We say that an interac-

tive protocol (A, B) exchanges m messages on input x, if for every choice of the random

coins for A and B, the number of messages computed before the first accept/reject/halt

message is at most m (or m+1, if the first message m 1 of A is always the empty string). The

class of promise problems possessing interactive proofs which exchange a constant number

of messages is denoted AM.
We say that an interactive protocol (A, B) has A-to-B (resp., B-to-A) communication

c on input x, if for every choice of the random coins for A and B, the sum of the lengths

of the messages computed by A (resp., B) (excluding an accept/reject/halt message) is

at most c. (A, B) has total communication c on input x, if the sum of the lengths of all

messages computed (by both A and B) is at most c (again, excluding accept/reject/halt

messageh).

In Section 4.1, we will show that every problem in HVSZK has an extremely efficient

honest-verifier statistical zero-knowledge proof, namely, a 2-message proof system with 1

bit of prover-to-verifier communication.

4 In the literature, sometimes the term "rounds" is used to measure the amount of interaction. However,
its usage is not consistent - some authors count each message as one round, while others refer to a pair of
A/B messages as a round. To avoid ambiguity, we speak only of the number of messages exchanged.
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Chapter 3

Complete Problems

A revolution in theoretical computer science occurred when it was discovered that NP has

complete problems [Coo7l, Lev73, Kar72]. Most often, this theorem and other complete-

ness results are viewed as negative statements, as they provide evidence of a problem's

intractability. These same results, viewed as positive statements, enable one to study an

entire class of problems by focusing on a single problem. For example, all languages in

NP were shown to have computational zero-knowledge proofs when such a proof was ex-

hibited for GRAPH 3-COLORABILITY [GMW91]. Similarly, the result that IP = PSPACE

was shown by giving an interactive proof for QUANTIFIED BOOLEAN FORMULA, which is

complete for PSPACE [LFKN92, Sha92]. More recently, the celebrated PCP theorem

characterizing NP was proven by designing efficient probabilistically checkable proofs for a

specific NP-complete language [ALM+98, AS98].

In this chapter, we present two complete problems for HVSZK, the class of problems

possessing statistical zero-knowledge proofs against an honest verifier. For traditional com-

plexity classes, such as NP and PSPACE, the construction of natural complete problems

has become a routine task. However, it may come as a surprise that HVSZK, which is

defined in terms of two interacting machines and a simulator, has complete problems which

makes no reference to interaction or zero-knowledge. In subsequent chapters, we use these

complete problems problems not as a negative tool, but as a positive tool to derive general

results about the entire class HVSZK.

Organization. Recall that proving that a problem H is complete for HVSZK involves

both proving that H E HVSZK and that every problem in HVSZK reduces to H. In

this chapter, we do this for two problems, called STATISTICAL DIFFERENCE (SD) and

ENTROPY DIFFERENCE (ED). These two problems will be simultaneously proven complete

for HVSZK via a "circle of reductions" composed of the following three results.

1. SD E HVSZK (Section 3.1).

2. Every problem in HVSZK reduces to ED (Section 3.3).

3. ED reduces to SD (Section 3.4).

33



CHAPTER 3. COMPLETE PROBLEMS

The combination of Steps 2 and 3 imply that every problem in HVSZK reduces to SD,
and the combination of Steps 1 and 3 imply that ED E HVSZK, so it follows that both
SD and ED are complete for HVSZK.

Section 3.2 contains a motivating warm-up to Step 2. Namely, we show that every
problem possessing a public-coin honest-verifier statististical zero-knowledge proof reduces
to SD.

3.1 STATISTICAL DIFFERENCE

The first problem we show to be complete for HVSZK is called STATISTICAL DIFFERENCE.
Roughly speaking, it is the problem of deciding whether a pair of "efficiently samplable"
distributions are statistically close or statistically far apart, as measured by the statistical
difference metric. In order to define the problem formally, we must make precise the notion
of an efficiently samplable distribution. To do this, we view Boolean circuits as sampling
algorithms, whose inputs are random bits.

Definition 3.1.1 (distributions encoded by circuits) Let X be a Boolean circuit (with
AND, OR, and NOT gates, unbounded fan-in and fan-out) with m input gates and n output
gates. The distribution encoded by X is the distribution induced on {0, 1}' by evaluating
X on a uniformly selected string from {0, 1}'. By abuse of notation, we also write X for
the distribution defined by X.

Since circuits can be evaluated in time polynomial in their size, yet are rich enough to en-
code general (e.g., Turing machine) computations, they effectively capture the notion of an
"efficiently samplable distribution." Now we can define the promise problem STATISTICAL
DIFFERENCE.

Definition 3.1.2 STATISTICAL DIFFERENCE is the promise problem SD = (SDy, SDN),
where

SDy = {(X, Y) : StatDiff (X, Y) > 2/3}

SDN = {(X, Y) : StatDiff (X, Y) < 1/3}.

Above, X and Y are circuits encoding probability distributions, as in Definition 3.1.1.

In order to show that SD is complete for HVSZK, we need to prove two things: that
SD E HVSZK, and that every problem in in HVSZK reduces to SD. This section is
devoted to the former task. To do this, we generalize the GRAPH NONISOMORPHISM proof
system given in Section 2.1. Recall that the analysis of that proof system is based on the
observation that two probability distributions (obtained by taking a random isomorphic
copy of one graph or the other) either have disjoint supports or are identical, depending
on whether the input is a YES or NO instances, respectively. This motivates considering a
restriction of SD in which the distributions are either disjoint or identical (as distributions,
not as circuits). We call this problem SD 1'0 because it can obtained by replacing the
thresholds of 2/3 and 1/3 in the definition of SD with 1 and 0, respectively. Actually, we
consider a number of variants of SD, parametrized by the thresholds.
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Definition 3.1.3 (variants of SD) For any constants 0 < 3 < a < 1, the promise prob-

lem SDo') = (SD3'3 , SD" 3 ) is given by

SDa,' - {(X, Y) : StatDiff (X, Y) > a}

SDa,!3  = {(X, Y) : StatDiff (X, Y) /3}.

Above, X and Y are circuits encoding probability distributions, as in Definition 3.1.1.

3.1.1 A basic proof system

Following the intuition from the GRAPH NONISOMORPHISM proof system, a natural way

to construct a proof system for any of these variants of SD is to test whether the prover

can distinguish random sample from the first distribution from a random sample from the

second distribution. The prover's best strategy is to simply guess that the sample came

from the distribution which assigns it more probability mass. This intuition motivates the

basic proof system given in Protocol 3.1.4.

Protocol 3.1.4: Basic proof system (P, V) for variants of SD

Input: Circuits X0 and X, (each with m input gates and n output gates)

1. V: Select b +- {0, 1}. Obtain a sample x +- Xb (by choosing r +- {0, 1}"

and letting x = Xb(r)). Send x to P.

2. P: If Pr [Xo = x] > Pr [Xi = x], let c = 0. Else let c = 1. Send c to V.

3. V: If c = b, accept. Otherwise, reject.

We first analyze this protocol for SD 1'0 . It is clear that if Xo and X 1 have disjoint

supports, then the prover strategy given in Protocol 3.1.4 will succeed with probability 1.

On the other hand, if Xo and X1 are identical as distributions, then b is independent of x,
so the prover can guess b from x with probability at most 1/2, no matter what strategy it

follows. Thus, we have

Claim 3.1.5 Protocol 3.1.4 is an interactive proof system for SD 1 '0 with perfect complete-

ness and soundness error 1/2.

When the distributions are disjoint, all the verifier sees is the prover's (correct) guess c

for b, which is a value the verifier already "knows." This suggests that the proof system is

zero knowledge, and thus we consider a simulator (given in Algorithm 3.1.6), analogous to

Algorithm 2.1.4.
It follows readily from the fact that the prover guesses correctly with probability 1

that the output distribution of Algorithm 3.1.6 and the verifier's view of Protocol 3.1.4 are

identical when X 0 and X 1 have disjoint supports. Thus, we have:
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Algorithm 3.1.6: Simulator for basic SD proof system

Input: Circuits Xo and X1 (each with m input gates and n output gates)

1. Select b +- {0, 1}. Choose r +- {0, 1}m and let X = Xb(r).

2. Let c = b.

3. Output (x, c; b, r)

Proposition 3.1.7 Protocol 3.1.4 is an (honest-verifier) perfect zero-knowledge proof sys-
tem for SD 1'0 .

Intuitively, it seems that our analysis of this proof system should hold "approximately"
when the distributions are either statistically very far apart or statistically very close instead
of being disjoint or identical, respectively. This is indeed the case, and using statistical
difference as a measure of closeness, we get exact expressions for the error parameters.

Lemma 3.1.8 When X 0 and X 1 have statistical difference 6, the prover strategy given in
Protocol 3.1.4 makes the verifier accept with probability exactly (1 + 6)/2, and no prover
strategy succeeds with greater probability. Moreover, the output of Algorithm 3.1.6 has sta-
tistical difference exactly (1 - 6)/2 from the verifier's view of (P, V)(Xo, X 1 ).

In order to prove Lemma 3.1.8, we first need to get a slightly better understanding of
the statistical difference metric.

Fact 3.1.9 Let X and Y be probability distributions (or random variables) on a discrete
universe U, let Sx = {x E U : Pr [X = x] > Pr [Y = y]}, and define Sy analogously. Then

StatDiff (X,Y) = Pr [X E Sx] - Pr [Y E Sx] = Pr [Y E Sy] - Pr [X E Sy].

def
Proof: For any set S, Pr [X E S] = XES Pr [X = X] and similarly for Y. So 6(S) =

Pr [X E S] - Pr [Y E S] is increased by adding elements of Sx to S, decreased by adding
elements of Sy to S, and is unchanged by adding points on which X and Y have the same
mass. Thus, the maximum (positive) value J(S) can take on is achieved by S = Sx and
the minimum (negative) value is achieved by S = Sy. The maximum positive value and
the minimum negative value of 6(S) must have the same magnitude, since 6 (S) = -6(S).
Hence,

StatDiff (X, Y) = max16(S)I
S

= Pr[XESx]-Pr[YESx]

= Pr[YESy]-Pr[XESy]. E
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Figure 3-1: Statistical difference as area

Fact 3.1.9 gives us another way of viewing statistical difference - as area between

curves. Suppose we graph the mass functions of two distributions X and Y (so the area

under each of these curves is 1). Then, Fact 3.1.9 says that the region that is above Y and

below X has area 6, the region that is above X and below Y has area 6, and the region

that is below both has area 1 - 6. We call these regions the X-above region, the Y-above

region and the common region, respectively. See Figure 3-1.

Proof of Lemma 3.1.8: From the description of statistical difference as area, we can give

an alternative process that induces the same distribution on (b, x) as the verifier's strategy

in Protocol 3.1.4:

1. Flip a biased coin d that is 0 with probability 1 - 6 and 1 with probability 6.

2. If d = 0:

(a) Uniformly select a point in the common region, and let x be corresponding ele-

ment of {0, 1}

(b) Uniformly select b c {0, 1}.

3. If d = 1:

(a) Uniformly select b E {0, 11.

(b) If b = 0, uniformly select a point from the XO-above region, and let x be the

corresponding element of {0, 1}.

(c) If b = 1, uniformly select a point from the X 1 -above region, and let x be the

corresponding element of {0, 1 }.
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4. Output (b, x).

From this description, it is clear that, when d = 0, b is independent of x and the
prover's success probability is exactly 1/2 no matter what strategy is used. In addition,
the prover strategy specified in Protocol 3.1.4 perfectly distinguishes the Xo-above and X1-
above regions and therefore succeeds with probability 1 when d = 1. Hence, the specified
prover strategy is optimal, and its success probability is exactly

11 1+
- - Pr [d = 0] +1 - Pr[d = 1] = -. (1-J)+1-J= .
2 2 2

To analyze the simulator deviation, notice that the only transcripts that occur with
greater probability in the verifier's view than in the simulator's output are those in which
verifier rejects. Since these occur with probability zero in the simulator, the statistical
difference is exactly the prover's failure probability, which is 1 - (1 + 6)/2 = (1 - 6)/2. E

From Lemma 3.1.8, we immediately obtain:

Proposition 3.1.10 For any constants 0 < 3 < a < 1, Protocol 3.1.4 is an interactive
proof for SD"'S with completeness error (1 - a)/2 and soundness error (1 + 3)/2.

Proposition 3.1.11 For every constant 0 < / < 1, Protocol 3.1.4 is an honest-verifier
perfect zero-knowledge proof for SD"'e with perfect completeness and soundness error (1 +
,3)/2.

However, Lemma 3.1.8 does not yet give a zero-knowledge proof for SD = SD 2/3 ,1/ 3 as
desired, because the simulator deviation would be a constant (1/6), rather than a negligible
function. One way to obtain a negligible simulator deviation would be to give a transfor-
mation which maps a pair of circuits with statistical difference at least 2/3 to a pair with
statistical difference extremely close to 1 (while keeping an initial statistical difference of at
most 1/3 bounded away from 1). In the next section, we show how to achieve this.

3.1.2 A polarization lemma

Lemma 3.1.12 (Polarization Lemma)' Let a, 3 E [0, 1] be any two constants such that
a 2 > / (e.g., a = 2/3, / = 1/3). There is a polynomial-time computable function
Polarizea,,3 that takes a triple (Xo, X1,1k), where X 0 and X1 are distributions encoded
by circuits, and outputs a pair of circuits (Yo, Y1) such that

StatDiff (Xo, X1) > a => StatDiff (Yo, Y1 ) > 1 - 2-k

StatDiff (Xo, X1) 5 -> StatDiff (Yo, Y) < 2-k

The usefulness of the Polarization Lemma comes from the fact that the two distributions
it produces can be treated almost as if they were disjoint or identically distributed, respec-
tively (i.e., statistical difference 0 and 1, respectively). Indeed, in the next section, we show

'The Polarization Lemma stated here is called the Amplification Lemma in [SV97]. The name was
changed in [SV99] to stress that the Polarization Lemma does not merely increase statistical difference.
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how this Polarization Lemma can be used to augment Protocol 3.1.4 and obtain a statisti-

cal zero-knowledge proof for SD. This section is devoted to the proof of the Polarization

Lemma. The challenge in proving the lemma is that we need to increase statistical differ-

ence in some cases and decrease statistical difference in other cases. We will obtain such

a transformation by combining two complementary transformations - one which increases

statistical difference and one which decreases statistical difference. The analysis of both of

these transformations will make use of yet another formulation of statistical difference, this

time in terms of probability mass vectors.

If X is a probability distribution on a discrete universe U, then we can view its mass

function as a vector in RU, which we denote by X. Fact 3.1.9 says that the area between

the graphs of the mass functions of distributions X and Y is exactly twice their statistical

difference (see Figure 3-1). The area between the graphs is exactly the f 1-distance between

the vectors X and Y, where the e-norm of a vector V' E RS is Il 1 =9 Zis lvil. Thus, we

have:

Fact 3.1.13 StatDiff (X, Y) = Y

We now focus on increasing statistical difference. Intuitively, taking many independent

copies of two distributions should increase their distinguishability and drive the statistical

difference to 1. Thus, we now analyze the behavior of statistical difference with respect

to independence. In order to do so, we express independence in terms of probability mass

vectors.
Recall that the tensor product of vectors ' E R and W' e RT is the vector v 0 w E

RSxT with (v 0 w)i,j = vi - wj. Note that, any vectors v and w, IV 0 WI1 = lVii - Iwbl.
Now, observe that a pair of jointly distributed random variables (X, Y) are independent iff

(X Y) = X 0 Y. For this reason, for any two distributions X and Y, we write X 0 Y for

the distribution obtained by taking a sample of X followed by an independent sample of Y,
and OkX for the distribution consisting of k independent samples of X.

The above observations enable us to bound the effect of independence on statistical

difference.

Fact 3.1.14 Let X = (Xo, X 1 ) be a distribution in which X 0 and X 1 are independent and

Y = (Yo, Y 1) be one in which Y and Y 1 are independent. Then

StatDiff (X, Y) StatDiff (Xo, X 1 ) + StatDiff (Yo, Y1).

Proof:

StatDiff (X, Y) = 0X0Xi-YY 1 Y
1 1-.1YO Y

2 2
-X0 0 1YO X1 +-YO (X1 - Yi Y12 1 2

= -(X Y O X1 +- Y O X1 -- Y1)1 - -1 - -L
= -oi o - X1  +-Yo - 1 -Y1
2 1 1 2 1 1

= StatDiff (X0, Yo) + StatDiff (X1 , Y 1) . U

39



CHAPTER 3. COMPLETE PROBLEMS

Of course, Fact 3.1.14 does not accomplish our goal; it only gives an upper bound on
the effect of independent copies on statistical difference, whereas want a lower bound. The
following Direct Product Lemma shows that statistical difference goes to 1 exponentially
fast when we take independent copies. The lemma is reminiscent of a Chernoff bound, and
indeed, that is how the proof will proceed.

Lemma 3.1.15 (Direct Product Lemma) Let X and Y be distributions such that
StatDiff (X, Y) = 6. Then for all k G N,

1 - 2e-k62 /2 < StatDiff (0kX 0 ky) k6

Proof: The upper bound of k6 follows immediately from Fact 3.1.14, so we proceed to
the proof of the lower bound. Recall, from the definition of statistical difference, that there
exists a set S such that

Pr [X E S] - Pr [Y E S] = 6.

Let p = Pr [Y E S]. Then, Pr [X E S] = p + 6. Hence, in k independent samples of X, the
expected number of samples that lie in S is (p + 6)k, whereas in k independent samples of
Y, the expected number of samples that lie in S is pk.

The Chernoff Bound (Theorem A.1) tells us that the probability that at least (p + A)k
components of &kY lie in S is at most exp(-k62 /2), whereas the probability that at most
(p + )k components of 0 kX lie in S is at most exp(-k62 /2). Let S' be the set of all
k-tuples that contain more than (p + A)k components that lie in S. Then we have,

StatDiff (0kX, (kY) Pr [0 kX - S' - Pr [®kY E S' > 1 - 2e-k6 2/2.

Given the Direct Product Lemma, a first attempt at making Protocol 3.1.4 statistical
zero knowledge for SD would be to replace each distribution with many independent copies
of itself. If the original pair of distributions was YES instance (i.e., with statistical difference
at least 2/3), their statistical difference will now be exponentially close to 1, and hence the
simulation will be statistically close by Lemma 3.1.8. Unfortunately, this will also drive the
statistical difference of some NO instances (like those with statistical difference 1/3) towards
1 and this will destroy the soundness of the proof system.

However, the Direct Product Lemma does drive larger values of statistical difference to
1 more quickly than it drives smaller values to 1 (as illustrated by the upper bound of k),
so it is a step in the right direction. Thus, we will seek a complementary technique which
decreases the statistical difference to 0, with small values going to 0 faster than large values.
By alternating the two procedures, we will manage to increase the statistical difference for
YES instances and decrease it for NO instances.

To figure out how one might decrease the statistical difference between two distributions
in a controlled manner, we consider how one might decrease the prover's success probability
in Protocol 3.1.4. One natural idea would be to repeat the protocol many times indepen-
dently and see if the prover guesses the correctly in all executions. That is, the verifier
would choose bl, ... , bk E {0, 1} uniformly and independently at random, obtain samples
Z, ... , zk independently from Xb1 , ... , Xbk, respectively, send these samples to the prover,
and see if the prover can guess all the bi's. Alternatively, one might instead ask the prover
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to guess the exclusive-OR of all the bi's. Looking at the proof of Lemma 3.1.8, one sees

that the prover will have no information about bi if the "common region" is hit in the

i'th execution. If the prover has no information about even just one bi, then it also has

no information about the exclusive-OR, and hence the success probability will be exactly

1/2. The probability that the common region is hit in the i'th execution is 1 - 6, where

6 = StatDiff (X0, Xi), so the probability that it is hit in at least one execution is 1 - 6k.

Thus, the prover's success probability goes to 1/2 exponentially fast with k. This suggests

that the two distributions on k-tuples obtained by conditioning on the exclusive-OR be-

ing 0 and 1, respectively, in this repeated protocol have statistical difference 6 k. This is

formalized by the following XOR Lemma.

Lemma 3.1.16 (XOR Lemma) There is a polynomial-time computable function that maps

a triple (Xo, X 1, 1k), where X 0 and X 1 are circuits, to a pair of circuits (Yo, Y 1 ) such that

StatDiff (Yo, Y 1 ) = StatDiff (X 0 , X 1 )k. Specifically, Yo and Y are defined as follows:

Y: Uniformly select (bi,... ,bk) E {0, 1}k such that b1 D ... E bk = 0, and output a sample

of Xb1 0 ... Xbk -
Y 1 : Uniformly select (b1,...,bk) G {0, 1}k such that b1 D ... D bk = 1, and output a sample

of Xb1 & ... 0 Xbk-

The motivation given above actually is sufficient to prove the lemma, but instead, we

will do a calculation using the f, description of statistical difference to see what happens

when we combine just two pairs of distributions in this fashion. This construction is a

generalization of the technique used by De Santis et. al. [DDPY94] to represent the logical

AND of statements about GRAPH NONISOMORPHISM.

Proposition 3.1.17 Let X 0 , X 1, Yo, Y 1 be any random variables, and define the following

pair of random variables:

ZO: Choose a, b +- {0, 1} such that a e b = 0. Output a sample of Xa 0 Yb-
Z 1 : Choose a, b <- {0, 1} such that a e b = 1. Output a sample of Xa 0 Yb-

Then StatDiff (Zo, Z 1) = StatDiff (X0, X 1) - StatDiff (Yo Y1).

Proof:

StatDiff (Zo, Zi) = Zo-Z121

X1 1 Y + X 1- X o+ X 1
= - 0 - o -1 Y 1 X Yo -0Y2 22 2 2

= (X0 - S aYO - Y 1

=StatDiff (Xo , XI) - StatDiff (Yo Y) . M
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Proposition 3.1.17 and an induction argument establish Lemma 3.1.16. Yao's XOR
Lemma [Yao82] (see also [GNW95]) can be seen as an analogue of Lemma 3.1.16 in the
computational setting, where the analysis is much more difficult.

The Direct Product construction gives a way to increase statistical difference with large
values going to 1 faster than small values. Similarly, the XOR Lemma shows how to decrease
statistical difference with small values going to 0 faster than large values. Alternating these
procedures should "polarize" large and small values of statistical difference, pushing them
closer to 1 and 0, respectively, and yield Lemma 3.1.12. This following proof confirms this
intuition.

Proof of Lemma 3.1.12: Let A = min{a 2//0, 2} > 1, and let i = [logs 4k] = O(log k).
Apply the XOR Lemma (Lemma 3.1.16) to the triple (Xo, X1, 1t) to produce (X', X') such
that

StatDiff (Xo, X) > a -> StatDiff (X0, X') > at

StatDiff (Xo, X) =- StatDiff (X6, X') 3'

Let m = At/(2a 2e) ! 1/(201). Notice that m < poly(k), since f = O(logk), A < 2,
and a is a constant. Now apply the direct product construction, defining X' = OmX6 and
X' = O m X'. Then, by Lemma 3.1.15,

StatDiff (Xo, X1) > a => StatDiff (X', X') > 1 - 2 exp ((( 2 A2  2  - 2e -k

StatDiff (X 0 , X1) 53 => StatDiff (Xg, X') < (1/ 20') -#t = 1/2

Finally, apply the XOR lemma (Lemma 3.1.16) one more time to (X6', Xi', 1k) to produce
(Yo, Y) such that

StatDiff (X 0 , X 1 ) a -> StatDiff (Yo, Y1 ) > (1 - 2e-k)k > 1 - 2ke-k > 1 - 2-k

StatDiff (Xo, Xi) 3 -> StatDiff(YoY) 1/2k

(as long as k is sufficiently large, which we may assume by artificially increasing it at the
start). U

A similar alternation between procedures with complementary effects was used by Ajtai
and Ben-Or [AB84] to amplify the success probability of randomized constant-depth circuits.
Interestingly, we do not know how to remove the condition that a 2 > 3 in Lemma 3.1.12.
Perhaps this constraint is inherent for any transformation like ours, in which the new
distributions are obtained by concatenating random samples taken obliviously from the
original distributions.

Open Problem 3.1.18 Is there a polarization lemma for arbitrary constant thresholds
0 < 3 < a < 1? Or even for any specific thresholds such that a 2 > / (e.g., a = 5/9,
3 = 4/9)? Is the constraint a 2 > 3 inherent for a wide class of transformations?
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3.1.3 STATISTICAL DIFFERENCE is in HVSZK

With the Polarization Lemma, it is easy to give a statistical zero-knowledge proof for SD.

The proof system is given in Protocol 3.1.19 and the simulator in Algorithm 3.1.20.

Protocol 3.1.19: Statistical zero-knowledge proof (P, V) for SD

Input: Circuits X0 and X 1 , and security parameter 1 k

1. P, V: Both parties compute (Yo, Y) = Polarize2 /3,1/3(Xo, X 1, k)-1.

2. P, V: Both parties execute Protocol 3.1.4 on common input (Yo, Yi). V
accepts or rejects as in that protocol.

Algorithm 3.1.20: Simulator for SD proof system

Input: Circuits Xo and X 1 (each with m input gates and n output gates), and

security parameter 1 k

1. Compute (Yo, Y) = Polarize2/3,1/3(Xo, X1, lk-1).

2. Run Algorithm 3.1.6 on input (Yo, YI) and output whatever it outputs.

It follows immediately from Lemma 3.1.8 that the above protocol and simulator yield a

statistical zero-knowledge proof for SD.

Theorem 3.1.21 Protocol 3.1.19 is an honest-verifier statistical zero-knowledge proof for

SD with completeness error 2 -k, soundness error 1/2 + 2 k, and simulator deviation 2 -k.

In particular, SD E HVSZK.

From Lemma 3.1.12, we see this protocol and theorem can be generalized to place SDas

in HVSZK as long as a2> .

3.2 Analyzing public-coin HVSZK proofs

To complete the proof that STATISTICAL DIFFERENCE is complete for HVSZK, it remains
to show that every problem possessing an honest-verifier statistical zero-knowledge proof

reduces to SD. As is typical with completeness theorems, this is the more challenging
part of the proof. In this section, we focus on the easier task of showing that every problem
with a public-coin statistical zero-knowledge proof reduces to SD (actually its complement).
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Although this result will be subsumed by the general reduction for all of HVSZK given
in subsequent sections, it will provide a good motivating warm-up. Both reductions are
refinements of the general approach to analyzing statistical zero-knowledge proofs pioneered
by Fortnow [For89].

3.2.1 The Fortnow methodology

In both classical and interactive proofs, the verifier is what distinguishes between YES and
NO instances; on YES instances, there is a proof (or prover strategy) that makes the verifier
accept, whereas on NO instances there is not. The crucial observation of Fortnow [For89] was
that in zero-knowledge proofs, the simulator also provides information that can distinguish
between YES and NO instances. Specifically, he showed that, for statistical zero-knowledge
proofs, YES and NO instances can be (almost) completely distinguished based on statistical
properties of the simulator's output distribution. By then showing that these statistical
properties can be decided in low complexity, he was able to give a strong upper bound
on the complexity of statistical zero knowledge, namely HVSZK C co-AM. 2 Aiello and
Ha'stad [AH91] subsequently used the same general approach to show that HVSZK C
AM. These are fairly strong upper bounds on the complexity of HVSZK, as they imply
that HVSZK cannot contain NP-hard problems unless the Polynomial Time Hierarchy 3

collapses [BHZ87]. However, in this thesis, we will not be satisfied with upper bounds
on the complexity of statistical zero knowledge. Rather, we seek a tight characterization
of statistical zero knowledge, in the form of complete problems. In order to obtain such
characterizations, we will refine Fortnow's methodology, and thus we begin by describing
his approach at an intuitive level.

Recall that Fortnow's aim was to find properties of the simulator's output distribution
that distinguish between YES and NO instances of the promise problem whose statistical
zero-knowledge proof we are considering. Using terminology taken from [AH91], we think
of the simulator as describing an "interaction" between a virtual prover and a virtual verifier.
For YES instances, the definition of statistical zero knowledge gives very strong guarantees
on the output distribution of the simulator. Namely, the simulator's output must be very
close the interaction between the real prover and verifier. In particular, the following two
conditions must hold.

Conditions for YES instances. Both of the following must hold:

1. The simulator outputs accepting conversations (i.e., ones in which the virtual verifier
accepts) with high probability.

2. The virtual verifier "behaves like" the real verifier.

2Actually, there was an error in Fortnow's proof, pointed out in [GOP98], but his general approach was
sound and influenced many later works. Aiello and Histad [AH91] gave a correct proof of the result (and
we will see another one in this thesis).

3See any standard textbook on complexity theory (e.g., [Sip97, Pap94]) for a definition of the Polynomial
Time Hierarchy, which is widely conjectured to be infinite.
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For NO instances, however, the definition of zero knowledge does not explicitly give any

guarantees on the simulator's behavior. Despite this, one can prove something about the

simulator's behavior in this case. Specifically, the above two conditions cannot simulta-

neously hold for NO instances. Suppose both conditions did hold for a NO instance. The

first condition says the virtual prover is convincing the virtual verifier to accept with high

probability. The second condition then implies that if we allow the virtual prover to interact

with the real verifier instead of the virtual verifier, it should not change things significantly.

Therefore, the virtual prover will convince the real verifier to accept with high probability.

But this cannot happen for a NO instance, by the soundness of the proof system. Actu-

ally, since there is large gap between the verifier's acceptance probability on YES instances

and NO instances, we obtain the following "strong complement" to the conditions for YES

instances:

Conditions for NO instances. At least one of the following must hold:

1. The simulator outputs accepting conversations with low probability.

2. The virtual verifier "behaves very differently" from the real verifier.

Now, to distinguish between YES and NO instances, one need only show how to separate

the conditions for YES instances from the conditions for NO instances. In [For89, AH91], it

was shown that short interactive proofs can separate the two cases, and thereby HVSZK

was placed in AM n co-AM. Here, we will show that the conditions can be embedded into

instances of STATISTICAL DIFFERENCE, and this will show that every problem in HVSZK

reduces to SD.
There are a number of aspects of the above intuition that are nontrivial to formalize or

quantify. First, one must make precise this idea of allowing the virtual prover to interact

with the real verifier. Fortnow gave a natural solution to this, by introducing the notion of

a simulation-based prover Ps, which is a (real) prover strategy that determines its messages

according to the same distribution as the virtual prover, when conditioned on past messages.

Thus, the interaction (Ps, V) exactly captures the idea of the virtual prover interacting with

the real verifier.
A second important challenge is to quantify what it means for the virtual verifier to

"behave like" the real verifier. This is the crucial point which determines the tightness of

the characterization obtained at the end, for the other condition is easily determined (by

running the simulator many times to estimate the probability of an accepting conversation).

To summarize, the main steps in analyzing the simulator of a statistical zero knowledge

proof are the following:

1. Quantify what it means for the virtual verifier to "behave like" the real verifier.

2. Confirm that in the case of a YES instance, the virtual verifier does indeed behave like

the real verifier according to the chosen quantification.

3. Show that if the virtual verifier behaves like the real verifier, then the interaction

between the simulation-based prover and the real verifier is "close" to the output

distribution of the simulator.
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4. Conclude that if the virtual verifier behaves like the real verifier on a NO instance,
then the simulator must output accepting conversations with low probability.

In the next section, we will carry out this approach for public-coin statistical zero-
knowledge proofs. In this case, it is particularly easy to quantify what it means for the
virtual verifier to "behave like" the real verifier, because all the real verifier's behavior
consists of is sending uniformly distributed strings that are independent of the conversation
history. Thus, the virtual verifier behaves like the real verifier if and only if the virtual
verifier's messages are nearly uniform and nearly independent of the conversation history.
We will show how to capture this condition by the statistical difference between samplable
distributions, thereby obtaining a reduction to STATISTICAL DIFFERENCE.

3.2.2 Simulator analysis

Notation and Conventions. Let (P, V) be an interactive proof system for a promise
problem H, and let S be a simulator for (P, V). (At this point, S is an arbitrary algorithm,
since we have not yet specified the quality of the simulation.) Throughout this section and
Section 3.2.3, we will fix the security parameter k = |xi and omit it from the notation.
When we apply our simulator analysis, we will only require weak statistical zero knowledge
and constant completeness and soundness errors, settings in which the security parameter
is irrelevant. Since the proof system is polynomially bounded, there is a polynomial v(.)
such that v(|x|) bounds the total number of messages sent from the verifier to the prover
on input x (not including the verifier's final accept/reject message). By convention (see
Definition 2.3.2), the prover's messages are those with odd index, and the verifier's messages
are those with even index. We are interested in the random variables S(x) and (P, V)(x),
describing the simulation and (the verifier's view of) the real interaction, respectively. We
also consider prefixes of these random variables, where S(x)i and (P, V)(x)i denote the
prefixes consisting of the first i messages exchanged. At times, we may drop x from these
notations.

For j <; 2v(IxI) + 2, we refer to a tuple of strings y = (mi, m 2 , ... , mj; r) as a (partial)
conversation transcript if the even-numbered messages in -y (including an accept/reject
message) correspond to what V would have sent given random coins r and the odd-numbered
prover messages specified in -y. Without loss of generality, we may assume that the output
of the simulator always consists of conversation transcripts that are consistent with V in
this sense. This can be achieved by having the simulator, before giving its output, always
use the verifier algorithm to recalculate the verifier messages based on the simulated prover
messages and the simulated verifier coins. This modification does not affect any of the error
parameters or complexity parameters of the proof system. We say that a transcript Y is
accepting if the verifier accepts on it.

Simulation-based prover. Recall that the simulation-based prover PS is the prover
strategy that "mimics" the virtual prover described by S. More formally, given an input (x)
and a conversation history 7 (consisting of 2i previous messages exchanged), PS responds
as follows:
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" If S(x) outputs conversations that begin with y with probability 0, then PS replies

with a dummy message, say f ail.

" Otherwise, PS replies according with the same conditional probability as the prover

in the output of the simulator. That is, it replies 3 with probability

p, = Pr[S(x)2i+l = (b7,/)jS(X)2i = -Y]

Following our previous notation, we denote the verifier's view of the interaction between

PS and V by (Ps, V)(x) and its prefixes by (Ps, V)(x)i

Public-coin proofs. For the remainder of this section, we consider only public-coin in-

teractive proofs (P, V). Recall that this means that in every execution of the protocol,
the string of random coins accessed by V can be written rlr2 ... rv E {0, 11*, so that the

verifier's i'th message m2= ri E {0, 1} i, where £i = 4 (X,-) is solely a function of the

input (x) and the history -y = (mi, m 2,... m 2 i- 1). Since V runs in polynomial time, ii is

polynomial-time computable from the input and history. Without loss of generality, we may

assume that the simulated random coins output by the simulator do not contain any coins

other than those that would actually be accessed by the verifier in the interaction; removing

these "irrelevant" coins from the output can only decrease the simulator deviation.

The simulator analysis. Now we need to quantify what it means for the virtual verifier

to "behave like" the real verifier. As noted in the previous section, for public-coin proofs, this

amounts to measuring how close to uniform and independent of history the virtual verifier's

messages are. Thus, for i = 1, . . . , v(Ix ), we compare the following two distributions Xi =

Xi(x) and Y 2 = Yi(x):

Xi(x): Run S(x) to obtain a transcript -y and let -y2 denote the first 2i messages exchanged.

Output 72i.

Y(x): Run S(x) to obtain a transcript -y and let 72i-1 denote the first 2i - 1 messages

exchanged. Compute ii = fi(x,-2i- 1). Choose r +- {0, 1}e1 . Output (y2i- 1 , r).

In Xj, the i'th verifier message is computed according to the virtual verifier strategy, and

in Y, it is chosen uniformly and independently of the history (of the appropriate length).

Thus, the statistical difference between these two distributions measures exactly how much

the virtual verifier behaves like the real verifier in computing its i'th message. So we define

6i = 6i(x) by
def

6= = StatDiff (Xi,Yi).

The following lemma confirms that, when the simulation is good (e.g., for YES instances),
the virtual verifier does indeed behave like the real verifier according to this measure.

Lemma 3.2.1 For every i = 1, ... v(xI),

6i (x) < 2 - StatDiff (S(x), (P, V)(x)) .
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Proof: Dropping x from the notation, we have:

6i = StatDiff (Xi, Yi)

< StatDiff (Xi, (P, V) 2 ) + StatDiff ((P, V)2i, Yi)

Note that Xi is the same distribution as S2i, so

StatDiff (Xi, (P, V) 2 ) = StatDiff (S2i, (P, V) 2i) StatDiff (S, (P, V)).

On the other hand, Y is obtained from a sample of S2i- 1 by applying a certain randomized
procedure: namely computing ei and then concatenating i random bits to Y. Applying
the same randomized procedure to (P, V)2i- 1 yields (P, V) 2 i, by the definition of V. Thus,
since applying the same randomized procedure to two distributions cannot increase their
statistical difference (to be justified after this proof), we have

StatDiff ((P, V)2i, Yi) < StatDiff ((P, V)2i- 1, S2i-1) < StatDiff ((P, V), S) . U

The claim that randomized procedures cannot increase statistical difference used in the
above proof can be formalized as follows: A randomized procedure is a function f together
with a distribution R. The distribution obtained by applying the randomized procedure
(f, R) to a distribution X is defined to be f(X 0 R) (so R provides the randomness to the
function). The following fact follows immediately from and Facts 2.2.2 and 3.1.14.

Fact 3.2.2 Applying the same randomized procedure to any two distributions does not in-
crease their statistical difference.

The next step in analyzing the simulator is to show that, if the virtual verifier is behaving
like the real verifier (i.e., all the 3i's are small), then the interaction between the simulation-
based prover and the real verifier is close to the simulator's output distribution.

Lemma 3.2.3
V00X)

StatDiff ((Ps, V)(x), S(x)) E 6i(X)
i=O

Proof: We will prove by induction on j that for j = 1,...,v(IxI),

StatDiff ((Ps, V) 2jS 2i) 5 6.
i=O

The case j = 0 is trivial. For general j, note that the definition of the simulation-based
prover implies that (Ps, V) 2j+ 1 is generated by applying the same randomized procedure
to (Ps, V) 2j as the one used to obtain S2j+1 from S2j. Thus, by Fact 3.2.2,

StatDiff ((Ps, V) 2j+1 , s2i+ 1) = StatDiff ((Ps, V) 2j, S2i) . (3.1)
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Recalling that X+1 = S 23+2, we have

StatDiff ((PS, V) 2j+2 , S2j+2) = StatDiff ((Ps, V) 2j+ 2, X+ 1)

< StatDiff ((PS, V) 2j+ 2 , i+1) + StatDiff (Yj+, Xj+l)-

Now (Ps, V) 2j+2 is obtained from (Ps, V) 2j+ 1 via the same randomized procedure used to

obtain Yj+ 1 from S2j+1. Thus,

StatDiff ((Ps, V) 2j+ 2 , S2j+ 2 ) < StatDiff ((Ps, V) 2j+ 1, S2i+1) + StatDiff (Yj+ 1 , Xj+ 1 )-

< StatDiff ((Ps, V) 2j, S2J) + StatDiff (Yj+l, Xj+ 1).

i=0

where the last inequality is by induction. This completes the induction.

Taking j = v in Inequality 3.1 almost gives the lemma, except that the transcripts

coming from (Ps, V) and S contain a few additional strings: the prover messages m2V+1

and m2V+3, the verifier's accept/reject message m2v+2, and the simulated verifier coins.

By our assumptions that the simulator's output is consistent with the verifier algorithm

and does not contain any "irrelevant" simulated coins, and the definition of the simulation-

based prover, these strings are determined in both (Ps, V) and S by applying the same

randomized procedure to the history (mi, M 2 , ... , m2v). Thus, including these components

does not increase the statistical difference. a

The final lemma needed to complete the analysis simply says that if the simulator

outputs accepting conversations with high probability in the case of a NO instance, then the

simulator's output and the interaction between the simulation-based prover and the real

verifier cannot be close.

Lemma 3.2.4 Let p denote the probability that S(x) outputs an accepting transcript, and

let q be the maximum, taken over all provers P*, that V accepts in (P*, V)(x). Then,

StatDiff ((Ps, V)(x), S(x)) > p - q.

Proof: This follows immediately from the definition of statistical difference - the set of

transcripts in which the verifier accepts occurs with probability p in the simulator and with

probability at most q in (Ps, V)(x).

3.2.3 Reducing to STATISTICAL DIFFERENCE

We now use the simulator analysis given above to show that every problem possessing an

public-coin statistical zero-knowledge proof reduces SD. In fact, the reduction will even

work for weak public-coin statistical zero-knowledge proofs.

Theorem 3.2.5 Every promise problem possessing a weak public-coin honest-verifier sta-

tistical zero-knowledge proof reduces to SD.

49



CHAPTER 3. COMPLETE PROBLEMS

Proof: Let H be a promise problem with a weak public-coin honest-verifier statistical zero-
knowledge proof (P, V). We maintain the notation and conventions from the Section 3.2.2,
in particular fixing k = lxi and dropping it from the notation. We also hide the dependency
of the various parameters and distributions on x from the notation throughout this proof.
Without loss of generality, we assume that I has completeness and soundness errors c =

s = 1/3. Let S be a simulator for (P, V) achieving simulator deviation /I < 1/ [4 - (12v) 3

The reduction should map an input x to a pair of distributions (X, Y), which are sta-
tistically close or far, depending on whether x is YES instance or NO instance, respec-
tively. X (resp., Y) will essentially consist of the concatentation of all the Xi's (resp., Yi's).
Lemma 3.2.1 immediately implies that all the Xi's and Yi's have small statistical difference
when x is a YES instance. Lemmas 3.2.3 and 3.2.4 imply that they cannot all have small
statistical difference when x is a NO instance and the simulator outputs accepting transcripts
with too much probability. Thus, we still need to define distributions that will handle the
case that the simulator outputs accepting conversations with low probability. Therefore,
we define distributions X0 and Yo as follows:

XO: Output 1.

Y: Run S for 216 In 12v independent executions, and output 1 if verifier accepts in the
majority of the transcripts obtained.

Now we consider the distributions X' = Xo 0 X 1 0... 0 Xv and Y' = Yo 0 Yi ... 0 Y
(not yet our final distributions).

Claim 3.2.6 If x is a YES instance, then StatDiff (X', Y') <; 1/ [12 - (12v) 2

Proof of claim: By Fact 3.1.14, the statistical difference between X' and Y'
is at most the sum of the statistical differences between the Xi's and Y's. By
Lemma 3.2.1,

1
StatDiff (Xi, Yi) < 2p <

- 2 - (12v) 3

when x is a YES instance.
To bound the difference betwen X 0 and Y, observe that, on YES instances x,

S must output accepting conversations with probability at least 2/3 - p > 7/12.
By the Chernoff bound (Theorem A.1), Yo outputs 1 with probability at least

1
1 - exp (-2 - (216 In 12v) - (1/12)2) > 1 _ I2)

-(12v)3

Thus, the statistical difference between Xo and Yo is at most 1/(12v)3 , and the
total statistical difference between X' and Y' is at most

1 1 1
V2 (12v) 3 + <

2 - (20)3(1 2v) 3 - 12 - (12v) 2-

Claim 3.2.7 If x is a NO instance, then StatDiff (X', Y') 1/12v.
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Proof of claim: It suffices to show that for at least one i, the statistical dif-

ference between Xi and Y is at least 1/12v, as the statistical difference between

X' and Y' is only greater.
First suppose the simulator outputs accepting conversations with probability

at most 5/12. Then, by the Chernoff bound (Theorem A.1), Yo outputs 1 with

probability at most

exp (-2 - (216 ln 12v) - (1/12)2) < 1

so the statistical difference between X0 and Y is at least 1/2 > 1/12v.

Now suppose that the simulator outputs accepting conversations with prob-

ability at least 5/12. By Lemma 3.2.4, this implies that the statistical difference

between (Ps, V) and S is at least 5/12 - 1/3 > 1/12. Lemma 3.2.3 in turn

implies that, for some i, 6i > 1/12v.

So now let s = 4 - (12v) 2 , consider X = 0 X', Y - ®sY'. By the above two claims and

Lemma 3.1.15, we conclude:

1 1
x E Hy StatDiff (X, Y) (4 - (12v) 2 ) 12 (12v) 2 

- 3

4 12 - ( /12v)2

X E N - StatDiff (X, Y) 1 - exp 4. (12v) 2 .(1/12v) 2  2/3

Thus, X and Y are the desired distributions, and the x -+ (X, Y) is a Karp reduction

from I to SD. Strictly speaking, the distributions X and Y, which are defined in terms of

the simulator need to be encoded by circuits mapping random coins to the output. This can

be done by the standard technique of encoding general (e.g., Turing machine) computations

as circuits (see, e.g., the proof of Cook's theorem in [Pap94].) U

Note that the above proof only requires a simulator with deviation O(1/v 3 ), where v

is the number of messages sent from the verifier to the prover in the proof system. proof

systems, the reduction even works when the simulator deviation is a (sufficiently small)

constant!

Theorem 3.2.8 (Thm. 3.2.5, generalized) There is a constant C such that the follow-

ing holds. Suppose a promise problem U possesses a public-coin interactive proof system

(P, V) with completeness and soundness errors 1/3 which exchanges at most m(n) mes-

sages on inputs of length n. Suppose further that (P, V) has a simulator that achieves

deviation p(n) 5 1/(C - m(n)3 ). Then, H reduces to SD. In particular, 1 E HVSZK.

In addition, we need not assume completeness and soundness errors of 1/3, because

parallel repetitions can be used to the reduce the error of the proof system. Note, however,
that f parallel repetitions increases the simulator deviation by a factor of f (though it does

not increase the number of messages exchanged). Thus the bound on the simulator deviation

required to generalize Theorem 3.2.8 to arbitrary completeness and soundness errors will

involve the completeness and soundness errors.
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3.3 Analyzing general HVSZK proofs

In this section, we generalize the approach outlined in the previous section to handle gen-
eral, private-coin proof systems. In doing so, we will actually reduce not to STATISTICAL

DIFFERENCE, but to a different promise problem, called ENTROPY DIFFERENCE. The
reduction is based on the simulator analysis of Aiello and Histad [AH91].

In Section 3.3.1, we introduce the promise problem ENTROPY DIFFERENCE, and also
mention some basic notions from information theory that we will use. Section 3.3.2 contains
the Aiello-Histad simulator analysis, formulated in terms of entropy, following Petrank and
Tardos [PT96]. In Section 3.3.3, we use this simulator analysis to prove that every problem
in HVSZK reduces to ENTROPY DIFFERENCE.

3.3.1 ENTROPY DIFFERENCE

We recall Shannon's notion of entropy.

Definition 3.3.1 (entropy) If X is a discrete probability distribution, then the entropy
of X, denoted H(X), is defined as

H(X) deZPr[X =x] - 1 = E log [.
Pr [X = x] x<-x I Pr [X = x]]

The binary entropy function H2 : [0, 1] -+ [0, 1] is defined to be the entropy of a 0-1
random variable with expectation p, i.e.,

def 1H2 (p) = plog - + (1 -p)log
p i-p

The entropy of a distribution is a measure of how many "bits of randomness" the
distribution contains. Some basic facts about entropy that illustrate its naturalness as a
measure of randomness are given below. (Proofs can be found in any standard text on
information theory, such as [CT91].)

Fact 3.3.2 For any distribution X (or joint distribution (X, Y)) on a universe U,

1. H(X) > 0, with equality if X is constant.

2. H(X) log |UI, with equality if X is uniform on U.

3. For any function f, H(f(X)) H(X).

4. H(X, Y) H(X) + H(Y), with equality if X and Y are independent.

The second problem we will prove to be complete for HVSZK is essentially the problem
of determining which of two given samplable distributions has significantly higher entropy.
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Definition 3.3.3 ENTROPY DIFFERENCE is the promise problem ED = (EDy, EDN),
where

EDy = {(X,Y) : H(X) H(Y)+1}

EDN = {(X, Y) : H(Y) H(X) +1}.

Above, X and Y are circuits encoding probability distributions, as in Definition 3.1.1.

Requiring a gap of 1 bit of entropy in the definition of ED is inessential, as any noticeable

gap can be easily amplified by replacing each distribution with many independent copies

of itself. This contrasts with the definition SD, in which the thresholds of 2/3 and 1/3 are

not arbitrary (cf., Open Problem 3.1.18).
In the subsequent sections, we will show that every problem possessing a (private-coin)

HVSZK proof reduces to ENTROPY DIFFERENCE. In doing so, we will make use of a more

sophisticated (albeit less intuitive) measure of distance between probability distributions

than statistical difference.

Definition 3.3.4 Let X and Y be two discrete probability distributions. The relative en-

tropy (or Kullback-Leibler distance) between X and Y is defined as

def Pr [X =a]
RelEnt (X, Y) = E log -

+-x[ Pr[Y = a]

We also define the binary relative entropy for p, q E [0, 11 by

RelEnt2 (p, q) P log + (1 - p) log 1  .
q 1-q

Note that if X and Y are 0-1 random variables with expections p and q respectively, then

RelEnt (X, Y) = RelEnt 2 (p, q).

Although RelEnt (., -) is not symmetric and does not satisfy the triangle inequality, it is

useful to think of it as a distance between probability distributions. It does have some of

the other properties we would expect such a distance measure to have.

Fact 3.3.5 For any two distributions X and Y,

1. RelEnt (X, Y) 0, with equality if X and Y are identically distributed.

2. For any function f, RelEnt (f(X), f(Y)) < RelEnt (X, Y).

3. For any 0 < q' < q p 5 p' < 1, RelEnt2 (p', q') RelEnt 2 (p, q).

Proofs for these facts can be found in any standard text on information theory, such as

[CT91]. Item 2 is equivalent to the Log Sum Inequality [CT91, Thm. 2.7.1], and Item 3

follows from the convexity of RelEnt (., -) [CT91, Thm. 2.7.2].
One other notion from information theory that will prove useful to us is that of con-

ditional entropy, which, for a joint distribution (X, Y), measures how much randomness is

left in X after Y is revealed.
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Definition 3.3.6 (conditional entropy) If (X, Y) is a joint probability distribution, then
the conditional entropy of X given Y, denoted H(XIY), is defined as

H(X|Y E [H(Xly=y)].
y+-Y

Some basic facts about conditional entropy, whose proofs can be found in [CT91], follow.

Fact 3.3.7 For every joint distribution (X, Y),

1. H(XIY) < H(X).

2. H(X, Y) = H(Y) + H(XY).

3.3.2 The Aiello-Hastad simulator analysis

In this section, we present the simulator analysis for private-coin statistical zero-knowledge
proofs, due to Aiello and Histad [AH91]. Following, Petrank and Tardos [PT96], we formu-
late the analysis in terms of entropy and relative entropy, rather than in terms of set sizes
as done in [AH91]. This simulator analysis will be used in Section 3.3.3 to show that every
problem in HVSZK reduces to ENTROPY DIFFERENCE.

Notation and Conventions. Let (P, V) be an interactive proof system for a promise
problem H and let S be a simulator for (P, V). We follow the notation and conventions given
in Section 3.2.2. In particular, v(|x|) is a polynomial bound on the number of messages sent
from the verifier to the prover on input x. In addition, we let t(|xI) and r(IxI) be polynomial
bounds on the total communication in the proof system (as measured in bits) and the
number of random bits accessed by the verifier, respectively. We now modify the proof
system so that the verifier sends its random coins to the prover in an additional message
just before the end of the protocol. S can be modified to simulate this without increasing
the simulator deviation (since S was supposed to simulate the verifier's coins, too), and this
does not increase the completeness or soundness errors. The total communication and the
number of messages sent from the verifier to prover now increase to t'(Ix) = t(Ix|) + r(IxI)
and v'(Ix) = v(Ix|) + 1, respectively. The purpose of this modification is so that we may
simultaneously analyze the simulation of the messages exchanged and the simulation of the
verifier's random coins, rather treating them separately.

The simulator analysis. Recall that, according to the approach outlined in Sec-
tion 3.2.1, the first step in analyzing the simulator is to quantify what it means for the
virtual verifier to "behave like" the real verifier. In the case of public-coin proofs, it was
easy to see that this amounts to measuring how close to uniform and independent of history
the virtual verifier's messages are. For private-coin proofs, however, the analogous condition
is less obvious. Intuitively, it should somehow capture the requirement that the verifier's
messages are distributed almost correctly, given the history, but it is unclear how to quan-
tify this. For a clue, we skip to the second step, and compare the output of the simulator
to the interaction (Ps, V) between the simulation-based prover (as defined in Section 3.2.2)
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and the real verifier. The only difference between these distributions is that, in the sim-

ulator, the real verifier is replaced with the virtual verifier, so comparing (Ps, V) and S

is tantamount to comparing the real verifier and virtual verifer. Amazingly, the relative

entropy between these distributions can be rewritten exactly as an expression just involving

entropies of prefixes of the simulator's output.

Lemma 3.3.8 (implicit in [AH91], explicit in [PT96])

v'(IxD

RelEnt (S(x), (Ps, V)(x)) = r(IxI) - [H(S(X) 2 i) - H(S(x)2 i-I)]
i=1

The term H(S(x) 2i) - H(S(x) 2i- 1 ) equals the conditional entropy H(S(x)2ilS(X)2i-l).

Intuitively, this measures how many bits of randomness the i'th virtual verifier message

contributes to the output distribution of the simulator. Since, over the course of the entire

interaction, the real verifier exposes all of its r random coins, the sum of these terms should

be close to r when the simulation is good. The converse is also plausible. If this sum is

close to r, then it means that the virtual verifier's randomness has been fully spread out

over its messages. Since we have required that the simulator's output is consistent with

the verifier algorithm, this should mean that the virtual verifier is indeed behaving like the

real verifier. Therefore, we use the same quantity to compare how much the virtual verifier

behaves like the real verifier and to measure the similarity between the distributions S(x)
and (Ps, V) (x), in contrast to the public-coin case, in which we used different measures for

these two purposes and related them via Lemma 3.2.3.

Proof: For a transcript -y, we we let -y denote the prefix of - consisting of the first i

messages exchanged. Then, by definition,

RelEnt (S, (Ps, V)) = ZPr [S = 7] - log
lyPr [(Ps, V) =7

f12, Pr [Si = -) JSi_1 = 7y;_1]

= Pr [S = -y] - log fj=1P Sj=-~ ~ 2

j=H_1 Pr [(Ps, V) 2j = 72i (Ps, V) 2j-1 = 72j-1

where the last equality is due to the definition of Ps, by which

Pr [(Ps, V) 2j- 1 = 72 i-11(Ps, V) 2j- 2 = 72j-2 = Pr [S2j-1 = 72j-1IS2j-2 = 72j-2]

A key observation is that, for any transcript 7, the denominator in the above fraction equals

the reciprocal of the number of possible outcomes of the verifier coins (i.e., 2-), since even-

indexed messages of (Ps, V) are generated by V exactly as in (P, V). Multiplying both the
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numerator and denominator in the above fraction by r71> Pr [S2j-1 = 2j-1], we obtain

RelEnt (S, (Ps, V)) = Pr [S = ]-log . Pr [S2j = 72]
2 =1 Pr [S2j-1 = 72j-1]

V

SPr [S = -y] - log Pr [S2j = -y2j]
j=1 7

+r + E Pr[S= y] -log 1
j=1 7 [2- 72-

- HS) + r + -EHEH(S2_j-)

j=1 j= 1

The lemma follows. U

We will now confirm that, when the simulation is good (e.g., for YES instances), the
virtual verifier does indeed behave like the real verifier, as measured by the expression in
Lemma 3.3.8. In order to do this, we will observe that the expression is zero if S(x) is
replaced by (P, V)(x). When the simulation is good, it follows that H(S(x)i) is approxi-
mately equal to H((P, V) (x)i), so replacing former by the latter does not affect the value
significantly. Since the quality of the simulation is given in terms of statistical difference,
we need a bound on entropy difference in terms of statistical difference.

Fact 3.3.9 For any two random variables, X and Y, ranging over a universe U it holds
that

IH(X) - H(Y)j log(|UI - 1) - 6 + H2 (6)
def

where 6 ' StatDiff (X, Y).

This fact can be inferred from Fano's Inequality (cf., [CT91, Thm. 2.11.1]). A more direct
proof follows.

Proof: Assume 6 > 0 or else the claim is obvious. Consider the description of statistical
difference in terms of area (Fact 3.1.9 and Figure 3-1). Let C, X+, and Y+ denote the
distributions on U induced by choosing a point uniformly in the common region, X-above
region, and Y-above region, respectively.

Think of X (resp., Y) as being generated by flipping a biased coin R which is 1 with
probability 1 - 6, and then outputting a sample of C if R = 1 and a sample of X+ (resp.,
Y+) otherwise. Then, by Facts 3.3.2 and 3.3.7,

H(X) H(X, R)

= H(R)+H(X|R)

= H2 (6)+(1-6)-H(C)+6.H(X+),
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and
H(Y) H(YR) (1 - 6) -H(C).

Observing that Pr [X+ = x] = 0 on at least one x E U, it follows that H(X+) log(JUI - 1),
and the fact follows. 0

Remark 3.3.10 The above bound is tight. Let e E U and consider X which is identically
e, and Y which with probability 1-6 equals e and otherwise is uniform over U\{e}. Clearly,
StatDiff (X, Y) = 6 and H(Y) - H(X) = 6 log(UI - 1) + H2 (6) -0.

Thus, we have the following lemma, analogous to Lemma 3.2.1 in the public-coin case.

Lemma 3.3.11 (implicit in [AH91, PT96]) Let 6(x) = StatDiff (S(x), (P, V)(x)). Then

v'(IxI)
r(IxI) - [H(S(x) 2i) - H(S(x)2 i-1)j K 2v'(x) - [t'(x) -6(x) + H2 (6(x))]

Proof: Consider a perfect simulator (i.e., of zero deviation), denoted S, for (P, V). Note
that the simulator-based-prover with respect to S is P itself. Thus, by Lemma 3.3.8,

2v' 2v'

r + Z(- 1)i+l -H((P, V) ) = r + Z(- 1 )i'+ -H(S)

= RelEnt (S, (P, V)) = 0

Now we have

2v' 2v' 2v'

r + Z(-1)i'+ -H(Si) < r + Z(-1)i+l -H((P, V);) + S H(Si) - H((P V)2)I
i=1 i=1 i=1

2v'

= 0+ IH(Sj) - H((P, V)j)I
i=1

< 2v'-(6-t'+H 2(6)),

where the last inequality is by Fact 3.3.9.

Finally, we observe that a lemma analogous to Lemma 3.3.12 holds for the relative
entropy measure.

Lemma 3.3.12 (implicit in [AH91, PT96]) Let p denote the probability that S(x) out-
puts an accepting transcript, and let q be the maximum, taken over all provers P*, that V
accepts in (P*,V )(x). Then,

RelEnt (S(x), (Ps, V)(x)) RelEnt 2 (p, q).
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Proof: Define a Boolean function on transcripts by f (-y) = 1 if Y is accepting and f (-Y) = 0
otherwise. By Fact 3.3.5, Items 2 and 3, we have

RelEnt (S, (Ps, V)) > RelEnt (f (S), f ((Ps, V))) > RelEnt 2 (p, q') > RelEnt 2 (p, q),

where q' < q equals the probability that (Ps, V) is accepting. U

3.3.3 Reducing to ENTROPY DIFFERENCE

In analogy with Section 3.2.3, we now use the simulator analysis of the previous section to
reduce every problem in HVSZK to ENTROPY DIFFERENCE.

Theorem 3.3.13 Every promise problem possessing a weak public-coin honest-verifier sta-
tistical zero-knowledge proof reduces to ED.

Proof: Let II be a promise problem with a weak honest-verifier statistical zero-knowledge
proof (P, V). We maintain the notation and conventions from the Section 3.3.2, in particular
fixing k = lxi and dropping it from the notation. We also hide the dependency of the various
parameters and distributions on x from the notation throughout this proof. Without loss
of generality, we assume that H has completeness and soundness errors c = s = 2-40. Let
S be a simulator for (P, V) achieving simulator deviation p 5 min {1/v't', e}, where e is a
small constant to be determined from the proof.

The reduction should map an input x to a pair of distributions (X, Y) such that X or Y
has larger entropy, depending on whether x is YES instance or NO instance, respectively. X is
defined as X = S2 034 0 0 -- S2,', and the Y will be closely related to the distribution Y =
S 10S3 0 - -S2v--1. Note that H(X) = E> H(S 22 ) and H(Y) = E H(S 2i- 1 ). Lemma 3.3.11
implies that, in the case of YES instances, H(X) 1::: H(Y) + r. Lemmas 3.3.8 and 3.3.12
imply that H(X) < H(Y) + r for NO instances on which the simulator outputs accepting
transcripts with too much probability. To compensate for the r in these expressions, we
define Y2 to be the uniform distribution on r - 7 bits. We still need to handle the case that
the simulator outputs accepting conversations with low probability. Therefore, we define a
distribution Y3 that we will use to artificially increase the entropy of Y in this case.

Y3 Run S 8 ln(t'v' + 2) times independently. If the verifier rejects in the majority of the
transcripts obtained, output t'v'+ 2 random bits. Otherwise, output the empty string.

We define Y = Y D Y2 0 Y3.

Claim 3.3.14 If x is a YES instance, then H(X) > H(Y) + 1.

Proof of claim: By Lemma 3.3.11,

H(Y) + r - H(X) 5 2v'. [t' . p + H2(A)] -

Standard Taylor estimates show that H2(0) = 6 - log(1/6) + 0(6) for small 6, so
we may assume that H 2 (P) 5 vl. Also noting that t' > v', we have

H(Y) + r - H(X) 5 2v' t'. ( 1 ) + F 4.
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To bound the entropy of Y3 , observe that, on YES instances x, S must output

rejecting conversations with probability at most 2-40+p < 1/4. By the Chernoff

bound (Theorem A.1), the probability p that the majority of the conversations

sampled from S are rejecting is

1
p < exp [-2 - (8 ln(t'v' + 2)) - (1/4)2] t'v' + 2

Thus,

H(Y3) p -(t'v'+2) +(1-p)-0+H 2 (p)

< 1+0+ 1 = 2.

Putting the above together, we have

H(Y) = H(Y 1) + H(Y2) + H(Y 3)

(H(X) + 4 - r) + (r-5) + 2

H(X) - 1. U

Claim 3.3.15 If x is a NO instance, then H(Y) H(X) + 1.

Proof of claim: It suffices to show that either H(Y) + H(Y 2 ) H(X) + 1
or H(Y 3 ) H(X) + 1. First, suppose the simulator outputs accepting conver-

sations with probability at most 1/4. By the Chernoff bound (Theorem A.1),
the probability p that the majority of the conversations independently sampled

from S are accepting is

1
p < exp [-2 - (81n(t'v' + 2)) - (1/4)2] t'v' + 2'

Thus,

H(Y3 ) (1 -p) (t'v' + 2) t'v' + 1 > H(X) + 1,

where the last inequality is because X outputs at most t'v' bits.

Now, suppose that the simulator outputs accepting conversations with prob-

ability at least 1/4. By Lemma 3.2.4, the relative entropy between S and

(Ps, V) is at least RelEnt 2 (1/4,2-40) > 8. By Lemma 3.3.8, this implies that
r - H(X) + H(Y) > 8, and therefore

H(Y 1) + H(Y 2) (r-7) + (8 + H(X) - r) = H(X) + 1.

El

These claims show that the map x - (X, Y) is a Karp reduction from H to ED. U

Note that the above proof only requires a simulator with deviation P = O(1/t'v') =

O(1/[(t +r) -v]), where t is a bound on the total communication, r is the number of random
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coins used by the verifier, and v is the number of messages sent from the verifier to the
prover.

Theorem 3.3.16 (Thm. 3.3.13, generalized) There is a constant C such that the fol-
lowing holds. Suppose a promise problem II possesses an interactive proof system (P, V)
with completeness and soundness errors 1/3, in which the number of messages exchanged
is m(n), the total communication is t(n), and the verifier uses r(n) random coins on
inputs of length n. Suppose further that (P, V) has a simulator that achieves deviation

p(n) <; 1/ [C -m(n) - (t(n) + r(n))}. Then, H reduces to ED.

As with Theorem 3.2.8, this result also applies to proof systems with completeness and
soundness errors other than 1/3, as the error can be reduced using parallel repetitions.
(Indeed, this is why we may we state Theorem 3.3.16 for error 1/3, when we assumed error
2-40 in the proof.) Note that the parallel repetitions increase t and r in addition to p.

3.4 ENTROPY DIFFERENCE reduces to STATISTICAL DIFFERENCE

In this section, we complete the circle of reductions, by showing that ENTROPY DIFFERENCE

reduces to STATISTICAL DIFFERENCE. It will then follow that both problems are complete
for HVSZK. The main technical tool in the reduction is 2-universal hash functions, so
we begin by describing those in Section 3.4.1. Then, in Section 3.4.2, we explain the
main ideas in the reduction, by treating the special case of "flat" distributions, which
are distributions which are uniform over some subset of their range. In Section 3.4.3, we
formalize the notion of a "nearly flat" distribution and present some standard techniques for
"flattening" distributions. Finally, we combine all these ideas to give the general reduction
in Section 3.4.4.

3.4.1 Universal hashing

Universal hash functions, introduced by Carter and Wegman [CW79], are families of func-
tions whose values are pairwise independent. They have a wide variety of applications in
computer science, and we will use them many times throughout this thesis.

Definition 3.4.1 (universal hash functions [CW79]) A family W of functions map-
ping a domain D to a range R is 2-universal if for every x, y E D and a, b E R,

Pr [h(x) = a & h(y) = b] = .

There exist very efficient families of 2-universal hash functions. For example, if we
identify the set {0, 1} with GF(2), the set of affine-linear functions W-m,n from GF(2)m to
GF(2)n is a 2-universal family of hash functions from {0, 1} m to {0, 1}". Every function
h in this family can be uniquely written in the form h(x) = Ax + b, where A is an n x m
matrix over GF(2) and b is a vector in GF(2)". Throughout this thesis, we write W"m,n for
this particular family of 2-universal hash functions (with this represenation).
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3.4.2 A special case - flat distributions

In order to motivate our reduction from ENTROPY DIFFERENCE to STATISTICAL DIFFER-

ENCE, we first limit ourselves to a simpler class of distributions. A distribution X is called

flat if all elements in the support of X have the same probability mass. That is, X is the

uniform distribution on Supp(X). The simplifying assumptions we make is that we are

given an instance (X, Y) of ED such that

1. X and Y are both flat.

2. jH(X) - H(Y)I > k, where k is "the security parameter".

Now we want to construct from (X, Y) a new pair of distributions (A, B) such that if

H(X) H(Y) + k, then A and B are statistically far apart, and if H(Y) H(X) + k, then
A and B are statistically close. Let Sx and Sy be the supports of X and Y, respectively.

By the definition of entropy, ISx=I 2 H(X) and Sy = 2 H(Y), so the condition H(X) > H(Y)

is equivalent to the condition ISxI > iSy and similarly for H(Y) > H(X).

The following special case of the "Leftover Hash Lemma" shows how to convert flat

distributions with high entropy into uniform ones.

Lemma 3.4.2 (Leftover Hash Lemma for flat distributions [ILL89]) Let W be a 2-

universal family of hash functions mapping a domain D to a range R. Let Z be a flat

distribution on D such that |RI 6 E - 2 H(Z) Then, the following distribution has statistical

difference at most E) from the uniform distribution on W x 1Z.

* Choose h +- 71 and x <- Z. Output (h, h(x)).

It is also easy to see that the same process gives a distribution that is far from uniform

if Z has small entropy: For any h, the number of values h(x) can take on is at most

jSupp(Z)j = 2 H(Z), so if this is much smaller than IR1, (h,h(x)) will be very far from

uniform on W x 7Z.

Lemma 3.4.3 Let W be any family of functions mapping a domain D to a range R. Let

Z be a flat distribution on D such that 211(Z) <& l-Z|. Then, the following distribution has

statistical difference at least 1 - e from the uniform distribution on W x 1Z.

* Choose h uniformly in W and x uniformly in S. Output (h, h(x)).

These two lemmas seem to be a step in the right direction, because they convert a

condition about entropy into a condition about statistical difference: distributions with

large entropy are transformed into ones having small statistical difference from uniform,
whereas distributions with small entropy are transformed into ones with large statistical

difference from uniform. So, one approach would be to take Z = Y and choose R such

that 1R- = 2 1H(X)I. Then, the distribution described in the above lemmas and the uniform

distribution on W x R will have large or small statistical difference according to whether

H(X) > H(Y) or H(Y) > H(X), as desired. Unfortunately, constructing a set '7 for which

|RI = 2 H(X) requires that we know the entropy of X. If computing (or even approximating)
the entropy of a samplable distribution could be done in polynomial time, then ENTROPY
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DIFFERENCE would be in BPP and there would be nothing to prove! To overcome this
difficulty, we adopt a technique of Okamoto [Oka96} (which he calls "complementary usage
of messages").

Recall that we are given a circuit (which we also denote X) which samples from X, and
let m denote the length of the input to this circuit. So, for any x, we let Qx(x) C {0, 1} m

denote the set of inputs to the circuit which yield output x. Then, Pr [X = x] = 2-m

IQx(x)1. Since X is flat, we have

|Gx(x)| = 2m -Pr [X = ]= 2m .2 -H(X) if X E Sx.
0 otherwise.

The key observation is that for any x E Sx, ISy x Qx(x)I = 2 H(Y)+m-H(X). Whether
H(X) > H(Y) or H(Y) > H(X) now translates to whether ISy x Qx(x)I is > 2' or < 2m,
where m is a value that we can compute just by looking at the circuit for X! So, instead
of hashing Y down to a set of size 2 H(X) bits, we will hash the uniform distribution on
Sy x Qx(x) down to {0, 1}m (for some x E Sx). However, we are not explicitly given
a sampling algorithm for Qx(x). This can be "simulated" by having each of our new
distributions choose r E {0, 1}m and reveal x = X(r). Then, conditioned on x, r is uniformly
distributed in Qx(x), as desired. That is, letting R = 7tm+n,,m, where n is the number of
output gates of Y, we define A and B as follows.

A: Choose r +- {0, 1}Im and let x = X(r). Choose h +- 71, y +- Y. Output (X, h, h(r, y)).

B: Choose x -X, h +- , z +- {0, 1} m . Output (x, h,z).

It follows from our discussion above and Lemmas 3.4.2 and 3.4.3 that this reduction is
correct, under our assumptions about X and Y. That is, for flat X and Y, we have:

1. If H(X) > H(Y) + k, then StatDiff (A, B) > 1 - 2-Q(k).

2. If H(Y) > H(X) + k, then StatDiff (A, B) < 2 ~Q(k).

To deal with general instances of ED, we need to remove both of our simplifying as-
sumptions. The assumption that |H(X) - H(Y)I > k is easy to achieve. If let X' (resp., Y')
consist of k independent copies of X (resp., Y), then H(X') = k-H(X) and H(Y') = k- H(Y).
So, the difference in entropies is multiplied by k. The same construction also helps deal
with the fact that X and Y are not flat. As we shall see in the next section, taking many
independent copies of each distribution yields distributions that are "nearly flat" (in a sense
to be made precise later). Our final construction is therefore the same as the construction
described above, merely augmented by replacing X and Y with many independent copies
of each at the start.

3.4.3 Flattening distributions

As a preliminary step towards treating general instances of ENTROPY DIFFERENCE, we
formulate the process of "flattening" distributions (i.e., making them "nearly flat" by taking
many independent copies).
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Definition 3.4.4 (heavy, light and typical elements) Let X be a distribution on a uni-

verse U, x an element of U, and A a positive real number. We say that x is A-heavy (resp.,

A-light) if Pr [X = x] > 2 A . 2 -H(X) (resp., Pr [X = x] < 2-A -2 -H(X)). Otherwise, we say

that x is A-typical.

A natural relaxed definition of flatness follows. The definition links the amount of

slackness allowed in "typical" elements with the probability mass assigned to non-typical

elements.

Definition 3.4.5 (flat distributions) A distribution X is called A-flat if for every t > 0

the probability that an element chosen from X is t - A-typical is at least 1 - 2

By straightforward application of Hoeffding Inequality, we have

Lemma 3.4.6 (flattening lemma) Let X be a distribution, k a positive integer, and okX

denote the distribution composed of k independent copies of X. Suppose that for all x in

the support of X it holds that Pr [X = x] > 2-'. Then OkX is VrkX - m-flat.

Proof: For every x in the support of X, we define the weight of x to be wt(x) =

- log Pr [X = x]. Then wt(.) maps the support of X to [0, m]. Let X 1 , ... ,Xk be identical

and independent copies of X. The lemma asserts that for every t

k~

Pr [ w(Xi)-k-H(X) >t-mV < 2_t2+1

Observe that E(w(Xi)) = Z Pr [X = x] w(x) = H(X), for every i. Thus, the lemma follows

by a straightforward application of Hoeffding Inequality (Theorem A.2): Specifically, define

random variables i = w(Xi), let p = E( i) and A = tm//ik, and use

1 k2A2
Pr - -p1 > A < 2 -exp - 2 . k

= 2 exp (-2t2 )

The lemma follows.

The key point is that the entropy of OkX grows linearly with k, whereas its deviation

from flatness grows significantly more slowy (i.e., linear in VW) as a function of k. Note

that if X is a distribution defined by a circuit with f input gates, then Pr [X = x] ;> 2-t for

all x in the support of X, so the conclusion of Lemma 3.4.6 holds with m = e. The other

main tool we will use is the following more general form of the Leftover Hash Lemma.:

Lemma 3.4.7 (Leftover Hash Lemma [ILL89]) Let W be a 2-universal family of hash

functions mapping a domain D to a range 7Z. Suppose Z is a distribution on D such that

with probability at least 1-6 over z selected from Z, Pr [Z = z] < E/|7|. Then the following

distribution has statistical difference at most 0(6 + e/3) from the uniform distribution on

W x R.
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e Choose h uniformly from W and z according to Z. Output (h, h(z)).

In particular, notice that if Z is a A-flat distribution, then for any parameters s, t > 0,
Z satisfies the hypothesis of the Leftover Hash Lemma with 17Z = 2 H(X)-tA-s 1 _ =-t2+1

and e = 2'.

3.4.4 The general reduction

Now, we combine the ideas of Section 3.4.2 with the tools in Section 3.4.3 to prove our
desired result.

Theorem 3.4.8 ENTROPY DIFFERENCE reduces to STATISTICAL DIFFERENCE.

Proof: Given an instance (X, Y) of ENTROPY DIFFERENCE, we describe how to efficiently
produce an instance (A, B) of STATISTICAL DIFFERENCE such that the latter is a YES or
NO instance according to whether the former is. By artificially adding gates if necessary,
we may assume that both X and Y have m input gates and n output gates. Let k be a
large constant (to be determined from the proof). Set q = 9km 2 and define X' = qX,
y' 0 qy. X' and Y' have input (resp., output) length m' = qm (resp., n' = qn). Let
W = 1m'+n',m'. The distributions A and B are defined just as in Section 3.4.2, except that
we use X' and Y' instead of X and Y:

A: Choose r +- {0, 1}m' and let x = X'(r). Choose h <- W and y +- Y'. Output

(x, h, h(r, y)).

B: Choose x <- X', h - , and z +- {,}m'. Output (x, h, z).

Now we analyze this construction. We denote the components of the distributions
by A = (A 1 , A2 , A3 ) and B = (B1, B 2 , B 3 ). By Lemma 3.4.6, X' and Y' are A-flat for
A = V/9km2 - m = 3 . m 2 . Noting that q > 2vA + k, we have:

Claim 3.4.9

(X, Y) E EDy -> H(X') > H(Y') + 2vfA + k.

(X, Y) E EDN ~+ H(Y') > H(X') + 2v/kA + k.

Now we show that A and B are statistically far or close according whether X or Y has
larger entropy.

Claim 3.4.10 If (X, Y) E EDy, then StatDiff (A, B) > 1 - O( 2 -k).

Proof of claim: (A 1 , A 2 ) and (B 1 , B 2 ) are both distributed according to
X' 0 X. Thus, to show that A and B are statistically far, it suffices to show
that conditioned on most values (x, h) +- X' 9 71, the marginal distribution
on A 3 and B 3 are statistically far. Since X' is A flat, x +- X' is \,FkA-typical
with probability at least 1 - 2 -k+1. Fix any such v/kA-typical x and fix any
h E W, and we compare the distributions Ax,h = A3A 1=x,A2=h and BX,h =

64



3.4. ED REDUCES TO SD

B31B,=xB 2 =h. Bx,h is simply the uniform distribution on {0, 1}m'. Ax is the

distribution obtained by selecting (r, y) +- Qx, (x) 0 Y' and outputting h(r, y).

Since Y' is A-flat, y +- Y' is v'TA-typical with probability at least 1 - 2

Let

Tx,h = {h(r, y) : r E Qx,(x) and y is vl-A-typical}.

So, Ax,h lies in Tx,h with high probability. We will argue that ITx,hl is much

smaller than 2m'. ITx,hI is certainly at most I x,(x)I times the number of VkA-

typical y's. IQx,(x)I 5 2 m'-H(X')+,ikA, because x is v'-A-typical. The number

of vXk-typical y's is at most 2 H(Y')+Vi'_A, since they each have mass at least

2 -H(Y')-<. Thus,

X,h m'-H(X')+vA . H(Y')+v m'--k

where the second inequality is by Claim 3.4.9. So,

StatDiff (Ax,h, Bx,h) Pr [Ax,h E Tx,h] - Pr [Bx,h E Txh]

/ 1 ) 2m'-k

2 1-k-1 2m'

= 1-( 2 k)

This holds for any h and any x/7-A-typical x, so to lower-bound the statistical

difference between A and B, we should subtract the probability that x is not

typical, which is also 0(2 k).

Claim 3.4.11 If (X, Y) E EDN, then StatDiff (A, B) 2-

Proof of claim: As in the proof for YES instances, fix any vkA-typical

x. We consider the distributions A, = (A2, A3)IA 1=x and Bx = (B2, B3)I1B=x-
Bx is simply the uniform distribution on W x {0, 1}m'. Ax is the distribution

obtained by selecting (r, y) +- Qx, (x) 0 Y', h +- W and outputting (h, h(r, y)).

Since Qx, (x) is a flat distribution and Y' is A-flat, Qx, (x) 0 Y' is also A-flat.

The entropy of this distribution can also be bounded by Claim 3.4.9 and the

x/i-A-typicality of x as follows.

H (Qx'(x) O Y') = log |Gx'(x)I+ H(Y')

S (m' -H(X') /-d ) + (H(X') + 2vA + k)

> m' +k + vrkA.

Thus, taking 7? = {0, 1}m', . = 2 -k, and 6 = 2 -k+1 in the Leftover Hash Lemma

(Lemma 3.4.7), it follows that Ax has statistical difference at most 2 -2(k) from

Bx for any x/X--typical x. Since x is x/kA-typical with probability at least

1 - 0(2 k), A and B have statistical difference at most 2 -9(k). E

The theorem follows from Claims 3.4.10 and 3.4.11, taking k to be a sufficiently large

constant. 0
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3.5 The Completeness Theorem

Putting everything together, we obtain the main theorem of this chapter.

Theorem 3.5.1 (Completeness Theorem) STATISTICAL DIFFERENCE and ENTROPY
DIFFERENCE are both complete for HVSZK.

Proof: SD is in HVSZK by Theorem 3.1.21. Since ED reduces to SD (Theorem 3.4.8)
and HVSZK is closed under Karp reductions (Proposition 2.4.1), it follows that ED E
HVSZK. Every problem in HVSZK reduces to ED by Theorem 3.3.13. Composing these
reductions with the reduction from ED to SD (Theorem 3.4.8), it follows that every problem
in HVSZK reduces to SD. U

This theorem has a number of immediate consquences. The first is that it gives us a
very clear picture of expressiveness of statistical zero-knowledge proofs. Specifically, Theo-
rem 3.5.1 has the following informal interpretation:

The assertions that can be proven in statistical zero knowledge are exactly
those that can be cast as comparing two samplable distributions, with respect to
either their entropies or their statistical difference.

The term "statistical zero knowledge" coined by Goldwasser, Micali, and Rackoff [GMR89]
seems almost prophetic of this characterization of statistical zero knowledge as the class of
(approximate) statistical properties.

A second consequence of this theorem is that questions about HVSZK can now be
translated to questions about these two specific complete problems, and conversely. For
example, if we wish to show that every problem in HVSZK has a proof system with
a certain properties (such as being constant round, public coin, zero-knowledge against
cheating verifiers, or perfect zero-knowledge), we need only exhibit such a proof system for
one of the complete problems. Or a question such as whether HVSZK is closed under
complementation now translates to asking if one of the complete problems reduces to its
complement (which is easily seen for ENTROPY DIFFERENCE). Indeed, in the remainder of
this thesis, these complete problems will be used to prove many new results about HVSZK
and also obtain much simpler proofs of previously known results.

This correspondence is also fruitful in the reverse direction; that is, from examining
HVSZK, we obtain new results about efficiently samplable distributions, and how their en-
tropies and statistical differences can be manipulated. Already, we have seen a few examples
of this. The XOR Lemma (Lemma 3.1.16), the Polarization Lemma (Lemma 3.1.12), and
the reduction from ENTROPY DIFFERENCE to STATISTICAL DIFFERENCE (Theorem 3.4.8)
are all results solely about manipulating efficiently samplable distributions, which are of
interest independent of their significance for zero-knowledge proofs. Yet, we obtained each
of these transformations by extracting ideas from works on statistical zero knowledge. We
will see additional examples of this in the next chapter.
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Chapter 4

Applications of the Complete
Problems

In this chapter, we give a number of applications of the Completeness Theorem. We briefly

describe these results by section:

Section 4.1 - Efficient HVSZK proof systems. Using the completeness of STATIs-

TICAL DIFFERENCE, we prove that every problem in HVSZK has a very communication-

efficient honest-verifier statistical zero-knowledge proof - namely, a two-message proof

system with one bit of prover-to-verifier communication (to achieve soundness error 1/2).

Section 4.2 - The complexity of SZK. We deduce some of the important results on

the complexity of HVSZK as immediate corollaries of the Completeness Theorem. Specif-

ically, Okamoto's result that HVSZK is closed under complement [Oka96] and the upper

bounds of Fortnow [For89] and Aiello and Histad [AH91] on the complexity of HVSZK

all follow immdeiately.

Section 4.3 - Expected polynomial-time simulators. We show how our proof of the

Completeness Theorem implies that our definition of HVSZK (using strict polynomial-time

simulators and a security parameter) is actually equivalent to the weaker GMR definition,
and in fact equivalent to weak-HVSZK. That is, we show that every problem possessing

a weak-HVSZK proof system also possesses an HVSZK proof system in our sense.

Section 4.4 - Reversing statistical difference. From the Completeness Theorem and

the closure of HVSZK under complement, we deduce a novel result about manipulating

the statistical difference between efficiently samplable distributions. Specifically, we give

a polynomial-time computable transformation which maps pairs of distributions that are

statistically close (resp., far apart) to pairs that are statistically far apart (resp., close). We
also extract a more explicit description of such a "Reversal Mapping" (that does not pass
through statistical zero-knowledge proofs).
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Section 4.5 - Closure properties. We prove strong Boolean closure properties of
HVSZK using the complete problem STATISTICAL DIFFERENCE together with our results
about manipulating efficiently sampleable distributions (the XOR Lemma, Direct Product
Lemma, Polarization Lemma, and Reversal Mapping). These closure properties can be
interpreted as giving honest-verifier statistical zero-knowledge proofs for complex assertions
built out simpler assertions already known to be in HVSZK (e.g., proving that at least half
of (xi,..., xm) are YES instances of some problem in II E HVSZK). Alternatively, these
closure properties can be viewed as asserting the closure of HVSZK under nonadaptive
Cook reductions whose postcomputation is done by a log-depth circuit.

Section 4.6 - Knowledge complexity. We consider the notions of knowledge com-
plexity defined in [GMR89, GP91], which aim to measure the amount of knowledge that is
leaked in an interactive proof. We show how (statistical) knowledge complexity in the "hint
sense" [GP91] can be understood in terms of statistical zero knowledge, and thereby use
our results about HVSZK to obtain new results about this form of knowledge complexity.
In particular, we obtain the first collapse in any of the knowledge complexity hierarchies
defined by Goldreich and Petrank [GP91]. In addition, we obtain some tighter bounds on
the perfect knowledge complexity of HVSZK.

Section 4.7 - Perfect and computational zero knowledge. We apply the simula-
tor analyses of Sections 3.2 and 3.3 to perfect and computational zero-knowledge proofs.
We obtain reductions to restricted versions of STATISTICAL DIFFERENCE and ENTROPY
DIFFERENCE for HVPZK, and nontrivial results for public-coin HVCZK, though they do
not seem to yield complete problems.

Section 4.8 - Zero-knowledge proofs for hard problems imply one-way func-
tions. Using the completeness of STATISTICAL DIFFERENCE, we obtain a simpler proof of
a theorem of Ostrovsky [Ost9l], which asserts that if HVSZK contains a hard-on-average
language, then one-way functions exist. We also consider the generalization of Ostrovsky's
result to computational zero knowledge, due to Ostrovsky and Wigderson [OW93]. Using
the simulator analysis from Section 4.7, we also obtain a simpler proof of the Ostrovsky-
Wigderson theorem in the case of public-coin computational zero-knowledge proofs.

4.1 Efficient HVSZK proof systems

One immediate consequence of the completeness theorem is that every problem in HVSZK
inherits a proof system with the nice properties possessed by the one for STATISTICAL
DIFFERENCE (Protocol 3.1.19).

Corollary 4.1.1 Every problem in HVSZK has an honest-verifier statistical zero-knowledge
proof system with the following properties:

1. The proof system exchanges only 2 messages.

2. The prover-to-verifier communication is only 1 bit.
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3. The completeness error and simulator deviation are both 2 -k.

4. The soundness error is 1/2 + 2 -k

5. The prover is deterministic.

Okamoto [Oka96] has previously shown that every problem in HVSZK has a 2-message

HVSZK proof, but the other properties listed in Corollary 4.1.1 are new.

The soundness error above can actually be reduced to exactly 1/2 using a trick due to

Oded Goldreich from the context of "probabilistically checkable proofs" [Gol99]. Specifi-

cally, set p = 1/(1 + 2 -k+1) and modify the proof system as follows. At the start the verifier

automatically rejects with probability 1 - p, and otherwise proceeds as in the original proof

system. The soundness error becomes p - (1/2 + 2 -k) = 1/2, the completeness error and

simulator deviation become at most 1 - p + 2 -k = (2-k), and the other properties listed

remain the same.

It is easy to see that soundness error -3 1/2 is the best achievable in nontrivial proof

systems where the prover sends one bit and the completeness error is small.

Proposition 4.1.2 Suppose promise problem H has an interactive proof in which the prover-

to-verifier communication is one bit and the completeness error c and soundness error s are

constants satisfying 1 - c > 2s. Then H E BPP

Proof: The following randomized algorithm decides H: Simulate the verifier algorithm

for both possible prover responses. If either response makes the verifier accept, then accept.

On YES instances, this algorithm will accept with probability at least 1 - c, since com-

pleteness tells us that there is a good response with at least that probability. On NO

instances, this algorithm will accept with probability at most 2s, for otherwise a prover

strategy that chooses its response uniformly at random will make the verifier accept with

probability greater than s. Since 1 - c > 2s and both quantities are constants, the error

probability of this algorithm can be reduced via the usual method.

4.2 The complexity of SZK

From the complete problems, we obtain as immediate corollaries some of the most important

results known about the complexity of HVSZK. First note that the complete problem

ENTROPY DIFFERENCE has a trivial reduction to its complement - the map (X, Y) '-+

(Y, X). From this (and the closure of HVSZK under reductions), we obtain a trivial proof

of Okamoto's result that HVSZK is closed under complement.

Corollary 4.2.1 ([0ka96]) HVSZK is closed under complement.

From the efficient proof systems given by Corollary 4.1.1 and closure under complement,
the main results of Fortnow [For89] and Aiello and Histad [AH91] immediately follow.

Corollary 4.2.2 ([For89, AH91]) HVSZK c AM n co-AM.
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This is a strong upper bound on the complexity of HVSZK, as demonstrated by the
following result of Boppana, Histad, and Zachos.

Proposition 4.2.3 ([BHZ87] ) If NP C co-AM, then the Polynomial-time Hierarchy
(PH) collapses.

From these two results, it immediately follows that neither NP nor co-NP are contained
in HVSZK unless the PH collapses. Moreover, HVSZK cannot contain any problem that
is NP-hard under any type of reduction that AM n co-AM is closed under. As noted
in [ESY84, GG98a], some care must be taken here, since we are dealing with classes of
promise problems. As a class of promise problems, AM n co-AM is actually unlikely to be
closed under the most general form of Cook reductions. It is, however, closed under Cook
reductions which are either nonadaptive (i.e., the oracle queries are made all at once, prior
to receiving any answers) or smart (i.e., the queries do not violate the promise) [ESY84,
GG98a]. 1

The completeness of STATISTICAL DIFFERENCE also illustrates a closer connection be-
tween HVSZK and BPP than might be evident from their definitions.

Proposition 4.2.4 Let 1-SD be the promise problem obtained by restricting the circuits in
the definition of SD to have only one bit of output. Then 1-SD is complete for BPP.

Proof: To see that 1-SD is in BPP, first observe that for any distributions X and Y on
{0, 1},

StatDiff (X, Y) = JPr [X = 1] - Pr [Y = 1]I.

Thus, an estimate on StatDiff (X, Y) that is correct within an additive factor of, say, 1/6,
can be obtained by sampling X and Y a constant number of times and counting the number
of ones that occur. This is sufficient to decide 1-SD.

Now we show that every promise problem H E BPP reduces to 1-SD. Let A be the
probabilistic polynomial time machine that decides 11 with two-sided error at most 1/3.
Given an input x, it is possible to compute in polynomial time a circuit Xx describing
the computation of A on input x (see, e.g., the proof of Cook's theorem in [Pap94]). The
inputs to Xx are the random bits used by A's computation on x and the output is 1

(resp., 0) if A accepts (resp., rejects). Let Y be a circuit which always outputs 0. Then
StatDiff (Xx, Y) = Pr [A(x) accepts], so x -+ (Xx, Y) is a reduction from H to 1-SD. E

Proposition 4.2.4 remains true even if we allow the circuits to have output length log-
arithmic in their size. Analogously restricting SD 1',1 2 to have one output bit yields a
complete problem for co-RP, and restricting the input length of SD to be one bit or loga-
rithmically many bits yields a complete problem for P (under logarithmic-space reductions).

'It should be noted that these problems disappear if one considers only languages. When restricted to
languages, AM n co-AM is closed under general Cook reductions, and no language in AM n co-AM can
be NP-hard with respect to even more general forms of reducibility [Sch88].
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4.3 Expected polynomial-time simulators

Recall that our definition of statistical zero knowledge differs from the definition of Gold-

wasser, Micali, and Rackoff [GMR89] in several ways. The GMR definition is a weaker

requirement in that it allows expected polynomial time simulators whose deviation is a

function of the input length rather than a separate security parameter. Definition 2.4.2

introduces weak-HVSZK as an even weaker notion, in which, for every polynomial p(.),
there can be a different simulator to achieve simulator deviation 1/p(Ix ). From the defini-

tions, HVSZK C weak-HVSZK, and the class satisfying the GMR definition (for honest

verifiers) lies between these two classes. Our proof of the completeness theorem actually

demonstrates that all three of these classes are equal.

Corollary 4.3.1 weak-HVSZK = HVSZK.

Proof: Theorem 3.3.13 shows that every problem in weak-HVSZK reduces to ED. Since

ED E HVSZK and HVSZK is closed under reductions, weak-HVSZK C HVSZK. N

From Corollary 4.1.1, this implies that every problem in weak-HVSZK in fact has

an honest-verifier statistical zero-knowledge proof with exponentially small simulator devi-

ation as a function of a security parameter. Thus, the relatively weak inverse-polynomial

simulation condition of weak-HVSZK can always be bootstrapped into this very strong

one.

4.4 Reversing statistical difference

The completeness of STATISTICAL DIFFERENCE together with the closure of HVSZK un-
der complementation imply that SD reduces to SD. This is equivalent to the following

surprising result about manipulating statistical difference.

Corollary 4.4.1 (Reversal Mapping) There is a polynomial-time computable function

that maps pairs of circuits (X, Y) to pairs of circuits (X', Y') such that

StatDiff (X, Y) 2/3 => StatDiff (X', Y') 1/3

StatDiff (X, Y) 1/3 -> StatDiff (X', Y') 2/3

Although the statement of this result does not involve zero-knowledge proofs, the proof

of it given above and (and its original discovery in [SV97]) both involve transformations

and analysis of statistical zero-knowledge proofs. In this section, we give a more direct

construction of such a mapping, that does not use zero-knowledge proofs (though it is

based on ideas extracted from works on statistical zero knowledge [Oka96, SV97, GV99]).

Recall that the other complete problem for HVSZK, ENTROPY DIFFERENCE, has a
trivial reduction to its complement, namely the map (X, Y) '-+ (Y, X). Also recall that,
in Section 3.4, we gave a direct reduction from ED to SD. Thus, to reduce SD to its

complement, it suffices to give a direct reduction from SD to ED. That is what we proceed

to do.
Let (Xo, X 1 ) be an instance of SD and consider the following joint distribution Y =

(X, B):
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Y = (X, B): Choose b +- {0, 1}. Sample x +- Xb. Output (X, b).

Intuitively, if X0 and X1 are statistically very far apart, then b is essentially determined by
X, and therefore H(Y) ~ H(X). On the other hand, if X0 and X, are statistically very close,
then b is essentially independent of x and therefore H(Y) ~ H(X) + 1. Thus, the statistical
closeness of X 0 and X 1 is converted into entropy; this same construction was used by
Goldreich [Gol90] in the computational setting to convert computational indistinguishability
into "false entropy."

We now make this intuition quantitative by estimating H(Y) as a function of H(X) and
the statistical difference between X 0 and X 1 .

Claim 4.4.2 Let 6 = StatDiff (Xo, X1). Then 1 - 6 < H(Y) - H(X) 5 H2 ((1 + 6)/2).

Proof of claim: By Fact 3.3.7, H(Y) = H(X) + H(BIX), so our task is to
bound H(B|X) above and below. For the lower bound, consider the description
of statistical difference in terms of area (Fact 3.1.9 and Figure 3-1). Without
loss of generality, assume that both X 0 and X, have n output gates and thereby
define distributions on universe U = {0, 1}". Let C, Xf, and X+- denote the
distributions on U induced by choosing a point uniformly in the common region,
Xo-above region, and Xi-above region, respectively. We can think of Y as being
generated as in the proof of Lemma 3.1.8: A biased coin D is flipped such that
D is 0 with probability 1 - 6. If D = 0, then X is chosen according to C and B
is selected uniformly in {0, 1}. If D = 1, then B is selected uniformly in {0, 1}
and X is chosen according to X+. Now, conditioned on D = 0, B is uniform in
{0, 1} and independent of X, so

H(BIX) H(BIX, D) 1 - 6,

which gives the lower bound in the claim.

For the upper bound, note that the distribution of (X, B) is the same as the
distribution of (x, b) in Protocol 3.1.4. Let P(x) denote the specified prover's
guess for b when given x in the protocol (i.e., P(x) = 0 iff Pr [Xo = x] >
Pr [Xi = x]). In Lemma 3.1.8, we showed that P(X) = B with probability
(1 + 6)/2. Let E be the indicator for the event that P(X) = B. Then,

H(BIX) 5 H(E) + H(BIX, E) = H2 (16) +0,
2

since B is determined by X and E. l

Plugging in 6 = 1/3, 2/3 into this claim, we see:

(Xo, X 1 ) E SDy - H(Y) - H(X) H2 (5/6) < .651
(Xo, X1) E SDN -> H(Y) - H(X) 1 - 1/3 > .666
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If we let X' = ®2 00X 0 U13 2 , where U 132 is the uniform distribution on 132 bits, and

Y' = 0 200 Y, then

(Xo, X 1 ) E SDy - H(Y') - H(X') <.651 -200 - 132 < -1

(Xo, X 1 ) E SDN -> H(Y') - H(X') > .666 -200 - 132> 1.

Thus, (Xo, X 1 ) -+ (X', Y') is a reduction from SD to ED, as desired.

Remark 4.4.3 Clearly, the above technique can be used to reduce SD',O to ED for any

constants a and 3 such that H2 ((1 + a)/2) < 1 - 3. After reducing to ED, one can

apply the reduction from ED to SD (Theorem 3.4.8) and the Polarization Lemma for SD

(Lemma 3.1.12), to obtain a Polarization Lemma for SDc,,. Unfortunately, it turns out that

H 2 ((1 + a)/2) ;> 1 - a 2 for all a E [0, 1], so we must have a 2 > 3 for this to work, in which

case Lemma 3.1.12 applies directly. Hence, this does not answer Open Problem 3.1.18.

In addition, both the upper and lower bounds in Claim 4.4.2 are tight. To match

the lower bound, consider a universe of three points U = {0, 1, 2}, define X0 to be 0 with

probability 6 and 2 otherwise, and define X, to be 1 with probability 6 and 2 otherwise. Then

StatDiff (Xo, X1) = 6 and H(BIX) = 1 - 6. To match the upper bound, consider a universe

of two points U = {0, 1}, define X0 to be 0 with probability (1 + 6)12 and 1 otherwise, and

X 1 to be 1 with probability (1 + 6)/2 and 0 otherwise. Then StatDiff (Xo, XI) = 6 and
H(BIX) = H2 ((1 + 6)/2).

4.5 Closure properties

We have already shown that HVSZK has two closure properties. Closure under Karp

reductions (Proposition 2.4.1), which is a computational closure property, follows immedi-

ately from our security-parameter based definition. Closure under complementation (Corol-

lary 4.2.1), which is a Boolean closure property, follows from the symmetry of the complete

problem ENTROPY DIFFERENCE. In this section, we will prove that HVSZK satisfies a

stronger closure property that is both computational and Boolean in nature.

In order to motivate the closure property, we first describe the consequence it will have

for statistical zero-knowledge proofs. Suppose H is a problem in HVSZK and a prover

wishes to convince a verifier not just that a string is a YES instance of I, but also that some

complex expressions built out of H are true. For example, they might be given m instances

X1, ... , XM of H, and the prover wishes to convince the verifier that exactly half of these are

YES instances. Or more generally, they are given m instances of H together with an m-ary

Boolean formula 0(v,... , vM), and the prover wants to convince the verifier that # is true

when v 1, . . . , Vm are set to 0 or 1 according to whether xi is a YES or NO instance of H. In

this section, we demonstrate that such Boolean expressions over H can be proven in (honest-

verifier) statistical zero knowledge as long as H E HVSZK. Moreover, the interaction is

polynomially-bounded not just in Ixi I,... , xm I and the security parameter, but also in m

and 1#1. To make this precise, we express the assertions being proven as a promise problem.

Definition 4.5.1 Fix any promise problem H. We call an m-tuple of bits b = (b1,..., bm) E

{0, 1} m valid with respect to an m-tuple of strings x = (x 1 , ... , xm) when, for all i, bi = 1

if xi G Hy and bi = 0 if xi E UN (bi is unrestricted when xi violates the promise).
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We define 4(H) to be a promise problem whose instances are tuples (#, 7), where $ is
a m-ary propositional Boolean formula and T = (x 1 ,... ,Xm) is an m-tuple of strings. The
YES instances of <1(H) are the pairs (#, Y) such that for all valid settings of b with respect to
T, 0(b) = 1. The NO instances are the pairs (#, Y) such that for all valid settings of b with
respect to Y, q(b) = 0. Mon(U) is defined analogously, but only monotone # (i.e., without
negations) are considered.

Note that we allow the xi's to violate the promise for H as long as the truth of q is still
well-defined.

De Santis et. al. [DDPY94] show that Mon(L) E PZK for any language L which is
"random self-reducible" or whose complement is self-reducible. They also show Mon(L) E
HVSZK for any language whose complement has a "noninteractive" statistical zero-knowledge
proof. In addition, they give statistical zero-knowledge proofs for some simple statements
involving a random-self-reducible language and its complement and for threshold formulae
over random-self-reducible languages. Damgird and Cramer [DC96] extend some of these
results by showing that for any language L which has a 3-message honest-verifier public-coin
statistical (resp., perfect) zero-knowledge proof, Mon(L) E SZK (resp., Mon(L) E PZK)
and Mon(L) E HVSZK. The results of [DC96] actually apply to all monotone functions
which have an "efficient secret-sharing scheme with completion," not just monotone formu-
lae. In this section, we prove a result holds for all of HVSZK and for all boolean formulae,
not just monotone ones:

Theorem 4.5.2 For any promise problem H E HVSZK, (D(H) E HVSZK.

Although some of the results of [DDPY94, DC96] yield proof systems that are zero
knowledge even for cheating verifiers, this theorem only yields honest-verifier proof systems.
However, this weakness will be removed in Chapter 6, when we prove that HVSZK = SZK.

First, let us see how strong a result follows directly from what we have already shown.
Note that it is trivial to give a proof system when we restrict to formulae which are con-
junctions, i.e., <(vi, ... , vm) = ATi vi. The prover and verifier execute the HVSZK proof
system for H (with error reduced to < 1/m) on each of the inputs xi and the verifier accepts
iff it would accept in all m executions. This can be simulated by running the simulator for
H's proof system m times, on each of the inputs. If all the xi's are YES instances (i.e., the
formula is true when all the vi's are set appropriately), then this simulation will be good,
with deviation increased just by a factor of m.

Combining this observation with the fact that HVSZK is closed under complementa-
tion, it follows that we can also handle disjunctions. By an inductive argument, one can
then construct proof systems for arbitrary formulae. This, however, does not yield our
desired result, because the proof system may not be polynomially bounded in the size of
the formula. Suppose, for example, that transforming the proof system for a problem H
into one for its complement or one for disjunctions over H squares the running time of the
proof system. Then one can only afford to apply the inductive step a constant number
of times while keeping the time polynomial. Therefore, one obtains a closure result for
constant-depth formulae (with unbounded fan-in), which are provably weaker than general
formulae and do not contain simple functions like parity and majority [FSS84].
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To obtain a more efficient construction, we first observe that it suffices to focus on the

complete problem STATISTICAL DIFFERENCE. We then note that the techniques developed

by De Santis et. al. to show that Mon(L) c HVSZK for any random self-reducible language

L directly generalize to SD. Specifically, our Direct Product Lemma (Lemma 3.1.15) and

XOR Lemma (Lemma 3.1.16) are generalizations of the methods they use to represent AND

and OR over random self-reducible languages. Combining these with our Reversal Mapping

(Corollary 4.4.1) and Polarization Lemma (Lemma 3.1.12), we are able to efficiently handle

any Boolean formula over SD. The resulting construction can be viewed as purely an effi-

cient procedure for manipulating statistical difference, which may be of interest independent

of statistical zero knowledge:

Lemma 4.5.3 D(SD) reduces to SD.

Proof: For intuition, consider two instances of statistical difference (Xo, X 1 ) and (Y, Y1 ),
both of which have statistical difference very close to 1 or very close to 0 (which can be

achieved by the Polarization Lemma). Then (Xo 0Yo, X 1 0Yi) will have statistical difference

very close to 1 if either of the original statistical differences is very close to 1 and will have

statistical difference very close to 0 otherwise. Thus, this operation represents OR. Similarly,
the XOR operation in Proposition 3.1.17 represents AND. To obtain Lemma 4.5.3, we will

recursively apply these constructions, taking care to keep the running time polynomial.

Let w = (#, (XJ , XI),..., (X0', X')) be an instance of 4(SD). By applying DeMor-
gan's law, we may assume that the only negations in # are applied directly to the variables.

By the Polarization Lemma (Lemma 3.1.12) and the Reversal Mapping, we can constuct in

polynomial time pairs of circuits (Yo', Y1),. . . , (Y om, yjm) and (Z0, Z'), ... , (Zo, Zm) such

that

1 1
(X , Xz) E SDy -> StatDiff (Yo', Y) 1 - 3101 and StatDiff (ZoZi) 3101

1 1
(X , X{) E SDN = StatDiff (Y<, 7) and StatDiff (Z ,Z) 1 -- .

Consider the randomized recursive procedure Sample.(V, b), given in Algorithm 4.5.4,
which takes a subformula V) of # and a bit b as input.

Executing Sample,(#, b) for b E {0, 1} takes time polynomial in jwI, because the number

of recursive calls is equal to the number of subformulas of q. For a subformula r of 0, let

A(r) = StatDiff (Sample(r, 0), Sample(r, 1)). Then we can prove the following about A:

Claim 4.5.5 For every subformula4 = '(vi 1 ... , vii) of q,

(0, (X , ) , (X , X,)) E d(SD)y - A(4) 1 -

0- 3101
(V5, (Xoz , X"i),I...,I (X X )) ED (SD) N ~>A(9

Proof of claim: By induction on subformulae of q. It holds for atomic

subformulae (i.e., the variables vi and their negations -,vi) by the properties of

the Yr's and Zb's.
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Algorithm 4.5.4: Sample,(0, b)

Input: A subformula 0/(vi,... , Vik) of q$ and a bit b E {O, 1}

1. If 0 = vi, sample z <- Y.

2. If 4 = ,vi, sample z <- Zb.

3. If = -r V p,

(a) Sample zi <- Sample(T, b);

(b) Sample z 2 <- Sample(p, b);

(c) Let z = (zi, z 2 ).

4. If4 = TA p,

(a) Choose c, d <- {0, 1} subject to c E d = b;

(b) Sample z 1 <- Sample(T, c);

(c) Sample z 2 <- Sample(T, d);

(d) Let z = (z1 , z 2 ).

5. Output z.
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Consider the case when 0 = r V p. By construciton, Sample,(0, b) =

Sample.(r, b) 0 Sample.(p, b). If 0 is true (for a valid setting of its variables),
either r or p must be true. Without loss of generality, say r is true. Then, by

Fact 2.2.2 (Item 5) and induction,

A()>A(-r) ;>>-3# ||1- 3101'

If V) is false, then both r and p are false. By the Direct Product Lemma

(Lemma 3.1.15) and induction,

A (P) _ A (r) + AG') :! 3IqT1 + vk~ < 101
31#1 3101 3 101

Now consider the case when V) = r A p. By constructions, the distributions

for 4 are those obtained by applying the XOR construction (Lemma 3.1.16) to

the distributions for r and p. By the XOR Lemma, A(O) = A(r) - A(p). If

is true, then, by induction,

A(0)> ( 1 - 1. I - I >1- 
310# 31|1) 31#1 ~- 3101

If ) is false, then, without loss of generality, say r is false. By induction,

A(0) A(r) 3_ 3LIP0

Let A and B be circuits describing the computations of Sample,(, 0) and Sample.(0, 1),
respectively, (which take the random bits each procedure uses as input). By the above claim,

StatDiff (A, B) > 2/3 if w E D(SD)y and StatDiff (A, B) 1/3 if w E 4(SD)N. In other

words, the construction of A and B from w describes a Karp reduction from D(SD) to SD.

This reduction can be computed in polynomial time because Sample runs in polynomial

time.

Theorem 4.5.2 follows readily from Lemma 4.5.3:

Proof of Theorem 4.5.2: Let H be any promise problem in HVSZK. By the com-

pleteness of SD, there is a reduction from H to SD. This induces a reduction from 4(H) to

D(SD). Composing this with the reduction in Lemma 4.5.3, we see that 4(H) reduces to

SD E HVSZK. Since HVSZK is closed under reductions, o(fl) E HVSZK. N

Examining the proof of Lemma 4.5.3 more closely, it is easy to see that all parts of the

construction, except for the Reversal Mapping, preserve the extreme cases of SD (i.e., sta-

tistical difference 0 or 1, respectively). Thus, we obtain the following additional reductions.

Proposition 4.5.6 Mon(H) reduces to H for H E {SD1'0, SD1,1/ 2 , SD1/2,o . In particular,

Mon(SD 1,1/2 ) E HVPZK.
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Theorem 4.5.2, though stated as a sort of Boolean closure property, can also be viewed
from a more computational point of view, as asserting the closure of HVSZK under a
certain class of reductions.

Definition 4.5.7 (truth-table reduction [LLS75]) We say a promise problem F truth-
table reduces to a promise problem H, written F tt H, if there exists a (determin-
istic) polynomial-time computable function f, which on input x produces a tuple T =

(X 1 , X 2 , .. . ,X,) and a circuit C, such that

1. If x c Fy then for all valid settings of b= (b1,b 2 ,... ,bm), C(b) = 1, and

2. If x G FN then for all valid settings of b= (b1,b 2 ,..., bm), C(b) = 0.

where the validity of b is defined with respect to Y and H as in Definition 4.5.1.

Truth-table reductions are easily seen to be equivalent to nonadaptive Cook reductions.
We further consider the case where we restrict the complexity of computing the output of
the reduction from the answers to the queries:

Definition 4.5.8 (NCI truth-table reductions) A truth-table reduction f between promise
problems is an NC1 truth-table reduction 2] if the circuit C produced by the reduction on
input x has fan-in 2 and depth bounded by cf log jx|, where cf is a constant independent of
x. If there is an NC1 truth-table reduction from F to U, we write F <NC1 -tt H.

It is easy to see that closure under NCI truth-table reductions is equivalent to closure
under the zI(-) operator (together with closure under Karp reductions).

Proposition 4.5.9 A class C of promise problems is closed under NC1 truth-table reduc-
tions if the following two conditions hold:

1. 1 E C =:4(H) E C.

2. C is closed under Karp reductions.

Proof: ==. Suppose C is closed under NC, truth-table reductions. It is well-known
that every formula q can be transformed (in polynomial time) to an equivalent "balanced"
formula #' of depth O(log 1q|) []. Thus the map (q, xi, ... , xM) 1+ (0', i, ... , xm) is an NC 1
truth-table reduction from 'J(Pi) to H for any promise problem H. Thus, if H E C, then
D(H) E C. For closure under Karp reductions, we simply note that every Karp reduction is
also an NC1 truth-table reduction (take C to be the identity function from {0, 1} to {0, 1}).
-=. Suppose that C is closed under (-) and Karp reductions. Any circuit C of depth d

can be transformed in time poly(|C|, 2d) into a formula 0c. Let f be an NCI truth-table
reduction from a promise problem F to a promise problem H E C. Composing f with the
map (C, x 1 , .. . , xm) + (qc, X1, ... , m) gives a Karp reduction from F to 1(H) (computable
in time poly(jxj, 2cf log l) = poly(jxj)). By closure under 1(.) and Karp reductions, it follow
that F E C. U

2This terminology is inherited from the NC hierarchy of languages, where NC denotes the class of
languages decided by (uniform) families of circuits of depth O(logt n). See, e.g., [Sip97, Pap94].
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Thus, we have:

Corollary 4.5.10 HVSZK is closed under NC, truth-table reductions.

This shows that HVSZK has a substantial amount of robustness and richness as a class

of computational problems. It would be very interesting to strengthen this result to more

general forms of Cook or truth-table reductions, or give evidence that it is not possible to

do so.

Open Problem 4.5.11 Is HVSZK closed under general truth-table reductions? or (adap-

tive) Cook reductions?

4.6 Knowledge complexity

The various definitions of zero knowledge proofs beautifully capture what it means to learn

"nothing" from an interactive proof. For interactive proofs which are not zero knowledge,
it is natural to try to measure how much the verifier learns from the proof. Indeed, the

conference version of the paper of Goldwasser, Micali, and Rackoff [GMR89] which intro-

duced zero-knowledge proofs also suggested a more general notion of knowledge complexity

to accomplish this task. However, the formalization of (non-zero) knowledge complexity

suggested there does not seem to coincide with an intuitive notion of how much knowledge

is leaked in a protocol (cf., [GP91]). Goldreich and Petrank [GP91] presented a number of

alternative definitions of knowledge complexity, which have been studied further by a num-

ber of researchers [GP91, GOP98, ABV95, PT96]. In this section, we use the results we have

obtained on statistical zero knowledge to obtain new results about (non-zero) knowledge

complexity.

4.6.1 Definitions

Recall that zero-knowledge proofs are defined by requiring that there is an efficient simulator

whose output is "close" to the verifier's view of the interaction with the prover. Most of the

definitions given by Goldreich and Petrank measure knowledge complexity by how much

"help" a simulator needs to produce a good simulation. The various formulations arise from

allowing the help to be given in different forms (e.g., as a string or from an oracle) and from

different methods of measuring the amount of help (e.g., averaging over the simulator's coin

tosses or taking the maximum).

There is one subtlety in our versions of the definitions that does not arise in the literature.

In our definitions of interactive proofs and zero-knowledge proofs, the error parameters are

controlled by a security parameter independent of the input length. It is not clear whether

the knowledge complexity should be measured as a function of the security parameter in

addition to the input length. It is not even clear whether for "natural" problems, the knowl-

edge complexity would be increasing or decreasing as a function of the security parameter.

On one hand, the prover may have to reveal more knowledge in order to reduce the error

parameters. On the other hand, an increased security paramter gives the simulator more

running time and hence the simulator may need less help.
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Because of this unclear situation, we allow the knowledge complexity of proof systems to
be a function of both the input length and the security parameter, but, in order to maintain
consistency with the literature, we set the security parameter equal to the input length when
defining the knowledge complexity of promise problems and the associated hierarchies. 3 In
all our definitions, the knowledge complexity of a proof system (resp., promise problem) will
be a function n : N x N -+ R (resp., , : N -+ R). Throughout our discussion on knowledge
complexity, we require that K(n, k) (resp., i(n)) is computable in time poly(n, k) (resp.,
poly(n)).

We now give definitions for several forms of knowledge complexity. Modulo some minor
modifications for consistency with the rest of this thesis, all of these definitions are due to
to Goldreich and Petrank [GP91], except for knowledge complexity in the "entropy sense"
which is due to Aiello, Bellare, and Venkatesan [ABV95]. We only give definitions for perfect
and statistical knowledge complexity, as all languages in IP have computational knowledge
complexity zero (i.e., are in CZK) if (nonuniformly) one-way functions exist [GMW91,
IY87, BGG+88]. We also only give definitions for honest verifiers, since we have not yet
even given the definition of zero knowledge for cheating verifiers.

The first definition of knowledge complexity provides "help" to the simulator in the
most direct manner - as a "hint" string given as an additional input.

Definition 4.6.1 (hint sense) Let (P, V) be an interactive proof system for a promise
problem II. The statistical knowledge complexity of (P, V) in the hint sense is said to be

S: N x N -- N if there is a function h : Ily x N -+ {0, 1}*, a usefuP probabilistic polynomial-
time algorithm S, and a negligible function p : N -+ [0,1] such that for all x c Ily and all
k E N,

1. jh(x, k) I = r,(Ix|, k).

2. StatDiff (S(x, lk, h(x, k)), (P, V)(X, 1k)) < p(k).

h(x, k) is called the hint, S is called a simulator, and p is called the simulator deviation. If
p = 0, then (P, V) is said to have perfect knowledge complexity i in the hint sense.

As with zero knowledge, allowing the simulator to fail with probability 1/2 is inessential
for statistical knowledge complexity in the hint sense, as the failure probability can be made
exponentially small and absorbed into the simulator deviation.

In the remaining definitions, help is provided to the simulator by means of an oracle
which it can query. If 0 : {0, 1}* -* {0, 1}* is any function and M is an algorithm, then
we write M 0 to indicate that M is being given oracle access to M. The first oracle-based

3This is an admittedly ad-hoc solution to the problem, and will hopefully be remedied as our understand-
ing of knowledge complexity improves. We still would prefer to have the error parameters (completeness,
soundness, simulator deviation) controlled by a security parameter independent of the input length, whereas
it seems that knowledge complexity should be primarily a function of the input length. But, as shown by
several researchers [GOP98, PT96], the knowledge complexity and error parameters are not free to vary
independently for certain languages.

4Recall that a probabilistic algorithm A is called useful if Pr [A(x) = f ail] <; 1/2 for all x and A(x)
denotes the output distribution of A on input x, conditioned on A(x) : f ail.
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definition measures the amount of help provided by the oracle by the maximum number of

bits it sends to the simulator and does not allow the simulator any failure probability.

Definition 4.6.2 (strict oracle sense) Let (P, V) be an interactive proof system for a

promise problem H. The statistical knowledge complexity of (P, V) in the strict oracle

sense is said to be K : N x N -+ R if there is a function 0 : {0, 1}* -+ {0, 1}, a probabilistic

polynomial-time algorithm S, and a negligible function p : N -+ [0,1] such that for all

x E Uy and all k G N,

1. S (x, 1k) receives at most r.(Ix|, k) bits from 0, with probability 1 over the coins of

S.

2. StatDiff (SO(x, 1k), (P, V)(x, 1k)) p(k).

S is called a simulator and p is called the simulator deviation. If p = 0, then (P, V) is said

to have perfect knowledge complexity K in the strict oracle sense.

The next definition allows the simulator to fail with probability 1/2.

Definition 4.6.3 (oracle sense) Let (P, V) be an interactive proof system for a promise

problem H. The statistical knowledge complexity of (P, V) in the oracle sense is said to be

K : N x N -+ R if there is a function 0 : {0, 11* -+ {, 1}, a useful probabilistic polynomial-

time algorithm S, and a negligible function p : N -+ [0, 1] such that for all x E Hy and all

k E N,

1. SO(x, 1k) receives at most n(Ix|, k) bits from 0, with probability 1 over the coins of

S.

2. StatDiff (sO(x, 1k), (P, V)(x, 1k)) p(k).

S is called a simulator and p is called the simulator deviation. If I = 0, then (P, V) is said

to have perfect knowledge complexity n in the oracle sense.

In contrast to statistical knowledge complexity in the hint sense, it is not apparent

that allowing the simulator to fail in the oracle sense is inessential, as reducing the failure

probability of the simulator to negligible may involve making more oracle queries. However,
Goldreich and Petrank [GP91] show that the statistical knowledge complexities of any

proof system in the strict oracle and oracle senses differ by at most log log k + g(k) for any

unbounded function g(.) (and this cannot be improved).

The next definition measures the average number of bits of help the simulator gets from

the oracle.

Definition 4.6.4 (average oracle sense) Let (P, V) be an interactive proof system for a

promise problem H. The statistical knowledge complexity of (P, V) in the average oracle

sense is said to be . : N x N -+ R if there is a function 0 : {0, 1}* -+ {0, 1}, a useful

probabilistic polynomial-time algorithm S, and a negligible function A : N -+ [0,1] such that

for all x E Uy and all k E N,
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1. The expected number of bits that S 0 (x, 1k) receives from 0 is at most ,(jx|, k) bits
from 0, with the expectation being taken over the coins of S.

2. StatDiff (§0(x, 1k), (P, V)(x, 1k)) 5 p(k).

S is called a simulator and p is called the simulator deviation. If P = 0, then (P, V) is said
to have perfect knowledge complexity n in the average oracle sense.

In contrast to Goldreich and Petrank [GP91], we allow the simulator fail in defining the
average oracle sense (as in [ABV95]). This affects the knowledge complexity by at most an
additive constant, as the simulator can use the oracle to "hone in" on a non-failing set of
random coins in an expected constant number of queries, analogous to the proof of [GP91,
Prop. 4.6]. Goldreich and Petrank [GP91] have shown that the knowledge complexity of a
proof system in the average oracle sense can be much smaller than its knowledge complexity
in the oracle sense.

To address a feeling that the above measures slightly "overcount" the knowledge com-
plexity, particularly for knowledge complexities close to 0, Aiello, Bellare, and Venkate-
san [ABV95] introduced yet another measure of knowledge complexity. Essentially, this
measure avoids counting the bits sent from the oracle to the simulator S to the extent that
those bits can be guessed without access to the oracle 0. That is, another machine S', called
an oracle simulator, is considered. S' is given the input x, the security parameter k, and the
random coins R of the simulator, and attempts to guess the output of the simulator without
having access to the oracle 0. The unpredictability of this output by S', as measured in an
entropy-like fashion, is taken to be an upper bound on the amount of "useful information"
obtained from the oracle.

Definition 4.6.5 (entropy sense) Let (P, V) be an interactive proof system for a promise
problem H. The statistical knowledge complexity of (P, V) in the entropy sense is said to be
K : N x N -- R if there is a function 0 : {0, 1}* -+ {0, 1}, a useful probabilistic polynomial-
time algorithm S, a probabilistic polynomial-time algorithm S', and a negligible function
p : N -+ [0,1] such that for all x E Iy and all k E N,

1. ER [log (1/Px,k(R))] n(|x|, k), where Px,k(R) = Prp [S'(x, 1k, R; p) = S 0 (x, 1k; R)].

2. StatDiff (§0(x, 1k), (P, V)(x, 1k)) < p(k).

S is called a simulator and p is called the simulator deviation. If P = 0, then (P, V) is said
to have perfect knowledge complexity K in the entropy sense.

Aiello, Bellare, and Venkatesan [ABV95] have shown that knowledge complexity in the
entropy sense is always at most the knowledge complexity in the average oracle sense, and
can be smaller by at most an additive constant.

It is clear that the prover-to-verifier communication of any interactive proof upper-
bounds its perfect knowledge complexity in each of the above senses, except the hint sense.
For this reason, the hint sense is viewed as an inadequate measure of knowledge complex-
ity [GP91].

Each of the above forms of knowledge complexity gives rise to a hierarchy of promise
problems.
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Definition 4.6.6 (knowledge complexity hierarchies) A promise problem H has knowl-

edge complexity n : N -+ R in one of the above senses if there exists an interactive

proof for H with negligible completeness and soundness errors whose knowledge complex-

ity ' : N x N -* R (in the given sense) satisfies W'(n, n) <; r(n) for all n.

The classes of promise problems with statistical knowledge complexity n(n) in the hint,

strict oracle, oracle, average oracle, and entropy senses are denoted by SKChint(n(n)),

SKCstrict(n(n)) SKCoracie(ri(n)), SKCavg(r(n)), and SKCent (r(n)), respectively. The

classes of promise problems with perfect knowledge complexity are similarly denoted by PKC

with the appropriate subscript.

Since the above definition only refers to case when the security parameter is equal to the

input length, we will often omit the security parameter from the notation in what follows.

It is clear that the bottom level (i.e., i(n) = 0) of each of the statistical (resp., perfect)

knowledge complexity hierarchies is exactly HVSZK (resp., HVPZK). An important

question about these hierarchies is whether they are strict or not, but previously no collapses

or separations were known for any of them.

4.6.2 A Collapse for the Hint Hierarchy

The first thing we will prove in this section is a lemma showing that statistical knowledge

complexity in the hint sense can be expressed in terms of statistical zero knowledge. This

lemma will enable us to immediately deduce a number of results about the SKChint hier-

archy from our results on HVSZK. Most significantly, the Boolean closure properties of

HVSZK demonstrated in the previous section will easily imply that the statistical knowl-

edge complexity hierarchy for the hint sense collapses by logarithmic additive terms at all

levels. As mentioned earlier, the hint sense has some deficiencies as a measure of knowledge

complexity, so it would be of greater interest to obtain such results for the other forms of

knowledge complexity. Our results are best viewed as a first step in this direction.

Lemma 4.6.7 Let , : N -+ N be any polynomially bounded function. Then H E SKChint (r(n))

(resp., PKChint(r'(n))) if there exists a promise problem F E HVSZK (resp., HVPZK)

such that

1. x E fly -> there exists a E {0, 11 04 such that (x, a) c Fy, and

2. X E HN ~>for all a, (x,a) E FN-

Proof: We only give the proof for statistical knowledge complexity and zero knowledge;

the perfect case is similar.

= Let H be a promise problem in SKChint(r.(n)) and let h : Hy -+ {O,1}*. be a hint

function corresponding to an appropriate interactive proof system and simulator for H.

Consider the following promise problem F:

Fy = {(x, h(x)) : x E Hy}

FN = {(x, a) : x E HN}
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The protocol and simulator for H almost immediately yield an honest-verifier statistical zero-
knowledge proof for F (the verifier and prover for F should ignore the second component
of the input and the simulator should use it as a hint). There is one small technicality,
however. Since our definition of SKChint(r,(n)) only refers to the knowledge complexity
when the security parameter is set equal to the input length, the simulator deviation of the
resulting proof system for F is only negligible as a function of the input length, not the
security parameter. So, we only obtain F E weak-HVSZK. But now we can apply our
result that weak-HVSZK = HVSZK (Corollary 4.3.1). It is clear that F satisfies the
other conditions of Lemma 4.6.7.

-= Let F E HVSZK be the promise problem satisfying the stated conditions. Let h
Hy -+ {0, 1}* be any function satisfying

1. For all x, Ih(x)I = r(|x|),

2. x E fly = (x, h(x)) E Fy.

(Such a function is guaranteed by Condition 1.) We now give a proof system for H of
knowledge complexity iz(n). On input x, the prover gives the verifier h(x) in the first step,
and then they execute the protocol for F on (x, h(x)). The completeness and soundness of
this protocol follow from the properties of F's proof system. This proof system is easily
seen to have knowledge complexity n(n) in the hint sense, using h as the hint function and
the same simulator as for F's proof system. E

From this lemma and its proof, we can immediately apply some of our results about
HVSZK to SKChint. First, looking at the proof of the "if" (<-) direction of Lemma 4.6.7,
we see that any problem in SKChint(K(n)) has a proof system which is simply an HVSZK
proof system augmented by the prover sending ri(n) bits in the first message. Combining this
with the efficient HVSZK proof systems of Corollary 4.1.1 (possibly repeated in parallel),
we obtain the following:

Corollary 4.6.8 Let r.,t : N -+ N be any two polynomially bounded functions which are
both computable in time polynomial in their arguments. Every problem in SKChint(,(n))
has an interactive proof system with the following properties (on input (X, 1k)):

1. The statistical knowledge complexity is K(IXI).

2. The proof system exchanges only 3 messages.

3. The prover-to-verifier communication is r,(Ix|) + t(k) bits.

4. The completeness error and simulator deviation are both 2 k.

5. The soundness error is 1 / 2 t(k).

6. The prover is deterministic.

In particular, we have:
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Corollary 4.6.9 ([GP91]) For any polynomially bounded function , : N -+ N,

SKChint(,z(n)) C AM.

Actually, this corollary does not neeed the full power of Corollary 4.1.1. The result of Aiello

and Haistad [AH91] that HVSZK C AM (cf., Corollary 4.2.2) together with Lemma 4.6.7

suffices.

By Proposition 4.2.3, co-NP does not have polynomial statistical knowledge complexity

in the hint sense unless the Polynomial-Time Hierarchy collapses. On the other hand,
co-NP does possess interactive proofs in which the prover sends only polynomially many

bits to the verifier (by definition) [LFKN92]; this intuitively should imply that the verifier is

only gaining polynomially many bits of knowledge. This discrepancy is one of the deficiencies

of the hint sense as a measure of knowledge complexity pointed out by Goldreich and

Petrank [GP91].
Another result of ours about HVSZK that can be directly applied to SKC hint is Corol-

lary 4.3.1, which states that weak-HVSZK = HVSZK. In analogy with weak-HVSZK,
once can define weak forms of the SKC hierarchies, in which for every polynomial p : N -+ N

there should be a simulator that achieves simulator deviation 1/p(xI) on input x using r,(IxI)

bits of help.

Corollary 4.6.10 For any polynomially bounded function K : N -+ N

weak-SKChint (K(n)) = SKChint (r(n)).

Proof: Note that the proof of the "only if" (=>) direction of Lemma 4.6.7 yields F E

weak-HVSZK = HVSZK satisfying the properties listed in lemma even if I is only in

weak-SKChint(r(n)). Now, applying the "if" (<=) direction of the lemma to F, we see that

H is actually in (non-weak) SKChint(n(n)). U

Finally, we use the Boolean closure properties we have proven about HVSZK to show

a collapse in the SKChint hierarchy.

Theorem 4.6.11 For any polynomially bounded function n : N -+ R,

SKChint(l(n) + logn) = SKChint(ri(n)).

Proof: For intuition, consider the case r, = 0, and let H be any promise problem in

SKChint(log n). By Lemma 4.6.7, there is a promise problem F E HVSZK such that

proving that x is a YES instance of H amounts to proving that for at least one string

a of length log Ix1, (x, a) is a YES instance of F. This is an OR of polynomially many

statements about membership in F. In Section 4.5, we showed that any such Boolean

formula over a problem in HVSZK can also be proven in HVSZK, so it follows that

H E HVSZK = SKChint(0), as desired. To deal with n(n) > 0, we only take the OR over

the last log n bits of the hint, and use the "if" direction of Lemma 4.6.7 to pass back to

SKChint-
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We now proceed with the formal proof. Let H be a language in SKChint(n(n) + logn)
and let F be the related promise problem guaranteed by the "only if" (=) direction of
Lemma 4.6.7. Now consider a different promise problem ', defined by

r'y = {(x, a)) there exists b such that Ibi = log lx| and (x, ab) E Fy}

r', = {(x, a) for all b, (x, ab) E N ={(x, a): x E N-

For any string x, let m = log Ix, let bi,..., bn be all strings of length m, and let q be
the formula #(vi,... , v,) = \/ vi. The definition of ' implies that

(X, a) - (#, (x, abi), .. ., (x, abn))

is an NC 1 truth-table reduction from F' to r. Since HVSZK is closed under such reductions
(Corollary 4.5.10), r' E HVSZK.

Now, if x E fly, then there exists an a of length K(|xj) + log(lxj) such that (x, a) E Fy.
Taking a' to be the first r,(IxI) bits of a, we see that there exists an a' of length r,(|xl) such
that (x, a') E F'. On the other hand, if x E fIN, then for all a, (x, a) E IF'. Thus, by the
"if" (<-) direction of Lemma 4.6.7, we conclude that H E SKChint(n(n)). U

It would be unexpected to strengthen Theorem 4.6.11 by increasing the log n to any
function f (n) = w(log n), because SKChint (f (n)) contains every problem solvable in non-
deterministic time f(n) (actually even polynomial time with f(n) bits of nondeterminism),
and it seems unlikely that all such problems would be contained in HVSZK C co-AM.

As stated above, it would be more significant to obtain a similar collapse for one of
the other forms of knowledge complexity, or give evidence that such a collapse does not
occur. Perhaps our work on statistical zero knowledge can also help in such a task. In
particular, in Section 3.3, we used the Aiello-Histad simulator analysis to show that every
problem in HVSZK reduces to ENTROPY DIFFERENCE. Petrank and Tardos [PT96] have
used ideas from the the Aiello-Histad simulator analysis to study interactive proofs with
logarithmic statistical knowledge complexity in the oracle sense, and thereby showed that
SKCoracie(log n) C AM n co-AM. Perhaps all these ideas can be combined to obtain
stronger results about knowledge complexity in the oracle sense. Specifically, showing that
every problem in SKCoracie(log n) reduces to ENTROPY DIFFERENCE would imply that
SKCoracie(logn) = HVSZK.

Open Problem 4.6.12 Do any of the other knowledge complexity hierarchies defined by
Goldreich and Petrank [GP91] collapse?

Our results about HVSZK in the next two chapters will also immediately imply similar
results about SKChint via Lemma 4.6.7. Specifically, they will imply that, for any poly-
nomially bounded function n : N -+ N, SKChint(r,(n)) proofs can always be transformed
into ones which use public coins, and into ones that have knowledge complexity n(n) even
against cheating verifiers.
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4.6.3 The Relationship between Perfect and Statistical Knowledge Com-
plexity

One of the major questions about zero-knowledge proofs that has been open since the

defining paper of Goldwasser, Micali, and Rackoff [GMR89] is whether perfect and statistical
zero knowledge coincide. That is, does PZK = SZK (or even HVPZK = HVSZK)? This

question motivates a more general study of the relationship between perfect and statistical
knowledge complexity. Goldreich, Ostrovsky, and Petrank [GOP98] have shown that, in
the oracle sense, the perfect and statistical knowledge complexity are not too far apart.
Specifically, they have shown that SKCoracie(h(n)) C PKCoracie(ri(n) + O(log n)) for
every function K : N -+ R. In particular, HVSZK c PKCoracie(O(log n)).

Aiello, Bellare, and Venkatesan [ABV95] have shown that the relationship is even tighter
for the average oracle and entropy senses. Specifically, they proved that, for every poly-
nomially bounded function K : N -+ R, SKCavg('(n)) C PKCavg((n) + 1 + n-w()) and
SKCent(n(n)) C PKCent(r(fN) + n-w()), and the latter inclusion becomes an equality for

r = 0. In addition, they give analogous results for the cheating-verifier versions of these
classes.

Our completeness theorems give another way to obtain such results when = 0, i. e.,
when we want bounds on the perfect knowledge complexity of HVSZK. Namely, these
thereoms reduce the question to measuring the perfect knowledge complexity of specific
proof systems for the complete problems. By a straightforward analysis of (variants of)
Protocol 3.1.19, we obtain:

Theorem 4.6.13

1. For any function tv(n) = w(logn), HVSZK C PKCstrict(K(n)).

2. For any c > 0, HVSZK C PKCavg(1 + 2-nc).

3. For any c > 0, HVSZK = PKCent(2-nc).

The last two items improve on the bounds of [ABV95] for knowledge complexity 0
(though their results ALSO apply to the cheating-verifier classes). These two items could
also be obtained by applying their proofs to our result that every problem in HVSZK has
a proof with simulator deviation 2 -*

Proof:

1. Let H be any problem in HVSZK and let ,s(n) = w(logn). By Corollary 4.1.1, there
is a proof system for H with negligible completeness error, constant soundness error,
and 1 bit of prover-to-verifier communication. Executing this protocol ti(n) times
in parallel results in a proof system with negligible error probabilities and prover-to-
verifier communication i'(n). The prover-to-verifier communication is an upper bound
on the perfect knowledge complexity in the strict oracle sense.

2. Let H be any promise problem in HVSZK. Consider the proof system for H in which
proceeds as follows on an input x of length n: Both parties apply the reduction to SD
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to obtain an instance (X, Y) of SD. They execute Protocol 3.1.19 n times (sequentially
or in parallel) on input (X, Y) with the security parameter set to k = 4nC, and the
verifier accepts if the prover is correct in all subprotocols. This proof system has
negligible completeness and soundness errors.

A perfect simulator for the proof system can be obtained as follows: The simulator
simulates the verifier strategy and queries the oracle once to find out if the prover
would give an incorrect response in any of the executions of Protocol 3.1.19. Of the
oracle replies yes, then the simulator queries the oracle n more times to find out which
prover answers would be incorrect. The simulator then outputs the random coins used
for running the verifier strategy together with the appropriate prover responses.

In each subprotocol, the prover gives an incorrect response with probability at most
2 -4nc. Thus, the simulator has to query the oracle for more than one bit with proba-
bility at most n - 2-4,c. Thus, on average, the simulator queries the oracle for at most
1 + n 2 .2-4nc < 1 + 2-nc bits, for sufficiently large n.

3. We consider the same protocol used in the proof of Part 2 above and show that it
has perfect knowledge complexity 2-c in the entropy sense. Let S be the simulator
which simply simulates the verifier and queries the oracle for all prover responses. One
possible oracle simulator would assume that the prover is correct in all subprotocols.
Unfortunately, this gives 1/P(R) = oc for any R which corresponds to a transcript
in which the prover would make an error. Thus, we instead have our oracle simulator
S' assume that the prover is right in each subprotocol independently with probability
1 - 6, where 6 = 2 -2n. Thus, P,(R) = (1 - 6 )kjn-k, if R is a set of random coins for
the verifier (equivalently S, since S mimics the verifier) which would elicit a correct
prover response in exactly k of the subprotocols. Let c be the probability that the
prover is incorrect in an individual subprotocol. Then, 1 62, and we have

E log
R Px(R)

-- 1 klog ((1 - o6kjn-k
k=0

S log ). [ (n) n-k(1 - E)k] + (log 1 "-n(i - )kk

lo - Ck

= log - .1+ log - - n-(1-c) - - - E)k-l
1).k=1

16
= log +n-(1-c)- log -1

= n log + c log
1 -6 6

< n log 1 + 62 log()

< 2n6 < 2
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for sufficiently large n.

The opposite inclusion follows from the result of [ABV95] that PKCent(p(n)) C

HVSZK for any negligible function p.

Despite these slightly improved bounds, the basic question about the relationship be-

tween perfect and statistical zero knowledge remains open.

Open Problem 4.6.14 Does HVSZK = HVPZK? Does SZK = PZK?

The Completeness Theorem may help in addressing this question, for now it becomes

equivalent to asking whether STATISTICAL DIFFERENCE or ENTROPY DIFFERENCE has a

perfect zero-knowledge proof.

4.7 Perfect and computational zero knowledge

The simulator analyses we used to prove the completeness theorems can also be applied to

perfect and computational zero-knowledge proofs. Although we do not know how to obtain

complete problems for HVPZK and HVCZK using these techniques, they do yield some

additional insight into these classes.

We begin with the simulator analysis for public-coin proofs from Section 3.3. For perfect

zero knowledge, we obtain a reduction to a variant of SD. Since the security parameter

plays a less central role in perfect zero-knowledge proofs (there is no simulator deviation to

control), we omit it in the statement and proof of this proposition.

Proposition 4.7.1 Suppose a promise problem H has an honest-verifier public-coin perfect

zero-knowledge proof with perfect completeness. Then U reduces to SD 1/ 2,0.

More generally, the condition that the proof system has perfect completeness can be

relaxed to requiring that the probability that verifier accepts an input x E fly be computable

in polynomial time from x. 5

Proof: Let (P, V) be a perfect zero-knowledge proof for with perfect completeness and

soundness error s = 1/3, with simulator S. The reduction constructs an instance (X, Y) of

SD 1 / 2 ,0 from an instance x of U. The distributions X and Y are constructed based on S

(and V) exactly as in the proof of Theorem 3.2.5. The only change needed in the analysis

is that Claim 3.2.6 should be replaced with one that states that StatDiff (X', Y') = 0

when x is a YES instance. To see that this is the case, first note that Lemma 3.2.1 gives

StatDiff (Xi, Y) = 2 - 0 = 0 for i > 0 when S is a perfect simulator. In addition, by

perfect completeness and perfect simulation, Yo will always output 1 in the case of a YES

instance, so StatDiff (Xo, Yo) = 0. Therefore, StatDiff (X', Y') = 0. Since X and Y consist

5 That is, we require that there is a (deterministic) polynomial-time algorithm A such that when given
x E IHy, A outputs the probability that V accepts on input x. A's behavior on NO instances or inputs that
violate the promise can be arbitrary.
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just of many independent copies of X' and Y', respectively, it follows that their statistical
difference is also 0 in the case of a YES instance.

Now we treat the more general version in which the acceptance probability on YES
instances is only assumed to be efficiently computable from the input. By repeating the
proof system sequentially or in parallel and ruling by majority/threshold, we may assume
that the completeness error is at most 1/3 (as is assumed in the proof of Theorem 3.2.5);
note that majority/threshold rule preserves the property that the acceptance probability is
efficiently computable. Now we construct X and Y just as before, with one small change. It
is no longer the case that Y always outputs 1, so we redefine Xo as follows to compensate:

X 0 : Calculate the probability p that the verifier accepts on input x (as if x were a YES
instance). If p < 2/3, output 1. Otherwise let t = 216 In 12v and calculate

q= S . qi(l(-lq)t-j.
t/2<j<t

Output 1 with probability q, and 0 otherwise.

Note that q is exactly the probability that Yo outputs 1 on a YES instance, so we have
StatDiff (Xo, Y) = 0 for YES instances as desired. Now we must also check that this
modification in X0 does not hurt the analysis for NO instances. The only time X0 plays a
role is in the case that the simulator outputs accepting conversations with probability at
most 5/12. There, a Chernoff bound is used to show that Yo outputs 1 with probability
at most 1/2 in this case. A Chernoff bound similarly implies the modified X0 given above
always outputs 1 with high probability, certainly at least 3/4. This gives StatDiff (Xo, Y) >

1/4 > 1/12v, so Claim 3.2.7 still holds.

If we completely remove the conditions on the acceptance probability, we can compensate
by allowing the distributions to be samplable in expected polynomial time.

Proposition 4.7.2 Suppose a promise problem H has an honest-verifier public-coin perfect
zero-knowledge proof. Then, there exist expected polynomial-time algorithms X and Y such
that:

1. x E I1y -> StatDiff (X(x), Y(x)) = 0.

2. X E IIN => StatDiff (X(x), Y(x)) 1/2.

Proof Sketch: Again, the only difficulty is constructing the distributions Xo and Y. Let
r be the number of random coins used by the simulator S. Yo is modified so that it runs
the simulator t = E(r + Inv) times rather than just E(Inv) times; this guarantees that Yo
will output 1 with probability at least 1 - 2' in the case of a YES instance. Xo is modified
as follows:

Xo: With probability, 1 - 2-r, just output 1. Otherwise, calculate the probability p that S
outputs an accepting conversation (by exhaustive search over the random coins) and
use that to calculate the probability q that Y outputs 1 (a simple sum involving some
binomial coefficients and p). If q > 1 - 2r, output 1 or 0 with exactly the right bias
to guarantee that the overall probability of outputting 1 is q.
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This definition of Xo guarantees that StatDiff (Xo, Yo) = 0 for YES instances. Note that

Xo runs in expected polynomial time; with probability 2-r, it does a calculation that takes

time 2' (times a polynomial factor). The tedious details are omitted. 0

If we could show that SD 1/ 2 ,0 (or its complement) has an (honest-verifier) public-coin

perfect zero-knowledge proof, we would essentially have a completeness theorem for public-

coin perfect zero knowledge. Interestingly, it is the "opposite" extreme case of SD -

namely, SD 1,1/ 2 - that we placed in (private-coin) HVPZK with Proposition 3.1.11. In

Chapter 6, we shall see that SD 1 '0 actually has a public-coin perfect zero-knowledge proof.

Adapting the simulator analysis of Section 3.2 to computational zero-knowledge proofs,
we obtain the following.

Proposition 4.7.3 Suppose a promise problem H has an honest-verifier public-coin com-

putational zero-knowledge proof system. Then there exist probabilistic polynomial-time al-

gorithms X and Y such that

1. {X(X, 1k )}xUny,kE N and {Y(x, 1k )}xEny,kE N are computationally indistinguishable.

2. x E HN = StatDiff (X(x, 1 k), Y(x, 1k)) 1/2.

Proof Sketch: Again, the construction of X(x, 1k) and Y(x, 1k) from x are just as in the

proof of Theorem 3.2.5. The proof that they are statistically far for NO instances remains

unchanged. To see that they are computationally indistinguishable for YES instances, one

need only replace the arguments about statistical closeness with analogous ones referring

to computationally indistinguishability (e.g., Claim 3.2.6, Lemma 3.2.1). E

Clearly, an analogous proposition also holds for the traditional definition of HVCZK in

which the indistinguishability in the zero-knowledge property is with respect to the input

length and not a separate security parameter. (The indistinguishability of the resulting

distributions X(x) and Y(x) will then hold with respect to the lxi and not a separate

security parameter.)
Note that the properties of the distributions produced by Proposition 4.7.3 cannot be

used to distinguish between YES and NO instances in general, because there can be distri-

butions which are both computationally indistinguishable and statistically far apart. Nev-

ertheless, Proposition 4.7.3 will enable us to prove a nontrivial result about HVCZK in

the next section.
Our simulator analysis for private-coin proofs in Section 3.3 can also be applied to

perfect zero-knowledge proofs, and yields a reduction to the following variant of ENTROPY

DIFFERENCE, denoted ED':

ED'y = {(X, Y) : H(X) = H(Y)}

ED' = {(X, Y) : H(Y) H(X) + 1}

Proposition 4.7.4 Suppose a promise problem H has an honest-verifier perfect zero-knowledge

proof with perfect completeness. Then H reduces to ED'.
More generally, the condition that the proof system has perfect completeness can be

relaxed to requiring that the probability that verifier accepts an input x G Uy be computable

in polynomial time from x.
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The proof of Proposition 4.7.4 consists of similar modifications to the proof of Theo-
rem 3.3.13 as was needed to obtain Proposition 4.7.1 from the proof of Theorem 3.2.5. The
details are omitted. As in Proposition 4.7.2, the computability condition on the accep-
tance probability can be removed, at the cost of yielding distributions that are samplable
in expected polynomial time.

The simulator analysis of private-coin proofs can also be applied to computational zero
knowledge, but unfortunately, it appears to yield something trivial. Specifically, it yields
two probabilistic polynomial time algorithms X and Y such that (omitting the security
parameter):

1. If x E HN, H(Y(x)) H(X(x)) + 1.

2. If x E Hy, then there exist distributions X'(x) and Y'(x) such that H(X'(x)) >
H(Y'(x)) + 1, X'(x) is computationally indistinguishable from X(x) and Y'(x) is
computationally indistinguishable from Y(x).

These conditions are trivial in the sense that such algorithms X and Y can be shown to
hold for any promise problem H, regardless of whether it possesses a zero-knowledge proof:
Fix X(x) to be the uniform distribution on lxi bits and Y(x) the uniform distribution on

lxi +1 bits, so the condition for NO instances certainly holds. To meet the condition for YES

instances, take X'(x) to equal X(x) and Y'(x) to be the uniform distribution on a subset
of {0, 1}x1+1 of size 21x11. (Note that X' and Y' are not required to be samplable.)

The main question remaining here is whether a tighter characterization of HVPZK or
HVCZK can be given.

Open Problem 4.7.5 Exhibit natural complete problems for HVPZK or HVCZK.

The question for HVCZK is only interesting if one does not assume that one-way func-
tions exist, for under that assumption, HVCZK = PSPACE [GMW91, IY87, BGG+88,
LFKN92, Sha92], so any PSPACE-complete problem would do.

4.8 Zero-knowledge proofs for hard problems imply one-way
functions

Looking at the array problems known to be in HVSZK - such as QUADRATIC RESIDUOS-
ITY and NONRESIDUOSITY [GMR89], a problem equivalent to DISCRETE LOGARITHM [GK93],
and approximate versions of the SHORTEST VECTOR and CLOSEST VECTOR problems for
lattices [GG98a] - it strikes one that many of them are related to problems underlying var-
ious cryptosystems [DH76, GM84, E1G84, GGH97, AD97]. Ostrovsky [Ost9l] showed that
this is not a coincidence. Informally, he proved that if HVSZK contains any hard problem,
then one-way functions exist and hence many cryptographic tasks can be accomplished.
This may be surprising at first, because typically one-way functions are not explicitly used
in constructing statistical zero-knowledge proofs. Rather, Ostrovsky's result should be un-
derstood as saying that the types of problems possessing statistical zero-knowledge proofs
are the kind that would yield one-way functions if they were hard. Subsequently, Ostro-
vsky and Wigderson [OW93] generalized this result to computational zero knowledge - if
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HVCZK contains any hard problem, then one-way functions exist. From a very high level,

their analysis of computational zero-knowledge proofs can be separated into two cases: if a

hard language possesses an honest-verifier computational zero-knowledge proof, then one of

the following two cases must hold: (a) the proof is really a statistical zero-knowledge proof,
in which case Ostrovsky's result applies, or (b) one-way functions are implicitly being used

in constructing a proof and simulation which are computationally indistinguishable but not

statistically close.
In this section, we show how Ostrovsky's theorem follows readily from our completeness

theorem and a result of Goldreich [Gol90] on computational indistinguishability. Using

our analysis of public-coin computational zero-knowledge proofs (Proposition 4.7.3), we

also obtain a simpler proof of the Ostrovsky-Wigderson theorem for the special case of

public-coin proofs.
In order to state these theorems precisely, we need to define what we mean for a problem

II to be "hard." Informally, we require that membership in H is (very) hard to decide under

some samplable distribution of instances.

Definition 4.8.1 (samplable distributions) An ensemble of distributions {Dn}neN is
said to be samplable if there is a probabilistic polynomial-time algorithm that, on input 1n,

outputs a string distributed according to Dn.

Definition 4.8.2 (hard-on-average problems) A promise problem H is hard-on-average

if there exists a samplable ensemble of distributions {Dn}nEN such that the following holds:

For every nonuniform probabilistic polynomial-time algorithm A, there exists a negligible

function p : N -+ [0, 1] such that

Pr [A(x) correctly decides whether x is a YES or NO instance of H] + p(n) Vn E N,

where the probability is taken over x +- D, and the coins of A. (If x violates the promise,
then A is considered to be correct no matter what it outputs.)

For completeness, we also define one-way functions.

Definition 4.8.3 (one-way functions) A function f : {0, 1}* - {0, 1}* is one way if

1. f can be evaluated in polynomial time.

2. For every nonuniform probabilistic polynomial-time algorithm A, there is a negligible

function p : N -+ [0,1] such that

Pr [A(f(x)) E f '(f(x))] - p(n)Vn E N,
x+-{O,1}n

where the probability is taken over x +- {0, 1}n and the coins of A.

One-way functions are known to be necessary and sufficient for many cryptographic

tasks, such as private-key encryption, digital signatures, pseudorandom generation, and bit

commitment [GGM86, HILL99, IL89, Nao9l, Rom90]).
A formal statement of the result of Ostrovsky that we will prove in this section follows.
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Theorem 4.8.4 ([Ost91]) If there is a hard-on-average promise problem in HVSZK,
then one-way functions exist.

Our proof will make use of the following result of Goldreich [Gol90]:

Proposition 4.8.5 ([Go190]) Suppose there exist two samplable ensembles of distribu-
tions, {Xnl}nEN and {Yn}nE N, such that

1. {Xnj and {Yn} are computationally indistinguishable.

2. There is a polynomial p : N -+ N such that for all n, StatDiff (Xn, Yn) > 1/p(n).

Then one-way functions exist.

Proof of Theorem 4.8.4: Suppose H is a hard-on-average problem in HVSZK, and let
{D,,} be the ensemble of distributions under which H is hard. By the Completeness Theorem
(Theorem 3.5.1) and the Polarization Lemma (Lemma 3.1.12), there is a polynomial-time
computable function that maps instances x of H to pairs (X(x), Y(x)) of distributions such
that

1. x E Hy -> StatDiff (X(x), Y(x)) > 1/2.

2. X E HN => StatDiff (X(x), Y(x)) <; neg(Jxj),

where here and throughout this proof, we write neg(n) to denote negligible functions.
We will show that the following ensembles {X, } and {Yn} meet the requirements of

Proposition 4.8.5:

X,: Sample x according to Dn. Sample z from X(x). Output (x, z).

Yn: Sample x according to Dn. Sample z from Y(x). Output (x, z).

The statistical farness of these ensembles will follow from the farness of X(x) and Y(x)
on YES instances. The computational indistinguishability will follow from the statistical
closeness of X(x) and Y(x) on NO instances, together with the fact that it is hard to
distinguish YES instances of H from NO instances.

To formalize this intuition, we make some observations which follow from the fact that
H is hard-on-average:

1. Pr [Dn V Hy U HN = neg(n).

2. IPrI[Dn E Hy- = neg(n) and IPr [Dn E Hy]-I =neg(n).

3. The ensembles {D }nEN and {DN}nEN obtained by conditioning Dn on being a YES
or NO instance, respectively, are computationally indistinguishable.

Items 1 and 2 hold because otherwise the trivial algorithm that always outputs YES or the
one that always outputs NO would decide H correctly with nonnegligible advantage. Item 3
holds because a distinguisher between {Dy } and {D } could be used to decide H with
nonnegligible advantage.
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Claim 4.8.6 StatDiff (Xn, Yn) 1/4 - neg(n).

Proof of claim: Since Dn must produce a YES instance of H with probability

at least 1/2 - neg(n), StatDiff (Xn, Yn) > (1/2 - neg(n)) - (1/2) = 1/4 - neg(n).
LI

Claim 4.8.7 {Xn}ncN and {Yn}nEN are computationally indistinguishable.

Proof of claim: Let A be any probabilistic polynomial-time algorithm. From

the fact that X(x) and Y(x) are statistically close for NO instances, it follows

that

IPr[A(x,X(x)) = 1UN] -Pr[A(x,Y(x)) = lix ENl =neg(n), (4.1)

where these probabilities (and all those to follow) are taken over x +- Dn and the

coins of all algorithms (A, X, and Y). By the computational indistinguishability

of {Da[} and {DN}, we also have

lPr [A(x,X(x)) = lx c fly] -Pr [A(x,X(x)) = l c INII = neg(n)
|Pr [A(x,Y(x)) = lix c Hy] -Pr [A(x,Y(x)) = l C HNi = neg(n).

Combining these with Equation 4.1, we see that all four conditional probabilities

differ only by negligible amounts. Therefore,

Pr [A(x, X(x)) = 1] - Pr [A(x, Y(x)) = 1]

Pr [A(x,X(x)) = lix E Hy] -Pr [A(x,Y(x)) = li E fHy]i
+iPr[A(x,X(x)) = 1lx EUN] -Pr[A(x,Y(x)) = li c HNI
+2Pr[ x Hy U UN

= neg(n).

This establishes the computational indistinguishability of {Xn} and {Yn}. 0

Given these claims, the result now follows from Proposition 4.8.5.

Essentially the same proof applies to public-coin computational zero-knowledge proofs

via Proposition 4.7.3.

Theorem 4.8.8 ([OW93] for public-coin proofs) If a hard-on-average promise prob-

lem possesses a public-coin HVCZK proof system, then one-way functions exist.

Proof: The one point in the proof of Theorem 4.8.4 where we used the statistical closeness

of X(x) and Y(x) for x C Hy instances was Equation 4.1; it is clear that computational

indistinguishability would actually suffice. Thus, if we replace the ensembles {X(x)} and

{Y(x)} with the ones given by Proposition 4.7.3 (setting k = xi), the proof will still work.

(YES and NO instances play the opposite role, but that is okay.) U

95



CHAPTER 4. APPLICATIONS OF THE COMPLETE PROBLEMS

In both the theorems of Ostrovsky and Ostrovsky-Wigderson, one can relax the average-
case assumption to a worst-case assumption at the price of a weaker conclusion. Specifically,
if one only assumes that HVSZK or HVCZK contains a problem outside of BPP, then
one can show the existence of a weak form of one-way functions, which are given an extra
auxiliary input and are hard to invert only for infinitely many values of the auxiliary input.
Such versions of Theorems 4.8.4 and 4.8.8 can also be proven using our techniques. In
addition, these theorems also have uniform versions, in which the hard-on-average prob-
lems, one-way functions, and computational zero-knowledge are all with respect to uniform
adversaries. Our proofs work essentially unchanged in that setting.

It would be interesting to obtain a simpler proof of the full version of the Ostrovsky-
Wigderson theorem (i.e., with no restriction to public coins) using our techniques. One
approach would be to make use of the simulator analysis for private-coin proofs given in
Section 3.3. Indeed, one can use that simulator analysis to show that if HVSZK contains a
hard-on-average problem, then a "false entropy generator" (in the sense of [HILL99]) exists,
which in turn implies the existence of one-way functions by [HILL99]. This gives yet another
proof of Ostrovsky's theorem for statistical zero knowledge. Unfortunately, as discussed in
Section 4.7, that simulator analysis appears to yield something trivial for computational
zero knowledge.

Open Problem 4.8.9 Can one refine the private-coin simulator analysis of Section 3.3
and use it to give a simpler proof of the full Ostrovsky-Wigderson [OW93] theorem?

The Ostrovsky-Wigderson theorem also has a converse. If (nonuniformly) one-way
functions exist, then it is known that HVCZK = PSPACE [GMW91, IY87, BGG+88,
LFKN92, Sha92] and it can be shown that PSPACE contains hard-on-average promise
problems. However, no such converse is known for Ostrovsky's theorem.

Open Problem 4.8.10 Does the existence of one-way functions (or some other general
intractability assumption) imply that HVSZK contains a hard-on-average problem? or
even just that HVSZK : BPP?

A positive answer to this question would show that the complexity of statistical zero
knowledge is intimately tied with the feasibility of complexity-based cryptography [IL89].
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Chapter 5

Private Coins vs. Public Coins

5.1 Motivation and results

In the two interactive proofs we have seen so far - the ones for STATISTICAL DIFFERENCE

and GRAPH NONISOMORPHISM (Protocols 2.1.2 and 3.1.19) - it is essential that the verifier
keeps its random coins hidden from the prover. From such examples, one might guess that
allowing such deceptiveness on the verifier's part makes interactive proofs strictly more

powerful. Surprisingly, this conjecture is false. Goldwasser and Sipser [GS89] showed that
every interactive proof can be transformed into a public-coin one.1 In this chapter, we will

prove an analogous result for statistical zero-knowledge, originally due to Okamoto [Oka96]:

Theorem 5.1.1 ([0ka96]) Every problem in HVSZK possesses a public-coin honest-

verifier statistical zero-knowledge proof.

Although Theorem 5.1.1 played a central role in later work, Okamoto's proof of it in [Oka96]
was very complicated and understood by very few researchers. The proof we give here
is much simpler. This simplification stems from the Completeness Theorem and Corol-
lary 4.1.1 in particular, which says that every problem in HVSZK has a 2-message HVSZK
proof. Thus, to obtain our result, we need only give a transformation that applies to 2-
message proof systems. This is a much simpler special case of Okamoto's transformation,
and enables us to use Okamoto's innovative techniques in a clean form, unhampered by the
complications arising from many rounds of interaction.

Transformations from private coins to public coins, like the one given by Theorem 5.1.1,
are very useful as public-coin proofs are much easier to analyze and manipulate than gen-

eral private-coin proofs. Indeed, the result of Goldwasser and Sipser for interactive proofs
found many applications (e.g., [BHZ87, FGM+89, BGG+88]), and the same is true for

statistical zero knowledge. For example, we have already seen that the simulator analysis
for public-coin proofs, given in Section 3.2, is much simpler than the simulator analysis
for general private-coin proofs, given in Section 3.3. We will see another example in the
following chapter: our transformation from honest-verifier zero-knowledge proofs to ones

'Recall that public-coin (a.k.a. Arthur-Merlin) proofs [BM88] are interactive proofs in which the verifier's
messages consist solely of random coin flips, and the only computation the verifier does is to decide whether
to accept or reject at the end of the interaction.
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robust against cheating verifiers will only be given for public-coin proofs, and hence we will
rely on Theorem 5.1.1 to deduce that HVSZK = SZK. Moreover, the closure of HVSZK
under complement and the completeness of STATISTICAL DIFFERENCE (together with all
its consequences) were both originally proven in [Oka96, SV97] using Theorem 5.1.1 as a
starting point.

We make one additional modification to Okamoto's transformation (described later),
which enables us to prove that the transformation also works for certain computational
zero-knowledge proofs.

Theorem 5.1.2 Every promise problem possessing a 3-message honest-verifier computa-
tional zero-knowledge proof also possesses a public-coin honest-verifier computational zero-
knowledge proof.

We view this as a first step towards exhibiting a general (i.e., with no restriction on the
message complexity) transformation from private coins to public coins for computational
zero knowledge. 2

An alternative approach to proving Theorem 5.1.1 would be to exhibit a public-coin
statistical zero-knowledge proof for one of the complete problems. That is the approach we
took in [GV99] and it gives the most direct proof of Okamoto's theorem, since all one needs
is the reduction from HVSZK to ENTROPY DIFFERENCE from Section 3.3 and a public-
coin proof system for ED. However, given that we have already proven the Completeness
Theorem, the transformation given in this chapter is not much more complex than the proof
system for ED, and has the advantage of also applying to computational zero knowledge.

Organization. We begin by giving an overview of the transformation from 2-message
zero-knowledge proofs to public-coin zero-knowledge proofs in Section 5.2. Like we did
when reducing ENTROPY DIFFERENCE to STATISTICAL DIFFERENCE in Section 3.4, for
motivation we start by treating a special case of 2-message proof systems in which the
verifier's message distribution is flat. 3 For this special case, we describe why the Goldwasser-
Sipser transformation fails to be preserve zero knowledge and describe Okamoto's method
for overcoming this problem. We conclude the overview by discussion of the ideas underlying
the extension of this special case to the general one. In particular, two subprotocols due
to Okamoto [Oka96] are crucial in treating the general case. In Section 5.3, we state the
properties of these subprotocols that we need in the transformation. In Section 5.4, we give
the transformation from private coins to public coins systems and prove Theorems 5.1.1
and 5.1.2, assuming the existence of Okamoto's subprotocols. Section 5.5 contains a self-
contained presentation of the two subprotocols and their proofs of correctness.

2As usual, it is only interesting to exhibit such a transformation for computational zero knowledge uncon-
ditionally, for if one assumes that (nonuniformly) one-way functions exist, public-coin computational zero-
knowledge proofs can be constructed for all of IP = PSPACE "from scratch" [GMW91, IY87, BGG+88,
LFKN92, Sha92].

3Recall that a flat distribution is one that is uniform over a subset of its range.
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5.2 Overview

We begin with an exposition of the standard protocol for proving lower bounds on set sizes,
which is the starting point for the Goldwasser-Sipser proof system. We stress that all

protocols described in this section are public-coin protocols.

5.2.1 The standard lower bound protocol

Suppose T is some subset of {0, }"l and a prover M ("Merlin") wants to convince a verifier

A ("Arthur") that TI > 2m. Assuming A has oracle access to a procedure which tests

membership in T, Protocol 5.2.1 gives a way to accomplish this task using 2-universal hash

functions. 4 This public-coin protocol was first described in [Bab85, GS89] and orginates

with a lemma of Sipser [Sip83].

Protocol 5.2.1: Lower bound protocol (M, A)

Input: Integers m and n (in unary) and and membership oracle for T C {0, 1}"

1. A: Select h uniformly from 7Hn,m and send h to M.

2. M: Select y uniformly from T n h- 1 (0) (if this intersection is nonempty)

and send y to A. 5 If the intersection is empty, send f ail to A.

3. A: If both h(y) = 0 and y C T, accept. Otherwise, reject.

The best analysis of the Protocol 5.2.1 was provided in [AH91]:

Lemma 5.2.2 Protocol 5.2.1 has the following properties:

1. (completeness) If |TI > 2 k - 2', then A accepts with probability at least 1 - 2

2. (soundness) If |TI < 2 -k - 2 m, then no matter what strategy M uses, A

probability at most 2 k.

accepts with

In fact, this protocol also has a sort of statistical zero-knowledge property. The property

holds with respect to the inputs n and m, provided that TI > 2m and that one is given a

uniformly selected element of T.

Lemma 5.2.3 (implicit in [Oka96]) Let ?- be a 2-universal family of

mapping a domain D to a range R. Let T be a subset of D such that

Then the following two distributions have statistical difference eQ(1):

hash functions
|7RI : -ITI.

4 Recall that for every pair of integers k and f, 7
-k,, denotes a family of 2-universal hash functions mapping

{0, 1}k to {0, 1}' (affine-linear functions over GF(2)).
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(A) Choose h uniformly in 71, and y uniformly in Tf nh- 1 (0). Output (h, y). 6

(B) Choose y uniformly in T, and h uniformly in {h' E N : h'(y) = 0}.' Output (h, y).

Think of D = {0, 1}n, R = {0, 1}m, and E = 2m/|TI. Then, Distribution (A) corresponds to
A's view of the execution of the protocol and Distribution (B) provides a simulation with
deviation (at most) (2m/ITI)9(l) for it.

5.2.2 The simplifying assumptions - flat distributions

Let (P, V) be a 2-message interactive proof system for a promise problem H which is sta-
tistically zero-knowledge for the honest verifier. We aim to construct a public-coin proof
system (M, A) for H. Without loss of generality, we may assume that, in (P, V), V sends
its message first, since any verifier messages after the last prover message are irrelevant in
an interactive proof. We write V,k to denote the distribution of V's message on input x
and security parameter k. The two simplifying assumptions we make about (P, V) are

1. The protocol has perfect completeness and soundness error 2-4.

2. V,k is a flat distribution.

5.2.3 The Goldwasser-Sipser transformation for flat distributions

With these assumptions, we now describe the Goldwasser-Sipser transformation from 2-
message proof systems to public-coin proof systems. Let v = H(V,k), so that, by flatness,
ISupp(V,) = 2 v. On YES instances x, the perfect completeness guarantees that for all
verifier messages y E Supp(V,k), the specified prover response P((X, 1k), y) makes V accept
with probability 1 over V's random coins (conditioned on y). The soundness error 2 -4k
provides a strong negation of this for NO instances - for all but a 2 -2k fraction of the y's
in Supp(V,k), V accepts with probability at most 2 -2k conditioned on y, no matter what
the prover response is. Thus, an idea for converting such a proof system into a public-coin
one would be to use a lower bound protocol to show that there are "many" (i.e., 2 v) y's
for which V's marginal acceptance probability is high. But the last step of the lower bound
protocol requires A to test membership in the set; that is, A must test that for the y given,
V's marginal acceptance probability is high. It does not seem possible for A to accomplish
this on his own.

To see how Goldwasser and Sipser overcome this obstacle, note that conditioned on y,
V's random coins r are distributed uniformly in the set

def
= {r : V,k(r) = y}.

Thus, V's marginal acceptance probability given y and a prover response z is exactly the
fraction of r E Q(y) for which V(x,y, z;r) = accept. This fraction can be proven to be

6 In case T n h- (0) = 0 the output is defined to be a special failure symbol.
7 Note that this task - choosing a hash function uniformly among those that map a given point to 0 -

can be easily done in polynomial time for our particular hash families 7
(nm.
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large via another lower bound protocol! Thus, the Goldwasser-Sipser transformation (for

two-message proof systems) consists of two lower bound protocols; together, these show

that there are "many" y's for which there are "many" r's making the verifier accept. For

the formal description of the protocol, let m be the number of random coins used by V and

let n be the length of V's messages. By flatness, I|(y)I = 2 -' for any y E Supp(V,k),
so 2 m- is the set size for which the second lower bound should be proven. Actually, to

guarantee a small completeness error via Lemma 5.2.1, we need some slackness in the set

sizes for which the lower bound protocol is executed, so we use set sizes 2 "-k and 2 m-v-k

rather than 2' and 2m-. The resulting proof system is Protocol 5.2.4.

Protocol 5.2.4: Goldwasser-Sipser [GS89] transformed protocol

(M, A) for flat distributions

Input: Instance x of II and a security parameter k (in unary)

1. M: Calculate v = H(V,k). Send v to A.

2. A: Choose h, uniformly from 'Ln,v-k. Send h, to M.

3. M: Choose y uniformly in Supp(V,k n h (0). Send y to A.

4. A: Check that h1 (y) = 0. If not, reject immediately.

5. M: Let z - P(x, 1k, y). Send z to A.

6. A: Choose h2 uniformly from 'nm,mv--k. Send h2 to M.

7. M: Choose r uniformly in Q (y) n h2~1 (0). Send r to A.

8. A: Check that V,k(r) = y, h2(r) = 0, and V(x,lk,y,z;r) = accept.

Accept if all three conditions hold and reject otherwise.

We now show that Protocol 5.2.4 is complete. Fix a YES instance x and a security

parameter k. By the completeness of the lower bound protocol, M will succeed to find

a y E Supp(V,k) (respectively, an r E Q(y)) satisfying the appropriate hashing condition

with probability at least 1 - 2 -k in each of the two lower bound protocols. By the perfect

completeness of (P, V), the condition that V(x, 1 k, y, z; r) will always be satisfied as long as

r E Q(y). Thus, (M, A) has completeness error at most 2 - 2.

The soundness of this proof system can be deduced from the soundness of both (P, V)

and the lower bound protocol as follows: Fix a NO instance x and a security parameter k.

Consider the optimal prover strategy M*, which we may assume is deterministic without

loss of generality. Let v* be M*'s first message. For any y and z, define

Ry),z {r E Q(y) : V(X, 1 k, y, z; r) = accept}.
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Also set
T = {y : 3 zIRy,z| > 2 m-v*-2k}

From the soundness of (P, V), it follows that |T| <; 2 v*-2k (for otherwise, there would exist a
P* which makes V accept with probability greater than (2v* -2k .2 m-v*-2k)/ 2 m = 2 -4k). By
the soundness of the lower bound protocol, M* will be able to select a y E T in Step 3 with
probability at most ITI/2v*-k < 2-k. Also by the soundness of the lower bound protocol,
given any y T and any z, the probability that M* will be able to select an r (in Step 7)
that will make A accept is at most IRY,z/2m-v*-k < 2 -k. Thus, the total soundness error
is at most 2 - 2

5.2.4 Preserving zero knowledge for flat distributions

Since (M, A) consists essentially of two lower bound protocols, Lemma 5.2.3 suggests that
(M, A) might satisfy some sort of zero-knowledge property. That lemma implies that when
both parties follow the protocol, y is distributed almost uniformly in Supp(V,k), and given
y and z, r is distributed almost uniformly in Q(y). Thus the distribution of (y, z, r) in
(M, A) is statistically close to the interaction between P and V (the statistical difference
is 2 -9(k) ). This suggests a way to simulate the (M, A) proof system: Run the simulator
for (P, V) to obtain a transcript (y, z; r) and then uniformly choose hash functions h, and
h2 subject to the conditions that h, (y) = 0 and h2 (r) = 0. However, to select these hash
functions, one needs to know v, the entropy of V,k. This appears difficult to compute in
polynomial time; indeed, that is why we have the prover calculate it and send it to the
verifier in the first message. This is essentially the only reason that (M, A) can fail to be
zero-knowledge even when (P, V) is.

To get around this difficulty, Okamoto [Oka96] uses a technique which he calls "com-
plementary usage of messages" (which we also used in the reduction from ED to SD). In
Protocol 5.2.4, M proves two lower bound; one for set size 2 v-k (for the set of "good" y's),
the other for set size 2 m-v-k (for the set of "good" r's). We aim to give a method by which
M can prove such lower bounds without revealing v. We begin with the second lower bound
(for set size 2 m-v-k. Recall that ISupp(V,kI = 2'. So, proving that some set T is of size
at least 2 m-v-k is equivalent to proving that T x Supp(V,k) is of size at least 2 m-k. Note
that v has disappeared, and all that is left is m (the number of coins that V uses) and k
(the security parameter), which are trivial to compute! Thus, in the second lower bound in
Protocol 5.2.4, we can replace Q(y) with £(y) x Supp(Vx,k) and have h2 map to m - k bits
instead of m - v - k.

The first lower bound (for set size 2 v-k) is only slightly trickier. Recall that for any

y E T, Q(y') = 2 m-. Thus, proving a lower bound of 2 v-k on the size of a set T is equivalent
to proving a lower bound of 2 m-k on the size of T x Q(y') , for some y' E Supp(V,k). Note
that in order to implement this idea, some y' must be fixed in advance; we can simply have
M choose one at random and send it to A prior to the lower bound protocol. Incorporating
these ideas into Protocol 5.2.4, we obtain Protocol 5.2.5, which gives a public-coin zero-
knowledge proof system, assuming that V,k is flat.

The last two steps of Protocol 5.2.5 are for M to prove that y" is in fact in the support
T of V,k. The completeness and soundness errors of this protocol can be shown to be
2. 2 k in the same manner done for Protocol 5.2.4, together with our observations above.
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Protocol 5.2.5: Zero-knowledge transformed protocol (M, A) for flat
distributions

Input: Instance x of II and a security parameter k (in unary)

1. M: Select y' +- V,k. Send y' to A.

2. A: Choose h, uniformly from 1 1n+m,m-k- Send hi to M.

3. M: Choose (y, r') uniformly in (Supp(V,k) x Q(y')) n h 1 (0). Send (y, r')
to A.

4. A: Check that hi(y,r') = 0 and V,k(r') = y'. If either does not hold,
reject immediately.

5. M: Let z +_ P(X, 1k, y). Send z to A.

6. A: Choose h2 uniformly from lHm+n,mv--k. Send h2 to M.

7. M: Choose (r, y") uniformly in (Q(y) x Supp(V,k)) nh-1 (0). Send (r,y")
to A.

8. A: Check that Vx,k(r) = y, h2(r, y") = 0, and V(x, 1 k, y, z; r) = accept.

If any of these conditions does not hold, reject immediately.

9. M: Choose r" uniformly in Q(y"). Send r" to A.

10. A: Check that V,k(r") = y" and accept if this holds and reject otherwise.
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In addition, having eliminated the use of v = H(V,k) in the protocol, we can now argue
that the proof system is statistical zero-knowledge, assuming that (P, V) is. Consider the
simulator given in Algorithm 5.2.6.

Algorithm 5.2.6: Simulator for Protocol 5.2.5

Input: Instance x of II and a security parameter k (in unary)

1. Run the simulator for (P, V) to obtain a transcript (y, z; r).

2. Choose r' and r" uniformly from {0, 1}m. Let y' = V,k(r') and y" =

V,k(r").

3. Choose h, uniformly {h E Nn+m,m-k : h(y, r') = 01-

4. Choose h2 uniformly {h E )m+n,m-k : h(r, y") = 01-

5. Output (y', hi, (y, r'), z, h2 , (r, y"), r").a

aIn an honest-verifier public-coin proof, the verifier's coins need not be separately simulated
since they are the same as the verifier's messages.

The deviation of this simulator can be analyzed as follows: First assume that the simu-
lator for (P, V) is actually a perfect simulator, i.e., has deviation 0; using a statistical zero-
knowledge simulator would only increases the deviation by a negligible amount. Now, the
distribution of y' is the same (uniform in Supp(V,k)) in both (M, A) and the simulator, so
we analyze both distributions conditioned on any fixed y'. In (M, A), h, is chosen uniformly
from 1 t n+m,m-k, and then (y, r') is chosen uniformly from (Supp(V,k) x Q(y')) n h-1(0). In
the simulator, (y, r') is distributed uniformly in Supp(V,k) x Q(y') and h, is chosen uniformly
subject to hl (y, r') = 0. These correspond to distributions (A) and (B) in Lemma 5.2.3,
respectively. By that lemma, these two distributions have statistical difference at most
(2m-k/|Supp(V,k) x Q(y')1(1 ) = ( 2 -k)Q(1). So, now fix any (y',hi, (yr')) (such that
hi (y, r') = 0 and V,k(r') = y') and let us analyze the remaining components conditioned
on those. In both (M, A) and the simulator, z is chosen according to P's strategy, so it does
not increase the statistical difference. Another application of Lemma 5.2.3, with respect to
the set (y) x Supp(V,k), shows that the components (h2 , (r, y")) increase the statistical
difference by at most 2 -9(k). Finally, r" is distributed uniformly in Q(y") in both (M, A)
and the simulator. Thus, the total simulator deviation is at most 2 -4(k) plus the deviation
of the simulator for (P, V).

Remark 5.2.7 Okamoto [Oka96] also treats the special case of 2-message proof systems in
which the verifier message distribution is flat for motivation. Protocol 5.2.5 (and its gen-
eralization to non-flat distributions below) differ from Okamoto's protocols in one respect.
Okamoto uses the simulated verifer (as defined by the simulator for (P, V)) instead of the
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real verifier V in constructing the proof system (M, A). Because of this, in Okamoto's trans-

formation, the fact that the simulated verifier is statistically close to the real verifier is used

in proving the completeness of (M, A); hence, the transformation is restricted to statistical

zero knowledge proofs. In our case, the simulator for (P, V) is only used in constructing the

simulator for (M, A); this enables us to prove that the transformation also works for com-

putational zero knowledge. On the other hand, the fact that Okamoto uses the simulator S

rather than the verifier V in constructing (M, A) appears to be crucial in his transformation

for many-message proof systems (which we have avoided via Corollary 4.1.1). To extend

the result to 3-message computational zero-knowledge proofs, we simply note that an extra

prover message at the start does not harm the analysis.

5.2.5 Removing the assumptions - general distributions

There are several problems in generalizing the transformation of Protocol 5.2.5 to arbitrary

two-message zero-knowledge proofs (P, V). The assumption about the completeness and

soundness errors is not very problematic. Essentially the same analysis as given above

works even when the proof system does not have perfect completeness, but completeness

error, say, 2 -k*. And exponentially small completeness and soundness errors can be achieved

by straightforward parallel repetitions.

The assumption that the verifier message distribution V,,k is flat presents more serious

difficulties. Recall the Flattening Lemma (Lemma 3.4.6), which says that if we take many

independent copies of a distribution, the distribution gets "flattened" in the sense that,

with high probability, a random sample from the distribution X will have probability mass

within a factor of 2 0(A) of 2 -H(X), where A grows sublinearly with the number of copies

taken. Note that taking parallel repetitions of the proof system has exactly the effect of

replacing the message distribution Vx,k with many independent copies of itself. A key point

is that the soundness error decreases like a true exponential 2 -2(t) with the number t of

parallel repetitions. Thus, with sufficiently many parallel repetitions, we can make the

deviation A from flatness small relative to the soundness error, in the sense that the extra

slackness factors of 2 0(A) needed in the lower bound protocols to deal with the deviation

from flatness will not affect the soundness of the resulting proof system (M, A).

Unfortunately, the protocol still needs further modifications to work with "nearly flat"

rather than truly flat distributions. The problems arise from the fact that, although A-

flatness guarantees that, with high probability, a random sample will have a nearly typical

probability mass, some very heavy and very light samples can still exist. So, M may select

y' to be "too heavy", allowing him many choices for r' and leading to a violation of the

soundness requirement. Similarly, although there are only about 2 H(V_,k) choices for y" that

have probability mass near 2 -H(V ,k) if Vy,k is only nearly flat there may be many more

choices for y" (alas, these are "too light" - i.e., have probability mass much smaller than

2-H(Vk)). This gives M too much freedom (in the choice of y") and may also lead to

violation of the soundness requirement.

In order to solve these problems, Okamoto [Oka96] introduces two subprotocols: The

first is a "sample generation" protocol, which is a protocol for M and A to select a sample

from a nearly flat distribution such that no matter what strategy M uses, the sample will

not be too heavy. This will replace Step 1 in Protocol 5.2.5, and guarantee that M does
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not have too much freedom in its choice of r' (in Step 3). The second protocol is a "sample
test" protocol, which is a way for M to prove that a sample y" taken from a nearly flat
distribution is not too light. This will replace Steps 9 and 10 in Protocol 5.2.5 and guarantee
that M does not have too much freedom in its choice of y" (in Step 7).

We stress that both of these subprotocols will be public-coin and will possess appropriate
simulability properties to ensure that the resulting protocol for II is a public-coin HVSZK
proof system. Below, we will specify the properties of these subprotocols, and formulate and
analyze the transformed proof system assuming that these subprotocols exist. In Section 5.5,
we present these subprotocols and prove that they have the asserted properties.

5.3 Subprotocol specifications

Below, all distributions are given in form of a circuit which generate them. The input to
these protocols will consist of a distribution, denoted X. We will denote by m (resp., n) the
length of the input to (resp., output of) the circuit generating the distribution X. In order
to define the notion of a sample generation protocol, we must formalize what it means for
an interactive protocol to have output.

Definition 5.3.1 Let f be any (deterministic) polynomial-time computable function and
let (A, B) be an interactive protocol. The f-output of (A, B) on input x is the random
variable obtained by applying f to x and all the messages exchanged between A and B (but
not to the random coins of A and B).

Usually, for any given protocol, we will only be interested in one particular output
function f (given at the same time as the protocol), so we will usually omit f from the
notation when referring to the protocol.

Definition 5.3.2 (sample generation protocol) A protocol (M, A) is called a sample
generation protocol if on common input a distribution X and parameters A, t, such that X
is A-flat and t < A,8 the following holds:

1. (efficiency) (M, A) is polynomially bounded and A is polynomial-time computable.

2. ("completeness") If both parties are honest, then the output of the protocol will be
t - A-typical with probability at least 1 - m - 2-"(.

3. ("soundness") If A is honest then, no matter how M plays, the output will be 2Vft-AA-
heavy with probability at most m - 2

4. (strong "zero knowledge") There exists a probabilistic polynomial-time simulator S
so that for every (X, A, t) as above, the following two distributions have statistical
difference at most m -2-t :

8The condition t < A is to simplify the error expressions and will always be satisfied in our applications.
Moreover, the particular error expressions we give are artifacts of our construction and a protocol achieving
slightly different expressions might suffice. What is important is that the error probabilities (m -2-
are negligible as a function of t and that the heaviness expression 2v/tA -A is subquadratic in A.
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(A) Execute (M, A) on common input (X, At) and output the view of A, appended

by the output.

(B) Choose x +- X and output (S( X,,t, x), x).

A sample generation protocol is said to be public coin if it is public coin for A.

The above zero-knowledge property is referred to as strong since the simulator cannot

produce a view-output pair by first generating the view and then computing the correspond-

ing output. Instead, the simulator is forced (by the explicit inclusion of x in Distribution

(B)) to generate a consistent random view for a given random output (of the protocol). We

comment that the trivial protocol in which A uniformly selects an input r to the circuit

X and reveals both r and the output x = X(r) cannot be used since the simulator is only

given x and it may be difficult to find an r yielding x in general. Still, a sample generation

protocol is implicit in Okamoto's work [Oka96] (where it is called a "pre-test").

Theorem 5.3.3 (implicit in [Oka96]) There exists a public-coin sample generation pro-

tocol. Furthermore, the number of messages exchanged in the protocol is linear in m.

A proof of Theorem 5.3.3 is presented in Section 5.5.

Definition 5.3.4 (sample test protocol) A protocol (M, A) is called a sample test pro-

tocol if on common input a distribution X, a string x C {0, 1} and parameters A, t, such

that X is A-flat and t < A, the following holds:

1. (efficiency) (M, A) is polynomially bounded and A is polynomial-time computable.

2. ("completeness") If both parties are honest and x is t - A-typical then A accepts with

probability at least 1 - m - 2-

3. ("soundness") If x is 61It& - A-light and A is honest then, no matter how M plays,

A accepts with probability at most m -2_(t2)

4. (weak "zero knowledge") There exists a probabilistic polynomial-time simulator S so

that for every (X, A, t) as above and for every t - A-typical x, the following two dis-

tributions have statistical difference at most m - 2--f( ):

(A) Execute (M, A) on common input (X, x, A, t) and output the view of A, prepended

by x.

(B) Choose r uniformly in Qx(x) = {r' : X(r') = x}, and output (x, S(X, x, A, t, r)).

A sample test protocol is said to be public coin if it is public coin for A.

The above zero-knowledge property is referred to as weak since the simulator gets a random

r giving rise to x (i.e., x = X(r)) as an auxiliary input (whereas A is only given x). We

comment that a simple public-coin testing protocol exists in case one can approximate the

size of Qx (x) and uniformly sample from it. However, this may not be the case in general.

Still, a sample test protocol is implicit in Okamoto's work [Oka96] (where it is called a
"Cpost-test" ).
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Theorem 5.3.5 (implicit in [Oka96]) There exists a public-coin sample testing protocol.
Furthermore, the number of messages exchanged in the protocol is linear in m.

A proof of Theorem 5.3.5 is presented in Section 5.5.

5.4 The transformed proof system

We now present the transformation from 2-message zero-knowledge proofs to public-coin
zero-knowledge proofs. (The case of 3-message computational zero-knowledge proofs is
similar, but complicates the notation, so we just sketch the changes necessary at the end.)
Let (Po, V) be a 2-message interactive proof system which is honest-verifier zero-knowledge
(either computational or statistical). Without loss of generality, we assume that on security
parameter k, the completeness error is at most 2 -k and the soundness error is at most
1/2. Throughout what follows, we will always assume that the security parameter k is
at least the input length lxi; this can be achieved by artifically increasing k if necessary.
Let mo(k) = poly(k) be a bound on the number of random coins used by V on inputs

(x, 1k), when k > |xi. Let (P, V) denote the interactive proof system for H, which does
the following on input x and security parameter k > |x|: Both parties set mo = mo(k),
and =216.- m- k; and execute (Po, Vo)(xik) £ times in parallel, with V accepting iff V
accepts in all f executions.

Let V,k denote the message distribution of V on input (x, 1k). Let n be the length of
messages produced by this distribution, and m = f - mo the number of random coins used
to generate the distribution. We can immediately make the following observations about
(P, V):

Claim 5.4.1

1. The completeness error is at most f2 = 2

2. The soundness error is at most 2- .

3. Vx,k is A-flat, for A = V - mo = 28m0vkK

The last item follows from the Flattening Lemma (Lemma 3.4.6), as V,k consist of f inde-
pendent copies of V's message distribution.

Protocol 5.4.2 gives the transformed proof system (M, A) obtained by generalizing Pro-
tocol 5.2.5 to "nearly flat" distributions and augmenting it with sample generation and
sample test protocols. In the protocol, the parameters m, m, n, f, and A have the same

values as above (as functions of k), and, for any y, Q(y) = {r E {0, 1}m : Vx,k(r) = y}-
We now prove that (M, A) is the protocol we want. Clearly, (M, A) is public-coin,

assuming that the sample generation and test protocols are (as we may by Theorems 5.3.3
and 5.3.5). The completeness property will follow from the zero knowledge one, so we start
by establishing soundness.

Lemma 5.4.3 (soundness) Suppose that x E IIN- Then, for any M*, A accepts in
(M*, A)(x, 1k) with probability at most exp(-Q(k)).
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Protocol 5.4.2: Zero-knowledge transformed protocol (M, A)

Input: Instance x of II and a security parameter k ;> lx (in unary)

1. M, A: Execute a sample generation protocol, with inputs (V,k, A, s/K), to
obtain an output y'.

2. A: Choose h, uniformly from n? mm-3 A. Send h, to M.

3. M: Choose (y, r') according to V,k & Q(y),a conditioned on hi(y, r') = 0.

Send (y, r') to A.

4. A: Check that hi(y,r') = 0 and V,k(r') = y'. If either does not hold,
reject immediately.

5. M: Let z +- P(X, 1k, y). Send z to A.

6. A: Choose h2 uniformly from Itm+n,m-v-3k - Send h2 to M.

7. M: Choose (r, y") according to Q(y) 0 V,k, conditioned on h2(r, y") = 0.

Send (r, y") to A.

8. A: Check that V,k(r) = y, h2(r, y") = 0, and V(x, 1k, y, z; r) = accept.

If any of these conditions does not hold, reject immediately.

9. M, A: Execute a sample test protocol, with input (Vxk, y", A, vk), and A

accepts iff the test is concluded satisfactorily.

"Recall that we use the same notation for a set (e.g., Q(y')) and the uniform distribution
on that set.
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Proof: Observe that the sample generation and test protocols are invoking with parame-
ters t = VW and A = 28 m 4 V, and V,k is in fact A flat. Thus, the soundness of the sample
generation protocol implies that with probability at most m - exp(-Q(t 2 )) = exp(-(k)),
the outcome y' is 2Vrt-'A A-heavy. Thus, we have:

Claim 5.4.4 y' is 2x, - A-heavy with probability at most exp(-Q(k)).

Suppose that y' is not 2v - A-heavy. We will show that M* will be forced to select a
y which has very few accepting r's. Sd in the analysis of Protocol 5.2.4, for any y and z, let

R yz {r E Q (y) : V(x, 1 k, y, z; r) = accept},

and define
def m-H(Vk)-7v'i.A}

T = {y : 3z|Ry,~z > 2m

Claim 5.4.5 |TI < 2 H(Vx,k)-3 A-A.

Proof of claim: Suppose not. Then there would be a prover strategy P*
which convinces V to accept with probability at least

IT .2 2m-H(Vx,k )-7v"t-A --lovt-A
2m

However, by our setting of parameters,

10v' -A = 10 -2 12. M - k < e,

so we have contradicted the fact that the soundness error of (P, V) is 2 -. Li

Claim 5.4.6 If y' is not 2iA - A-heavy, then, with probability at least 1 - 2 -k (over
Steps 2-4), y V T (or A rejects).

Proof of claim: By the soundness of the standard lower bound protocol
(Lemma 5.2.2), it suffices to show that the number of pairs (y, r') such that

V,k(r') = y' and y E T is at most 2 -k - 2m-3v/A. Since y' is not 20A -A-
heavy, there are at most 2 m-H(V,,k)+2 A'A values of r' such that V,k(r') = y'.
Thus the total number of pairs (y, r') such that V,k(r') = y' and y E T is at
most

2m-H(,k)+2vA-A .2 H(Vx,k)-3v-A _ 2m-v-A

So we need to show that /A - A > 3v/k-A + k. This follows from our choice of
parameters:

A - A = 24 mV.\- A > 3 v/- - A + k.

Claim 5.4.7 If y T, then with probability at least 1 -2-k (over Steps 6-8), y" is 6AA-A-
light (or A rejects).
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Proof of claim: In Step 7, M* must choose r from Ry,z, or else A will reject.

Thus, by the soundness of the lower bound protocol, it suffices to show that the

number of pairs (r, y") such that r E Ry,z and y" is not 6VA - A-light is at

most 2 -k - 2 m-3VrA. IRyzI 5 2 m-H(V,,k)-7v'itAA because y V T. The number

non-6 ViA -A-light choices for y" is at most 2 H(V,,k)+6\-/iA (as each such y" has

probability mass at least 2 -H(Vx,k)-6v'1A under Vxk). Thus, the total number

of pairs (r, y") such that r E Ry,z and y" is not 6V-A - A-light is at most

2-H(V,,)-7 A-A 2 H(Vx,)-6Vi-A m-

which is smaller than 2 -k - 2 m-3vkA, as shown in the proof of Claim 5.4.6. Z

By the soundness of the sample test protocol, we have:

Claim 5.4.8 If y" is 6viA-. A-light, A will reject in the sample test protocol with probability

at least 1 - 2 -Q(k)

Putting together all these claims, it follows that A will reject on a NO instance with

probability at least 1 - 2 -Q(k).

We now show that (M, A) retains the zero-knowledge properties of (P, V). Let S be

a (HVSZK or HVCZK) simulator for (P, V). The simulator for (M, A), given in Algo-

rithm 5.4.9, is similar Algorithm 5.2.6, but is augmented by the simulators for the sample

generation and test protocols.
The correctness of this simulator will rely on the following generalization of Lemma 5.2.3

to non-flat distributions, proved in Appendix B.

Lemma 5.4.10 (implicit in [Oka96]) Let W be a 2-universal family of hash functions

mapping a domain D to a range R and let 0 be any fixed element of R. Let Z be a

distribution on D such that with probability 1-6 over z selected according to Z, Pr [Z = z] !

e/1|ZI. Then the following two distributions have statistical difference at most 3(6 + 61/3):

(A) Choose h uniformly in X. Select z according to Z conditioned on h(z) = 0. Output

(h, z).

(B) Choose z according to Z. Select h uniformly in {h' E W : h(z) = 0}. Output (h, z).

We first analyze the simulator when transcript obtained from S is replaced with a true

sample of (P, V).

Lemma 5.4.11 Let S* denote the output distribution of Algorithm 5.4.9, when the tran-

script (y, z; r) obtained from S(x, 1k) is replaced with a sample of (P, V)(x, ik). Then, X

has statistical difference at most exp(-Q(k)) from (M, A)(x, 1k).

Proof: By the strong zero-knowledge property of the sample generation protocol, the

pair (a, y') in an execution of S* has statistical difference at most m - 2-0(k) = 2 -Q(k)
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Algorithm 5.4.9: Simulator for Protocol 5.4.2

Input: Instance x of II and a security parameter k (in unary)

1. Run the simulator S for (P, V) on input (x, 1k) to obtain a transcript

(y, z; r).

2. Choose r' and r" uniformly from {0, 1}m. Let y' = V,k(r') and y" =

Vx,k (r").

3. Run the simulator for the sample generation protocol on input

(V,k, A, t, y') to obtain a transcript a corresponding to output y'.

4. Choose h, uniformly {h E Nn+m,m-k : h(y, r') = 01.

5. Choose h2 uniformly {h E 1Hm+n,m-k : h(r, y") = 0}.

6. Simulate an execution of the sample test protocol on input (V,k, y", A, t)
and auxiliary input r", obtaining a transcript, denoted 3.

7. Output (a, hl, (y, r'), z, h2 , (r, y"), 0).

from a real execution of that protocol.9 Since V,k is A-flat, the string y' is tA-light with
probability at most 2-2+, = 2 -k+1 in the simulator. Thus, we consider the distributions
on (hi, (y, r')) conditioned on any pair (a, y') such that y' is not tA-light. To analyze this,
we apply Lemma 5.4.10 with Z = V,k 0 Q(y'), D = {0, 1}n+m, and 7Z = {0, 1}m-3kA
Distribution (A) (resp., (B)) in Lemma 5.4.10 corresponds to the distribution of (hi, (y, r'))
in the proof system (resp., S*). Since V,k is A-flat and y' is not tA-light, the following
holds with probability > 1 - 2-k+1 over (y, r') selected according to Vxk 0 Q(y'):

Pr [V,k 0 Q(y') = (y, r')] 1
= Pr [V,k = Y] .< 2-H( , |)±t y )|

< 2-H(V ,,k )+tA . 1

2m-H(V,,k )-tA

2-k

|RI

9 y' is not actually part of the transcripts, since it is not a message exchanged. Rather, it is computed by
applying a polynomial-time computable function to a (see Definition 5.3.1). But, for the purposes of this
proof, it is convenient to treat it on its own.
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Thus, we can take 6 = 2 -k+1 and E = 2 -k in Lemma 5.4.10, and see that the two distribu-

tions on (hi, (y, r')) have statistical difference 2 -9(k) (conditioned on history a).

In both S* and (M, A), z is generated by applying the same randomized procedure to

the history (a, hl, (y, r')) (namely, the strategy for P), so including z does not increase the

statistical difference. Another application of Lemma 5.4.10, similar to the one above, shows

that the distributions on (h2 , (r, y")) have statistical difference at most 2 -(k), conditioned

on any history (a, hi, (y, r'), z) in which y is not tA-light. Since y is distributed according to

the A-flat distribution V,k in the simulator, it is tA-light with probability at most 2 -k+1*

Finally, including 3 only increases the statistical difference by 2 -(k) by the weak zero-

knowledge property of the sample test protocol (noting that in the simulator, y" is tA-light

with probability at most 2 -k+1 and r" is distributed uniformly in Q(y")). U

Lemma 5.4.11 immediately implies the completeness of (M, A):

Lemma 5.4.12 (completeness) (M, A) has completeness error 2-9(k).

Proof: The transcript generated by X is accepting whenever the transcript (y, z; r)

it receives from (P, V) (X, 1k) is accepting. Since (P, V) has completeness error at most

exp(-Q(k)) and the statistical difference between X and (M, A)(x, 1k) is at most exp(-Q(k)),
it follows that (M, A) has completeness error exp(-Q(k)). U

Statistical zero knowledge also follows readily from Lemma 5.4.11; using a simulator of

deviation p instead of sample of (P, V) can only affect the statistical difference by P.

Lemma 5.4.13 (statistical zero knowledge) If S simulates (P, V) with deviation devi-

ation p(k), then Algorithm 5.4.9 simulates (M, A) with deviation p(k) + 2 -Q(k). Thus, if
(P, V) is honest-verifier statistical zero knowledge, then so is (M, A).

Computational zero knowledge follows from the additional observation that Algorithm 5.4.9

performs an efficient computation on the transcript of (P, V) received.

Lemma 5.4.14 (computational zero knowledge) If (P, V) is honest-verifier computa-

tional zero knowledge, then so is (P, V).

Proof: If (P, V)(x, 1k) and S(x, 1k) are computationally indistinguishable, then so are

X and the output of Algorithm 5.4.9, because they are obtained by applying the same

polynomial-time procedures to (P, V)(x, 1k) and S(X, 1k), respectively. Since (M, A)(x, 1k)
has negligible statistical difference from X, it follows that it too is computationally indis-

tinguishable from the output of Algorithm 5.4.9. N

This completes the proof of Theorems 5.1.1, and the proof of Theorem 5.1.2 for 2-

message proof systems. To extend the result to 3-message HVCZK, we simply note that

including an extra prover message w at the start of the proof system does not cause any

problems. Throughout the construction and analysis, the verifier message distribution V2,k
should be replaced with V,,,, which is the verifier's message distribution when the input

is X, the security parameter is k, and the prover's first message is w.
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We can strengthen the statements of the theorems somewhat. First, recall that we
showed that every problem in HVSZK has a 2-message statistical zero-knowledge proof
with simulator deviation 2 -k (Corollary 4.1.1). Using such a proof system as the starting
point for the construction, Lemma 5.4.13 says that the resulting simulator deviation will
be 2 -1(k). (Actually, we did poly(k) parallel repetitions to obtain the (P, V) used in the
transformation, which increases the simulator deviation by a poly(k) factor, but poly(k) -
2~2(k) - 2 -0(k).) Renaming k, the simulator deviation becomes simply 2 -k. Second, Flirer
et. al. [FGM+89] have shown how to transform public-coin proofs into ones with perfect
completeness; their transformation preserves honest-verifier statistical and computational
zero-knowledge, and in fact preserves an exponentially small simulator deviation.10 Thus,
we obtain:

Theorem 5.4.15 (Theorem 5.1.1, strengthened) Every problem in HVSZK has a public-
coin honest-verifier statistical zero-knowledge proof with perfect completeness and simulator
deviation 2 -k

Theorem 5.4.16 (Theorem 5.1.2, strengthened) Every problem possessing a 3-message
honest-verifier computational zero-knowledge proof also possesses a public-coin honest-verifier
computational zero-knowledge proof with perfect completeness.

By Lemma 4.6.7, we can immediately deduce an analogous result for knowledge com-
plexity in the hint sense.

Corollary 5.4.17 Let r, : N -+ N be any polynomially bounded function. Then every prob-
lem I1 - SKChint((n)) has a public-coin proof system of statistical knowledge complexity
rz(n).

A corollary of the result for computational zero knowledge, is that we can now also
prove the Ostrovsky-Wigderson for 3-message computational zero-knowledge proofs. That
is, combining Theorems 4.8.8 and 5.1.2, we get:

Theorem 5.4.18 ([OW93] for 3-message proofs) If a hard-on-average promise prob-
lem possesses a 3-message computational zero-knowledge proof, then one-way functions ex-
ist.

The most important open problem left by these results is to remove the 3-message
restriction for computational zero knowledge (without making any computational assump-
tions).

Open Problem 5.4.19 Does every problem in HVCZK possess a public-coin HVCZK
proof system?

10 Ffirer et. al. [FGM+891 actually claim to convert any honest-verifier statistical zero-knowledge proof
(even a private-coin one) into one with perfect completeness, but actually, their transformation only preserves
zero knowledge when starting with a public-coin proof system.
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Another interesting problem is to improve the message complexity of the transformation.

Neither of these theorems give any guarantee on the message complexity of the public-coin

proof systems produced, despite the fact that they are obtained by starting with constant-

message proof systems. This is a sharp contrast with the Goldwasser-Sipser transformation

which only increases the message complexity by 2 (and this can be actually reduced to zero

using the collapse theorems of [BM88]). Thus, the following question is still unanswered:

Open Problem 5.4.20 Does every problem in HVSZK have a public-coin HVSZK proof

system which exchanges a constant number of messages?

For a positive answer to this question, it would suffice to exhibit constant-message

(public-coin) sample generation and sample test protocols, as the rest of Protocol 5.4.2

only uses a constant number of messages. (The proof system for ENTROPY DIFFERENCE

in [GV99] uses even fewer messages beyond the sample generation and test protocols.)

5.5 Okamoto's subprotocols

In this section, we present Okamoto's protocols for generating and testing samples from a

nearly flat distribution. Recall that these protocols must be public coin and furthermore

must satisfy certain "zero-knowledge" properties.

5.5.1 Overview

Sample generation. Here the input to the protocol (M, A) is a A-flat distribution X

(encoded by a circuit) and the output should be a sample x from this distribution. We

require that, no matter what strategy M follows, x will not be too heavy. If, however, both

parties play honestly, then x should be nearly typical with high probability, and should be

simulatable for an externally specified x. In particular, the protocol should not reveal an

input to the circuit X that yields x, as the simulator is only given x and it may be difficult

to find an input yielding x in general. If we remove this condition, the problem becomes

trivial: A could just sample x according to X and reveal both x and the input used to

produce it. Since X is nearly flat, x will be nearly typical with high probability.

Okamoto's solution to this problem has the following general structure: M proposes

a sample x (which is supposed to be distributed according to X) and sends it to A. (Of

course, if M is dishonest, he can choose x to be too heavy.) Then M and A engage in a

short "game" which ends by M proposing another sample x'. Roughly speaking, this game

has the following properties:

1. If x is too heavy, then no matter what strategy M follows, he will be forced to select

x' which is noticeably lighter than x.

2. If x is not too heavy, then no matter what strategy M follows, he will be forced to

choose x' that is also not too heavy.

3. If x is nearly typical and M plays honestly, then x' will also be nearly typical.
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4. If M plays honestly, then A's view of the game is simulatable for an externally specified

Clearly, repeating this game many times to obtain a sequence of samples xo,... ,xm
(where x0 is proposed by M and xi+1 = x') will have the effect of pushing a heavy proposal
for x0 closer and closer to the nearly typical set. Taking m sufficiently large (but still
polynomial in the appropriate parameters), xm will be guaranteed to be not too heavy, no
matter how M plays. On the other hand, if M plays honestly, all the samples will be nearly
typical. Finally, the simulability property of the game enables the entire sample generation
protocol to be simulated "backwards" for an externally specified xm.

Sample test. Here the input to the protcol (M, A) is a A-flat distribution X (encoded
by a circuit) together with a string x from the domain of X. At the end of the protocol, A
accepts or rejects. We require that if x is too light, A should reject with high probabability.
If, however, x is nearly typical and both parties play honestly, then A should accept with
high probability, and, moreover, A's view of the interaction should be simulatable (given
additionally a random input for X which yields x).

The general structure of this protocol is very similar to that of the sample generation
protocol. Given x, M and A engage in a short game which ends by M proposing another
sample x'. Roughly speaking, this game has the following properties:

1. If x is too light, then no matter what strategy M follows, he will be forced to select
X' which is noticeably lighter than x.

2. If x is nearly typical and M plays honestly, then x' will also be nearly typical.

3. If x is nearly typical and M plays honestly, then A's view of the game is simulatable
(given a random input to X which yields x).

Clearly, repeating this game many times to obtain a sequence X, ... ,X m (where xo = x
and xi+ 1 = x') will have the effect of making a light input sample lighter and lighter. Taking
m sufficiently large, xm-1 will be so light that it has zero probability, so there is no xm
lighter than xml- and A will reject! Notice that we do not care what happens in the game
if xi is not too light and M plays dishonestly; if the original input is too light (which is the
the only time we worry about a dishonest M), all the subsequent xi's will also be too light
with high probability. On the other hand, if the original input x is nearly typical and M
plays honestly, all the samples will be nearly typical. Finally, the simulability property of
the game enables the entire sample test protocol to be simulated "forwards" given coins for
x. Amazingly, the game used for the sample test protocol is identical to the game used for
the sample generation protocol. We describe this "pushing" game in the next section, and
subsequently give formal descriptions of the two protocols.

5.5.2 The pushing game

Throughout the remainder of Section 5.5, X is a A-flat distribution encoded by a circuit
and m (resp., n) denotes the length of the input (resp., output) of the circuit generating X.

116



5.5. OKAMOTO'S SUBPROTOCOLS

Recall that for positive integers k and f, lti,j denotes a 2-universal family of hash functions

mapping {0, 1}k to {, 1 }f.

The basic game underlying the sample generation and sample test protocols is the 2-

message protocol given in Protocol 5.5.1 (called "sequentially recursive hashing" in [Oka96]).

Protocol 5.5.1: Pushing game (M, A)

Input: (X, X, A, t), where x E {0, 1} and t < A

1. A: Choose h uniformly from ?im+n,m-3tA and send h to M.

2. M: Choose (r, x') from the distribution Qx(x) x X, conditioned on

h(r, ') = 0, and send (r, x') to A. (If there is no such pair (r, x'), then M

sends fail to A.)

3. A: Check that X(r) = x and h(r, x') = 0. If either condition fails, reject.

Output: X'

Observe that if IQx(x)I = 0, then A rejects with probability 1. In order to describe

remaining the properties of the pushing game, we define the weight of a string x relative to

a circuit X by wtx(x) = log(Pr [X = x] - 2 H(X)). So, x is y-heavy iff wtx(x) -y and x is

y-light iff wtx(x) < -- y. Also note that for x in the support of X, Iwtx (x)I K m. When the

distribution X is clear from the context, we will often write wt(x) instead of wtx(x). The

following lemma asserts that no matter how M plays, if the input to the game is atypical,
then the output is noticeably lighter. (The behavior on typical inputs is analyzed later -

in Lemma 5.5.3.)

Lemma 5.5.2 If A follows the prescribed strategy in the pushing game, then no matter

what strategy M uses, the following hold:

1. ("heavy gets lighter") With probability 1 - 2 42(t2 , either wt(x') < max(wt(x) -
1, 2/iA - A) or A rejects.

2. ("light gets lighter") If wt(x) 5 -6v1A- A, then with probability > 1 - 2-(t 2
), either

wt(x') < wt(x) - 1 or A rejects.

Proof: 1. Let S be the set of x' such that wt(x'
to show that with probability at most 2-U(,2 over

exists a pair (r, x') E Qx(x) x S such that h(x, r')

lower-bound protocol (Lemma 5.2.3), it suffices to

) max(wt(x) - 1, 2/A - A). We need
the choice of h from 7im+n,m-3tA, there
= 0. By the soundness of the standard

prove that
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The intuition is that the number of x' that are heavier than max(wt(x) - 1, 2VA -A) is so
small that not even the size of Qx(x) can compensate.

By definition of wt(x), IQx(x)I = 2 m-H(X)+wt(x). We now bound IS. First, since X is
A-flat, we have

2 -4tA+1 > Pr [wt(x') > 2V - A]
x'<-X I I

> Pr[X E S]

= ZPr [X = x']
x'E S

On the other hand, every x' E S is (wt(x) - 1)-heavy, which means that Pr [X = X'] >
2 -H(X)+wt(x)-1. Thus,

2 -4tA+1 > ISI 2 -H(X)+wt(x)-1

Putting everything together, we have

IQx(x) x S1 2 m-H(X)+wt(x) .

2 m4tA22-H(X)+wt(x)-1

< -t2+2 2 m-3tA

as desired. (In the last inequality, we used the fact that t < A.)

2. Let S = {x' : wt(x') wt(x) - 1}. Again, it suffices to show that |Qx(x) x S| 5
2-P(t2 ) - 2 m-3tA. Here the intuition is that |Qx(x) I is so small (since x is so light) that the
only way for M to succeed is to choose x' even lighter than x (since there cannot be too
many strings of noticeable probability mass). This time we bound ISI by dividing S into
two parts. Define

Si = {x' : wt(x) - 1 wt(x') -2V -A}

S2 = {x' : -2VitA -A < wt(x')},

so that S = Si U S 2 . Since every x' E S 2 has probability mass greater than 2 -H(X)-2Vith-A

we must have

IS21 < 2H(X)+2v/t-A
<2H(X)-wt(x)-4tA

where the last inequality follows from wt(x) 5 -6\/t- - A and A > t. We now bound IS1i.
Since X is A-flat, we have

2 -4tA+1 > Pr [X' E S1 ]

> ISl - 2 --H(X)+wt(x)-1
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Thus, ISi < 2 H(X)-wt(x)-4tA+2, and so

= Isl + s2i < 2 H(X)-wt(x)-4t±A+3

and

IQx (x) x SI < 2m-H(X)+wt(x) .2 H(X)-wt(x)-4tA+3

= 2 m-4tA+3

< -2+3 - 2m-3tA

as desired.

The pushing game has the following simulability and "completeness" properties when

both parties are honest:

Lemma 5.5.3 If both parties follow the protocol in the pushing game and x is tA-typical,

then the following two distributions have statistical difference at most 2-n(,2):

(A) Execute the pushing game on input (X,x, A,t) to obtain (h,r,x'). Output (h,r,x').

(B) Let x' be distributed according to X and let r be selected uniformly from ix (x). Choose

h uniformly in Wm+n,m-3tA subject to h(r, x') = 0. Output (h, r, x').

Proof: We apply Lemma 5.4.10 with Z = Qx(x) x X, D = {0, 1}m+n and R =

{0, 1}m-3tA. Distribution (A) (resp., (B)) in Lemma 5.4.10 corresponds to Distribution

(A) (resp., (B)) above. Since X is A-flat, the following holds with probability > 1 - 2_t2+1

over (r, x') selected according to Qx (x) x X:

1
Pr [Qx (x) = (r, x')] = Pr [X = x']

IQx(x)I

< 2 -H(X)+tA . 1

2m-H(X)-tA

Thus, we can take 6 = 2 _t 2 +1 and e = 2 -tA < 2_t 2 in Lemma 5.4.10, and see that the two

distributions have statistical difference 2 -f(t 2

5.5.3 The protocols

The sample generation and test protocols are given in Protocols 5.5.4 and 5.5.5, respectively,
They simply consist of many repetitions of the basic pushing game.

5.5.4 Correctness of sample generation protocol

Using the properties of the pushing game, we now prove that the sample generation protocol

satisfies Definition 5.3.2 and thus Theorem 5.3.3 holds.
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Protocol 5.5.4: Sample generation protocol (M, A)

Input: (X, A, t), where t < A

1. M: Select xo E {0, 1}" according to X and send xo to A.

2. M, A: Repeat for i from 1 to m: Execute the pushing game on input
(X, xi_1 ,A, t) and let xi be the output.

Output: xm, unless A rejects in one of the pushing games,
any canonical string outside the range of X (e.g., On+1).

in which case output

Protocol 5.5.5: Sample test protocol (M, A)

Input: (X, x, A, t), where x E {0, 1} and t < A

1. M, A: Let xo = x.

2. M, A: Repeat for i from 1 to m + 1: Execute the pushing game on input
(X, xi_ 1 , A, t) and let xi be the output.

3. A: Reject if A rejected in any of the pushing games, else accept.
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Soundness. By Lemma 5.5.2 (Part 1) and induction, we see that for every 0 < i < m,

with probability at least 1 - i . 2 -- (t
2 ), either wt(xi) < max(wt(xo) - i, 2viA) or A rejects.

In particular, since wt(xo) < m, with probability at least 1 - m - 2 -( 2 ), we have

wt(xm) < max(wt(xo) - m, 2V - A) = 2/ - A

unless A rejects. In addition, if A rejects in any of the pushing games, then the output

has weight 0 (since it is chosen to be outside the support of X). Therefore, soundness is

satisfied.

Completeness and zero knowledge. First we observe that the completeness condition

follows from the strong zero-knowledge condition: In Distribution (B) of Definition 5.3.2, x

is distributed according to X, and hence is tA-typical with probability > 1 - 2 _t2
+' by the

A-flatness of X. Since x corresponds to the output of the sample generation protocol in

Distribution (A) and Distributions (A) and (B) have statistical difference at most 2-2(t2)

the output of the sample generation protocol must be tA-typical with probability at least

1 - 22+ - 2 -(t 2 ) = 1 - 2

Now we prove the zero-knowledge condition. Consider the probabilistic polynomial-time

simulator given in Algorithm 5.5.6.

Algorithm 5.5.6: Simulator for sample generation protocol

Input: (X, A, t, x)

1. Let xm = x.

2. For i from m down to 1 repeat:

(a) Choose ri-1 uniformly from {0, 1}m and let xi_1 = X(ri-1).

(b) Choose hi uniformly from 'Lm+n,m-3tA subject to hi(ri_1, xi) = 0.

3. Output (xo, hi, (ro, xi), h2, (ri, X2) ... , hm, (rm-1, xm)).

We prove by induction on i that the distribution on -yi = (xo, hi, (ro, xi), ... , hi, (ri_1 , xi))

in the output of the simulator (when x is chosen according to X) has statistical difference

at most i - 2 -- (, 2 ) from the verifier's view of the sample generation protocol up to the end

of the i'th execution of the pushing game. Clearly this is true for i = 0, as in both cases

xo is distributed according to X. Now suppose it is true for i; we will prove it for i + 1.

From the following two observations it follows that the statistical difference only increases

by 2 + 2 -Q(t 2 ) = 2 --Q(t
2 ) when going from i to i + 1:

1. In the simulator, xi is tA-typical with probability at least 1 - 2_

2. For any history -yi = (xo, hi, (ro, xi),... , hi, (ri_1, xi)) in which xi is tA-typical, the
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following two distributions have statistical difference 2 -2(t 2 ):

(A) A's view of the (i + 1)'st pushing game conditioned on history yi.

(B) The distribution of (hi+1 , (ri, xi+1 )) conditioned on history yi in the output of
the simulator.

Observation 1 is immediate from the fact that xi is distributed according to X in the
simulator and X is A-flat. Observation 2 follows from Lemma 5.5.3, observing that condi-
tioned on history -yi, the triple (hi+1, (ri, xi+1 )) in the output of the simulator is selected
exactly according to the Distribution 5.5.3 in Lemma 5.5.3. That is, conditioned on history
-yi, ri is selected uniformly from ix (xi), xi+1 is distributed according to X, and h is selected
uniformly in 7Hm+n,m-3tA subject to h(ri, Xi+1) = 0.

5.5.5 Correctness of sample test protocol

Finally, we prove that the sample test protocol satisfies Definition 5.3.4 and thus Theo-
rem 5.3.5 holds.

Soundness. By Lemma 5.5.2 (Part 2) and induction, we see that if wt(x) <; -6v/A -A,
then with probability at least 1 - i -2 _(t

2 ), for every 0 < i < m + 1, wt(Xi) < wt(Xo) - i (or
A rejects). In particular, since wt(xo) < H(X), with probability at least 1 - m - 2-( 2 ), we
have wt(xm) < H(X) - m unless A rejects at some iteration. Since m - H(X) + wt(xm) =
log IQx(xm)| cannot be negative unless IQx(xm)I = 0, it follows that with probability at
least 1 - m- 2 -_(t 2 ), A must reject in one of the iterations.

Completeness and zero knowledge. First we prove the zero-knowledge condition.
Consider the following probabilistic polynomial-time simulator:

Algorithm 5.5.7: Simulator for sample test protocol

Input: (X, x, A, t, r)

1. Let x0 = x and ro = r.

2. For i from 1 to m repeat:

(a) Choose ri uniformly from {0, 1}m and let xi = X(ri).

(b) Choose hi uniformly from 7 m+n,m-3tA subject to hi(ri- 1 , xi) = 0.

3. Output (xo, h, (ro, xi), h2, (r, x2), ... , hm+l, (rm, xm+l))-

We prove by induction on i that the distribution on -yj = (xo, hi, (ro, ),.. . , hi, (ri_1 , xi))
in the output of the simulator (when r is selected uniformly from Qx (x) and x is tA-typical)
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has statistical difference at most i - 2 -_(t 2 ) from the verifier's view of the sample test proto-

col up to the end of the i'th execution of the pushing game. Clearly this is true for i = 0.

The induction step is proved analogously to the argument used for the sample generation

protocol, using the same two observations and noting that, although the simulator works

in reverse order, the selection of ri and hi is as before.

Now we observe that the completeness condition follows from the weak zero-knowledge

condition and the particular simulator we have given above. Specifically, the above simulator

always outputs transcripts which would make A accept. Since it has statistical difference at

most m - 2 Q(t
2 ) from the sample test protocol, A must accept in the sample test protocol

with probability at least 1 - m - 2
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Chapter 6

Coping with Cheating Verifiers

Up to this point, the focus of our investigation has been honest-verifier zero-knowledge

proofs, which only guarantee that the verifier learns nothing if it follows the specified

protocol. The existence of such honest-verifier proofs is already interesting from both a

mathematical and philosophical point of view, and, as we have seen, one can develop a rich

theory about their complexity. However, from a cryptographic point of view, the applica-

bility of honest-verifier proofs is quite limited, since it is usually unreasonable to assume

that mutually distrustful parties will follow a given protocol. Indeed, one of the most dra-

matic applications of zero-knowledge proofs is as a general tool for limiting the amount of

"cheating" in cryptographic protocols [GMW91, Yao86, GMW87]. Clearly, honest-verifer

proofs are unsuitable for such purposes.

The main contribution of this chapter is a general method for converting honest-verifier

zero-knowledge proofs into proofs which remain zero knowledge even against cheating ver-

ifiers. The transformation applies to all honest-verifier statistical zero-knowledge proofs,

ansd thus we conclude that HVSZK = SZK. It also applies to all public-coin honest-

verifier computational zero-knowledge proofs. Such a result is useful in several ways. First,

the transformation allows us to immediately translate the results we have obtained about

honest-verifier zero knowledge (such as the complete problems and closure properties) to the

cheating-verifier zero knowledge. Second, the transformation suggests a useful methodology

for constructing zero-knowledge proofs: First construct an honest-verifier zero-knowledge

proof for the problem at hand (which is often an easier task), and then use our general

transformation to convert it into one robust against cheating verifiers.

Our transformation relies on a new "random selection protocol," which may be useful

in other settings. It is a protocol for two mutually distrustful parties to select a "random"

string of a given length, with certain (assymmetric) guarantees on how much each party

can affect the output distributions and an additional simulability property for one of the

parties. The random selection protocol in turn relies on a new lemma about 2-universal

hash functions.

We begin, in Section 6.1, by defining the various forms of zero-knowledge proofs against

cheating verifiers, and discussing some issues that arise in the definitions. In order to

illustrate the definitions, in Section 6.2 we present such a (cheating-verifier) statistical
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zero-knowledge proof for a variant of STATISTICAL DIFFERENCE (namely, SD1,1/ 2 ).1 In
Section 6.3, we give our transformation from honest-verifier proofs to cheating-verifier ones
and prove its correctness, assuming the existence of a random selection protocol with cer-
tain properties. We exhibit such a random selection protocol in Section 6.4, completing
the proof of the main results of this chapter. We conclude, in Section 6.5, by listing some
corollaries and open problems. In particular, we describe the results about SZK obtained
by translating things we have proven about HVSZK.

6.1 Definitions

The basic approach of Goldwasser, Micali, and Rackoff [GMR89] in defining zero-knowledge
proofs against cheating verifiers, is to require that, for every polynomial-time verifier strat-
egy V*, there exists a simulator whose output distribution is close to V*'s view of the in-
teraction. As with honest-verifier zero knowledge, different interpretations of "close" yield
perfect, statistical, and computational variants of the definition. Also like the honest-verifier
versions, our definitions differ from the original definitions of Goldwasser, Micali, and Rack-
off [GMR89] in that we use a security parameter to control the error parameters and we
require the simulator to run in strict polynomial time (but allow a failure probability).

Definition 6.1.1 (cheating-verifier zero knowledge - PZK, SZK)
An interactive proof system (P, V) for a promise problem H is said to be statistical zero

knowledge if for every nonuniform probabilistic polynomial-time V*, there exists a useful2

nonuniform probabilistic polynomial-time S and a negligible function P(.) such that

StatDiff (§(x, 1k), (P, V*)(X, 1k)) <; p(k) Vx E Jlyk E N.

The negligible function p is called the simulator deviation for V*. If, for every V*, p = 0,
then (P, V) is said to be perfect zero knowledge. SZK (resp., PZK) denotes the class of
promise problems possessing statistical (resp., perfect) zero-knowledge proofs.

Definition 6.1.2 (cheating-verifier zero knowledge - CZK)
An interactive proof system (P, V) for a promise problem H is said to be computational zero

knowledge if for every nonuniform probabilistic polynomial-time V*, there exists a useful
nonuniform probabilistic polynomial-time S such that

{J(X, 1k)} xEriy,kEN and (P, V*)(X, 1k)} XEly,kEN

are computationally indistinguishable. CZK denotes the class of promise problems possess-
ing computational zero-knowledge proofs.

'We have not shown this variant of SD to be complete for HVSZK, so this does not prove that HVSZK =
SZK.

2Recall that a probabilistic algorithm A is called useful if Pr [A(x) = f ail] _< 1/2 for all x and A(x)
denotes the output distribution of A on input x, conditioned on A(x) : f ail.
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Note that, in the above definitions (including SZK and PZK), the verifier strategies

V* are also often allowed to be nonuniform. As with the honest-verifier classes, allowing

nonuniformity allows us to prove that zero knowledge is preserved under sequential repeti-

tion. In fact, it has been proven that cheating-verifier computational zero knowledge fails to

be preserved under the uniform versions of the definitions [GK96b]. Allowing nonunifority is

also important when zero-knowledge proofs are used as components of larger cryptographic

protocols, as in [Yao86, GMW87]. Intuitively, in these settings, the verifier can use infor-

mation it has obtained prior to the start of the zero-knowledge proof (e.g., from an earlier

execution of the zero-knowledge proof, in the case of sequential composition) in trying to

extract knowledge from the prover. A definition that is robust against nonuniform verifiers

implies that such extra information does not help, as it can be regarded as "nonuniform

advice". Even with a nonuniform definition, however, cheating-verifier zero knowledge fails

to be closed under parallel composition [GK96b, FS90], so the only direct method for doing

error reduction is sequential composition.

At first, Definitions 6.1.1 and 6.1.2 seem very hard to meet. How can one construct

a simulator for each of the infinitely many possible verifier strategies? The way this task

is handled in all known constructions of zero-knowledge proofs is that actually only one

"universal" simulator is constructed. The way this one algorithm simulates the infinitely

many possible verifiers is that, in order to simulate the interaction between P and some

particular verifier V*, the simulator is given oracle access to V*. By observing the verifier's

behavior when it is fed various partial transcripts, the simulator is able to construct a

"good" simulation for that particular verifier. This sort of "universal" simulation in which

the verifier is used as a "black box" was formalized by Goldreich and Oren [G094]. One

advantage of adopting such a definition is that it allows one to make sense of a proof being

zero knowledge not just against polynomial-time verifiers, but all verifier strategies (even

uncomputable ones).

Definition 6.1.3 (black-box simulation SZK) An interactive proof system (P, V) for a

promise problem H is said to be black-box simulation statistical zero knowledge if there is a

useful probabilistic polynomial-time algorithm S such that for every nonuniform probabilistic

polynomial-time V*,

StatDiff (SV (X, 1k), (P, V*)(x, 1k)) <; p(k) Vx E Hy, k E N, 3  (6.1)

for some negligible function p (which may depend on V*). The negligible function p is

called the simulator deviation for V*. If, for every V*, p = 0, then (P, V) is said to be

black-box simulation perfect zero knowledge. If (6.1) holds for all verifier strategies V*

(not just polynomial-time ones), then the proof system is said to black-box simulation zero

knowledge against all verifiers

Definition 6.1.4 (black-box simulation CZK) An interactive proof system (P, V) for

a promise problem H is said to be black-box simulation computational zero knowledge if

there is a useful probabilistic polynomial-time algorithm S such that for every nonuniform

3Recall the notation M 0 is used to indicate algorithm M being given oracle access to function 0.

127



CHAPTER 6. COPING WITH CHEATING VERIFIERS

probabilistic polynomial-time V*,

{ S(x, 1k)}xEIIy,kEN and {(P, V*)(x, 1k) xEfly ,kEN

are computationally indistinguishable.

There is one subtlety in these definitions of black-box simulation, pointed out in [BMO90b].
S is required to run in time that is a fixed polynomial in its input length, yet it is required
to simulate verifiers V* whose running time can be an arbitrary polynomial in the input
length, and hence even the messages and random coins of V* can be too long for S to read.
To deal with this, we give S some additional power:

1. S has random access to its communications with the oracle V*, and may copy strings
received from the oracle directly to the output (in one time step).

2. S can uniformly select and fix the random coins of V* in one time step. It may also
automatically copy them to the output in a single time step.

6.2 A cheating-verifier SZK proof system for SD 1 ,11 2

In this section, we illustrate the above definitions by giving a cheating-verifier zero-knowledge
proof system for SD1,1/2. The proof system is based on the perfect zero-knowledge proofs
for QUADRATIC RESIDUOSITY [GMR89] and GRAPH ISOMORPHISM [GMW91]. For moti-

vation, we first observe that NP proofs can be given for membership in SD 1,1/ 2 . A "proof"
that two distributions X 0 and X1 are not disjoint is simply a triple (x, ro, ri) such that
Xo(ro) = x = Xi(ri). In order to obtain a zero-knowledge proof, the prover sends just x
(randomly sampled from one of the distributions) and the verifier asks for either a proof
ro that x E Supp(Xo) or a proof r1 that x E Supp(Xi). A formal description of this proof
system is given in Protocol 6.2.1 (which is not yet our final proof system).

Protocol 6.2.1: Basic proof system (M, A) for SD',a

Input: Circuits X 0 and X, (each with m input gates and n output gates)

1. M: Sample x <- X 0 . Send x to A.

2. A: Choose b +- {0, 1}. Send b to M.

def3. M: Choose r uniformly from Q(zb) {r' : Xb(r') = x}. Send r to A. (If
Qb(x) = 0, then send fail to A.)

4. A: If Xb(r) = x, then accept. Otherwise, reject.
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The completeness and soundness of this protocol are easy to check.

Lemma 6.2.2 For any a < 1, Protocol 6.2.1 is an interactive proof for SD 1', with com-

pleteness error a/2 and soundness error 1/2.

Proof: (Completeness) When both parties follow the protocol, A rejects iff b = 1 and x is

not in the support of X 1 . By the definition of statistical difference, then a random sample

from Xo will fail to be in the support of X1 with probability at most StatDiff (Xo, XI) 5 a.

Since b = 1 with probability 1/2, A rejects with probability at most a/2.

(Soundness) If Xo and X 1 have disjoint supports, then no string x can be in the support

of both distributions. So, with probability at least 1/2, A will choose b so that x Supp(Xb)
and the prover will fail. E

For zero-knowledgeness, we first consider the special case when X0 and X1 have statis-

tical difference 0 and the verifier is honest. Note that the verifier's view consists of triples

(x, b, r) where x is distributed according to Xo (equivalently, X 1 ), b is uniform in {0, 11,
and r is a random input to Xb yielding x. It is easy to generate such triples: choose b and

r uniformly and let x = Xb(r). The difficulty when extending this approach to cheating

verifiers is that a cheating verifier may select b as a function of x. This can be handled by

having the simulator "guess" b in advance and use its oracle access to A* to check the guess

at the end. Thus we consider the simulator given in Algorithm 6.2.3.

Algorithm 6.2.3: Black-box simulator for Protocol 6.2.1

Input: Circuits X0 and X 1 (each with m input gates and n output gates) and

oracle access to verifier A*.

1. Select and fix the random coins R of A*.

2. Choose b +- {0, 1} and r +- {0, 1}m.

3. Let x = Xb(r).

4. Let b' = A*(x).a

5. If b' = b, output (X, b, r; R). Otherwise, output f ail.

aHere, and often in this chapter, we omit the input (Xo, X 1) and the random coins R of A*
to simplify the notation.

Lemma 6.2.4 For any pair of circuits Xo, X 1 with statistical difference a and any verifier

strategy A* (even computationally unbounded), Algorithm 6.2.3 outputs fail with probabil-

ity at most (1 + a)/2 and, conditioned on non-failure, has statistical difference at most a

from (M, A*).

129



CHAPTER 6. COPING WITH CHEATING VERIFIERS

Proof: To compare the simulator distribution SA* to the real interaction (M, A*), we
consider the following intermediate distribution D:

D: Select and fix the random coins R of A*. Choose b +- {0, 1}. Sample x +- Xo. Let
b = A*(x). Choose r +- Qb'(x). Output (x, b, r; R) if b = b' and f ail otherwise.

Note that, since b is independent of (x, b', r), D outputs fail with probability exactly
1/2, and conditioned on non-failure, is distributed identically to (M, A*). In addition, if
the x +- Xo in D is replaced with x +- Xb, we obtain exactly the output distribution of
SA*. Since b = 1 with probability 1/2 in D, the statistical difference between D and SA* is
at most (1/2) - StatDiff (Xo, X1) = a/2. If we now condition both of these distributions on
non-failure, the statistical difference increases by a factor of at most 1/ Pr [D = fail] = 2
(as justified below). U

The fact about the behavior of statistical difference with respect to conditioning used
in the above proof is the following:

Lemma 6.2.5 Let X and Y be any two distributions on a universe U and let T C U be
any set. Let X' (respectively, Y') denote the distribution of X (resp., Y) conditioned on
X E T (resp., Y E T). Then, StatDiff (X', Y') <; StatDiff (X, Y) / Pr [X E T].

Proof: We may assume that Pr [X E T] ;> Pr [Y E T], for otherwise swapping the two
distributions gives a stronger bound. Let T' be any subset of T. Then,

Pr [X' C T'] - Pr [Y' E T'] Pr [X E T'] Pr [Y E T']

Pr[X E T] Pr [Y E T]

Pr [X E T'] - Pr [Y E T] - Pr [Y E T'] Pr [X C T]
Pr [X E T] -Pr [Y G T]

Pr [X c T']. Pr [Y E T] - Pr [Y E T']- Pr [Y cT]
Pr [X E T] -Pr [Y E T]

Pr [X E T'] - Pr [Y E T'] StatDiff (X, Y)

Pr[X T] - Pr[X T]

Maximizing over T' C T completes the proof.

Setting a = 0 in Lemmas 6.2.2 and 6.2.4, we have:

Proposition 6.2.6 SD 1'0 G PZK. Moreover, it has a perfect zero-knowledge proof with
the following properties:

1. The proof system is public coin.

2. Perfect completeness and soundness error 1/2.

3. 1 bit of verifier-to-prover communication.

4. Exchanges only two messages.
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5. Black-box simulation perfect zero knowledge against all verifiers.

In order to reduce the error, one cannot do an arbitrary number of parallel repetitions,
since PZK is not closed under parallel repetition [FS90]. However, up to O(log k) parallel

repetitions of this particular proof system can be shown to remain perfect zero knowledge,
by generalizing the simulator in the natural way. Thus, the error can be reduced to 1/k

without increasing the number of rounds. It is unlikely that this can be improved further, as

only problems in BPP have constant-round zero-knowledge proofs with negligible soundness

error [GK96b].

Since GRAPH ISOMORPHISM reduces to SD 1'0 , the proof system for it from [GMW91] is

a special case.

Corollary 6.2.7 ([GMW91]) GRAPH ISOMORPHISM is in PZK. Moreover, it has a proof

system with all the properties listed in Proposition 6.2.6.

As discussed above, this proof system has nonnegligible soundness error. However,
GRAPH ISOMORPHISM does have a constant-message (private-coin) perfect zero-knowledge

proof system with negligible soundness error, as shown by Bellare, Micali, and Ostro-

vsky [BMO90a].

In order to get a zero-knowledge proof for SD 1', for a < 1, we need to reduce the

statistical difference for YES instances. The XOR Lemma (Lemma 3.1.16) accomplishes

exactly this. If we augment Protocol 6.2.1 by having both parties (and the simulator) apply

the XOR Lemma to the two distributions, then Lemmas 6.2.2 and 6.2.4 imply that the

resulting proof system is statistical zero knowledge:

Proposition 6.2.8 For every constant a < 1, SDl,a E SZK. Moreover, it has a statistical

zero-knowledge proof with the following properties:

1. The proof system is public coin.

2. Completeness error 2 -k and soundness error 1/2

3. 1 bit of verifier-to-prover communication.

4. Exchanges only two messages.

5. Black-box simulation zero knowledge against all verifiers with simulator deviation 2 -k.

This suggests one way to prove that HVSZK = SZK - show that SD (Karp) reduces to

SD 1 ,1/2. 4 Even a randomized Karp reduction would suffice (as long as the error probability is

negligible, so it can get absorbed in the simulator deviation). Unfortunately, we do not know

how to do that. In the next section, we will prove that HVSZK = SZK in a completely

different way. Nonetheless, the question of whether SD reduces to SD1,1/ 2 remains an

interesting one, as it would show that every problem in HVSZK has a constant-message

4 Since HVSZK is closed under complement, it does not matter whether we complement these problems

or not.
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public-coin HVSZK proof (resolving Open Problem 5.4.20). Obtaining a deterministic
reduction seems more difficult, as it would have the dramatic consequences that HVSZK =
HVPZK (by Proposition 3.1.11) and HVSZK C NP n co-NP (since SD 1 ,1/ 2 E co-NP
and HVSZK is closed under complement).

6.3 Transforming honest-verifier proofs to cheating-verifier
ones

We now state the main results of this chapter.

Theorem 6.3.1 HVSZK = SZK. Moreover, every promise problem in HVSZK pos-
sesses a statistical zero-knowledge proof with the following properties:

1. Black-box simulation with simulator deviation for all verifiers.

2. The proof system is public coin.

3. Perfect completeness.

Theorem 6.3.2 Every problem possessing a public-coin HVCZK proof system also has a
public-coin CZK proof system. Moreover, the CZK proof system has a black-box simulator
and perfect completeness.

We stress that both of these theorems are unconditional. Similar results have been
achieved under intractability assumptions; we discuss these in more detail below. Some-
what surprisingly, Theorem 6.3.2 indicates that the intractability assumptions used in con-
structing (public-coin) computational zero-knowledge proofs do not play an essential role
in dealing with cheating verifiers, but rather their importance lies solely in the construction
of the honest-verifier proofs.

We prove both Theorems 6.3.1 and 6.3.2 by exhibiting a transformation from public-
coin honest-verifier zero-knowledge proofs to public-coin (cheating-verifier) zero-knowledge
proofs; we then use Theorem 5.1.1 to obtain a result that applies to all of (private-coin)
HVSZK. The transformation is very efficient, in that it preserves the complexity of original
proof system in many respects; this is described in detail in Section 6.3.

6.3.1 Previous results

Conditional results. For computational zero knowledge, the question is completely
resolved if one assumes that (nonuniformly) one-way functions exist. This is because, under
that assumption, it is known that HVCZK = CZK = IP [GMW91, IY87, BGG+88]. In
addition, the computational zero-knowledge proofs produced by these constructions already
have the extra properties given in Theorem 6.3.2 (public coins, perfect completeness,black-
box simulation).

The problem of giving a general transformation from honest-verifier zero-knowledge
proofs to cheating-verifier ones was first studied by Bellare, Micali, and Ostrovsky [BMO90b],
who showed that HVSZK = SZK under the assumption that the DISCRETE LOGARITHM
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problem is hard. Already there, they observe the potential benefits of such a transformation

that we discussed at the beginning of the chapter, and indeed, use theirs to deduce several

new results about SZK under the same intractability assumption. At first, it seems puzzling

that computational assumptions can be used in the supposedly "information-theoretic" set-

ting of statistical zero knowledge. However, a careful examination of the definitions reveals

that the standard class SZK doers refer to computational limitations: It requires a simula-

tor only for all polynomial-time verifiers. The computational assumption is therefore used

to limit the behavior of cheating verifiers. Later work gradually weakened the assumption

used to prove HVSZK = SZK. Ostrovsky, Venkatesan, and Yung [OVY93] achieved it un-

der the assumption that one-way permutations exist, and finally, Okamoto [Oka96] proved

it using any bit-commitment scheme (and hence any one-way function [HILL99, Nao9l]).

However, there is something dissatisfying about using intractability assumptions to prove

that HVSZK = SZK. One of the appealling features of statistical zero knowledge is that

it can often be exhibited unconditionally and maintains its zero-knowledge properties even

against computationally unbounded verifiers (as formalized in Definition 6.1.3). Needless to

say, the results proving HVSZK = SZK under intractability assumptions only yield SZK

proofs that are zero-knowledge against polynomial-time verifiers.

Unconditional results. Previously, the only unconditional transformations of honest-

verifier zero knowledge to cheating-verifier zero knowledge were restricted to constant-

message public-coin proof systems. The first such transformation was due to Damgard [Dam93],
and another (with improved message complexity) was given by Damgaird, Goldreich, and

Wigderson [DGW94]. Both of these results apply to all three forms of zero knowledge -

perfect, statistical, and computational.

Di Crescenzo, Okamoto, and Yung [DOY97] also claim to prove that HVSZK c

weak-SZK, where weak-SZK is defined analogously to weak-HVSZK (Definition 2.4.2).

6.3.2 Overview

We prove Theorems 6.3.1 and 6.3.2 by transforming public-coin honest-verifier zero-knowledge

proofs to cheating-verifier ones. This focus on public coins simplifies the task considerably,
and once again illustrates the usefulness of private-to-public coin transformations as given

by Theorem 5.1.1. In a public-coin proof system, the honest verifier's behavior is very

structured; it simply sends random coins flips at each round of interaction. So "cheating"

amounts to sending messages that are not selected uniformly at random. Thus, a natural

approach to making such a proof system zero knowledge for cheating verifiers is to replace

the verifier's messages with strings jointly chosen by the prover and verifier in a "random

selection protocol." If the verifier's ability to bias the outcome of this protocol is sufficiently

limited, then we have essentially forced its behavior to be "honest." However, we must also

take care that we do not give the prover too much control over the outcome of the protocol,
lest the resulting proof system will not be sound. Finally, it order to conclude that the final

proof system is zero knowledge, it is not enough that a cheating verifier cannot bias the

outcome too much; it is also important that the verifier does not learn anything from the

random selection protocol itself. Thus, some sort of simulability property is also needed.

Various random selection protocols were constructed for this purpose in [Dam93, DGW94,
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Oka96], but all of these either rely on computational assumptions or are restricted to
constant-round proof systems. We will construct a random selection protocol without ei-
ther of these limitations. Our random selection protocol builds on the one of Damgird,
Goldreich, Wigderson [DGW94], so we begin by describing the properties of their construc-
tion. For every positive polynomial p, they give a protocol (the "DGW random selection
protocol") for two parties ("Arthur" and "Merlin") for selecting a string in {0, 1}' with the
following properties:

1. As long as Arthur plays according to the protocol, Merlin may cause the outcome
to deviate from uniform distribution over {0, 1} by at most l/p(f). (That is, the
variation distance is at most l/p(e).)

2. As long as Merlin plays according to the protocol, Arthur may not cause any f-bit
string to appear as the outcome with probability greater than p(f) 4 -2'. In particular,
when Arthur applies a deterministic cheating strategy, the outcome of the protocol is
uniformly distributed over some set of 21 strings.

When this protocol is used to transform honest-verifier proof systems into cheating-
verifier ones, the verifier plays the role of Arthur and the prover that of Merlin. The
resulting proof system is simulated in [DGW94] by running the honest-verifier simulator,
and hoping that all verifier messages included in the transcript fall in the sets mentioned in
Item 2 above. If the proof system uses only a constant number of invocations of the random
selection protocol, then the above suffices for producing a black-box simulation with respect
to any cheating verifier strategy. This approach fails when we have a non-constant number
of rounds (random selection invocations).

In this paper we modify the above transformation as follows. Rather than selecting a
message, we use the DGW random selection protocol to specify (in a succinct manner) a
set of 2 k messages (where k is the security parameter). Merlin is then supposed to select
a message for Arthur, uniformly from this set. An immediate concern is that this allows
Merlin to select a string which is advantageous for cheating. However, this only increases
Merlin's cheating probability by a factor of 2 k per each round. (We can first make the
original proof system have an even smaller soundness error, so this should not scare us.) So
the question is what we gained by doing so. Intuitively, we gained not having to simulate
the random selection protocol for any possible outcome. Rather than having to simulate an
execution which results in any specific f-bit output a, we only need to simulate an execution
which results in a random set of strings containing a. The distinction is important since
executions of the former type may exist only for a 1/poly(f) fraction of the possible a's,
whereas - as we show - executions of the latter type exist and can be efficiently generated
for all but a 2 -(k) fraction of the a's. Proving the last statement is the major technical
task needed to justify our construction.

A precise statement of the properties of our random selection protocol is given in the
following lemma:

Proposition 6.3.3 There is an interactive protocol RS = (MRS, ARS) with the following
properties on input (17 1q7 1k).
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1. (efficiency) The protocol is polynomially bounded, public coin for both MRS and ARS,
and both parties can be implemented in polynomial time. In addition, the protocol

exchanges only four messages (starting with ARS)-

2. (soundness) For all Merlin strategies Mhs and all sets T C {O,1 }e, the probability

that the output of (Mhs, ARS)(e ,l , 1k) lies in T is at most

kITI 12 2f+ -.2'

3. (strong simulability) There exists a polynomial-time black-box simulator SRS such that

for all deterministic5 Arthur strategies A*s, the statistical difference between the fol-
lowing distributions is poly(q, f) - 2-9(k).-

(I) Execute (A* s, MRS)(1, 1 1k), let a C {0, 11t be the output of the protocol, and

let v be A*s's view of the interaction (i.e., v is a transcript (f, y, h, a)).6 Output

(v, a).

(II) Choose a uniformly from {0, 1}. Output (S s(l, 1 q, lka),a).

The a's are included in the outputs of Distributions (I) and (II) above to force the simulator

to produce a transcript for an externally specified a (rather than an a which it generates

on its own while producing the transcript).
Proposition 6.3.3 will be proven in Section 6.4, after we show how it can be used to

transform honest-verifier zero-knowledge proof systems into cheating-verifier ones. It is re-

duced to proving the following generalization of Lemma 5.4.10 which may be of independent

interest:

Lemma 6.3.4 (hashing lemma) There exists a universal constant, c > 0, so that the

following holds, for every c, 6 > 0. Let D and R be finite sets, W be a 2-universal family of

hash functions from D to R, and let 0 be any fixed element of 7Z. Let S C W such that |S >
6|1i, and X be a random variable ranging over a finite set D having collision probability

at most y{ (i.e., Z Pr [X = x]2 < ' ). Then the statistical difference between the

following two random processes is at most c - El/c6-c.

(A) Select h uniformly in S, and let x be selected from X conditioned on h(X) = 0. Output

(h, x).

(B) Let x +- X, and h <- {h' c S : h'(x) = 0} Output (h, x).

5The restriction to deterministic Arthur strategies is only for ease of presentation, as a simulator for

randomized Arthur strategies can uniformly select and fix Arthur's coins and then use the simulator for

deterministic strategies. When we use the Random Selection simulator as a subroutine in the simulator for

the transformed protocol in the subsequent section, the coins of Arthur will have already been fixed by the

outer simulator.
6In Definition 2.3.4, we defined the Verifier's view to consist of his random coins and all messages ex-

changed. Here, we do not include random coins, as they are irrelevant for deterministic strategies.
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Actually, a special case of this lemma, where X is uniform over D (and I7ZI = e -|DJ) suffices
for the current proof of Theorems 6.3.1 and 6.3.2. The stronger version was developed for
an alternative proof, discovered first, which is totally superseded by the current proof.

6.3.3 The transformation

Now we present our transformation of proof systems. The properties of the transformation
are given in the following theorem:

Theorem 6.3.5 Any honest-verifier public-coin statistical (resp., computational)
zero-knowledge proof system can be transformed into a (cheating-verifier) public-coin statis-
tical (resp., computational) zero-knowledge proof system. Furthermore,

1. The resulting proof system exchanges twice as many messages as the original one.

2. The resulting prover strategy can be implemented in probabilistic polynomial time given
oracle access to the original prover strategy.7

3. The resulting proof system has completeness error 2 -(k) and soundness error 1/k,
where k is the security parameter. In case the original proof system has perfect com-
pleteness, so does the resulting one.

4. The resulting proof system has a black-box simulator.

5. In case of statistical zero-knowledge, the black-box simulator works for all verifiers and
has simulator deviation poly(k) -p(k) + 2 -Q(k), where p(k) is the original simulator
deviation.

Theorem 6.3.1 follows from combining Theorem 6.3.5 with Theorem 5.4.15 (and re-
naming k). Theorem 6.3.2 follows by combining Theorem 6.3.5 with the result of Fiirer
et. al. [FGM+89] that transforms public-coin honest-verifier zero-knowledge proofs into
ones with perfect completeness. One important feature of the transformation given in The-
orem 6.3.5 is that it preserves the computational complexity of the prover strategy. Hence,
for cryptographic applications, Theorem 6.3.5 is probably most useful on its own, with-
out combining it with the other transformations of Theorem 5.4.15 or [FGM+89], as those
transformations do not have this feature. We also note that Theorem 6.3.5 yields a proof
system with nonnegliglible soundness error 1/k, which can be reduced further by doing
sequential repetitions. This cannot be improved (while preserving the message-complexity
of the transformation) unless NP C BPP. This is because only languages in BPP have
constant-round public-coin CZK proof systems with negligible soundness error [GK96b],
whereas all of NP has constant-round public-coin HVCZK proof systems (with negligible
soundness error) [GMW91].

7 Again, we use the conventions given after Definition 6.1.4 regarding how a polynomial-time algorithm
can make use of a more powerful oracle which may use a superpolynomial number of random coins. In this
case, we need not worry about the messages being too long since the specified prover strategy always sends
polynomial-length messages.
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We now proceed to give the transformation. Let (Mo, Ao) be any public-coin honest-

verifier zero-knowledge proof system for a promise problem II. In what follows, we always

assume that the security parameter k is at least the input length Ix ; this can be achieved

by artificially increasing k if necessary. Let m = m(k) denote the number of messages

exchanged by (Mo, Ao) on security parameter k and, in the case of statistical zero knowledge,
let p = p(k) denote the simulator deviation. By taking poly(k) parallel repetitions of

(Mo, Ao), we obtain a zero-knowledge proof system (M, A) with the following properties on

security parameter k:

1. m(k) messages are exchanged.

2. The soundness error is 2 -k-(m+1) and the completeness error is 2 -*

3. In the case of statistical zero-knowledge, simulator deviation is poly(k) - P(k).

4. M can be implemented in probabilistic polynomial time with oracle access to M'.

We now describe how to obtain a cheating-verifier proof system (M, A) by replacing

A's messages in (M, A) with our random selection protocol. For notational convenience,
we assume that (M, A) exchanges m = 2r messages, with A sending the first message.8

We also assume (wlog) that all the A-messages are of the same length e(k). We denote

the i'th A-message by a and the i'th M-message by 3 i. Throughout what follows, we will

often drop the input x and security parameter k from the notation. Having fixed these

conventions, we give the transformed proof system (M, A) in Protocol 6.3.6.

Protocol 6.3.6: Transformed proof system (MA)

Input: Instance x of H and security parameter k

1. Repeat for i = 1,...,r:

(a) M, A: Execute the random selection protocol RS on input

(1e, 1 2kr, ik) to obtain an output ai E {o, 1}.

(b) M: Select fi +- M(ai, 31, a 2, 2 ,... , a) and send /i to A.

2. A: Accept or reject as A would on transcript (a 1, 1 ,..., arOr)*

We now prove that Protocol 6.3.6 satisfies the requirements of Theorem 6.3.5.

8 This assumption that the number of messages in (M, A) is even only affects the claim about message

complexity in Theorem 6.3.5. The case when (M, A) exchanges an odd number m of messages is similar,
and actually yields message complexity better than claimed (2m - 1 rather than 2m).
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Efficiency. Since the random selection protocol RS consists of 4 messages, with M sending
the last message (which can be sent together with 0j), (M, A) exchanges 4r = 2m messages.
This proves Property 1. Property 2, the prover's complexity, is clear, given that M's strategy
in the Random Selection Protocol can be executed in probabilistic polynomial time.

Completeness and Soundness. The claim about the completeness error in Property 3
follows from the fact that (M, A) has completeness error 2 -k and the fact that, when M
behaves honestly in the random selection protocol RS, the output has statistical difference
at most poly(e, 2kr, r) . 2 -Q(k) = 2 -Q(k) from uniform (by the strong simulability). It is also
immediate that if (M, A) has perfect completeness, then so does (M, A).

For soundness, consider any cheating strategy M* in Protocol 6.3.6 and fix a NO instance
x of I1 (which we hide from the notation). We write (M*, A) 2i to denote the distribution of
(ai, 1, ... , oi,3) in (M*, A), and (M*, i) 2i-1 for the same distribution without 03. From
M*, we construct a cheating strategy M* for the original protocol (M, A) as follows: On
partial conversation transcript -y = (01,/311,... , as), M* gives response /i with probability

Pr [(M *, A)2i = (-, /i)|(MA*,) 2 i-I = 71

We define random variables (M*, A)j analogously to (M*, A) j .
The main claim needed to establish soundness states that, with each execution of the

random selection protocol, the advantage M* has over M* increases by a multiplicative
factor of at most 2k (plus an additive term of 1).

Claim 6.3.7 Let S be any set of partial conversation transcripts consisting of j messages.
Then,

Pr [(M* A)j E S] 2 [j/21-k -Pr [(M*, A)j E S] + F ./21
2kr

Now, setting j = 2r and S to be the setting of accepting conversations and recalling that
(M, A) has soundness error smaller than 2 -2kr, the claim says that A accepts in (M*, A)
with probability at most 2 kr - 2 -2kr + r/(2kr) _< 1/k. We now give the somewhat tedious
proof of the claim.

Proof: We prove the claim by induction on j. For j = 0, the statement is trivial. Assume
it is true for j and we will prove it for j + 1. For any partial conversation -y consisting of j
messages, let

Yf max 0, Pr [(Mj*,); = j - 2J/21k -Pr [(M*, A)j = 7]j.

Then, applying the inductive hypothesis to the set T of -y for which 6.y > 0, we see that

6, = Pr (M*, *) ET - 2 [j/21-k - Pr [(M*, A)j E T] < [j/2
2kr
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Now, let S denote any set of j + 1-message conversation transcripts. Then,

Pr [(M*, )+ 1 E = ZPr (M*,A)3 = Pr [(M*, A)j+1 E SI(M*,A)= y . (6.2)
-y

Consider the case when j is even. Then, in (M*, A), the (j + 1)'st message is chosen

uniformly in {0, 1}e by A, and in (M*, A), it is generated via the random selection protocol.

Thus, by the soundness property of the random selection protocol, the following holds for

any partial transcript -y:

Pr (M<*,Z)+ 1  = 2 Fj/21k - Pr [(M*, A)j+1 E SI(M*, A)j = -y] + Fj/2 .
rc(W -'~+ SI (MW*,A), = Y 2kr

Plugging this into Expression 6.2, we get:

Pr A* + E S

(Pr [(M* A )j = - y) - (Pr [(M* A)j+ 1 E SI(M*, A) = - 2kr)

+ 6, -Pr [(j*, Z)j+l E SI(M*, A)j = ] + 2kr Pr [(M*,A) =Y

(2 (j 21k - Pr [(M*, A)j = -]- ( 2 k - Pr [(M*, A)j+ 1 E SI(M*, A)j =-]

-y

+j/2] 1
2kr 2kr

= 2 r(j+1)/21k - Pr [(M*, A) E S] + [(j + 1)/2]
2kr

The case when j is odd is similar, but simpler. Instead of using the soundness of the random

selection protocol, we use the fact that M* generates message j + 1 according to the same

marginal distribution as M*. U

Zero knowledge. Let S be the honest-verifier simulator for the original protocol (M, A).

In Algorithm 6.3.8, we give a universal simulator S for (M, A) which uses any verifier

strategy A* as a black-box.
To prove that the simulator has the desired properties, we first consider its output

distribution in the case that the original honest-verifier simulator S is perfect: Let SA be

the output distribution of §A* if the output of S in Step 2 is replaced with a true sample

(ai, 1, ... ar,, r) of the protocol (M, A).

Claim 6.3.9 A (x) and (M, *)(x) have statistical difference at most 2 -(*

Proof: Let us consider what happens in both the interaction between M and Z* and in the

simulator 3 conditioned on a partial transcript -yj = (tia, ,31, ... , ti, aj, /i). Let A('+')

be A* with history 'ii. The process by which tj+1 and aji+ are obtained in the interaction
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Algorithm 6.3.8: The simulator Si* for Protocol 6.3.6

Input: An instance x of H, a security parameter k, and oracle access to a
cheating verifier strategy A*.

1. Uniformly choose and fix random coins R for A* to obtain a deterministic
strategy AM.

2. Run the original honest-verifier simulator to obtain a transcript
(o1, 011, .. , ar, #r) +- S(X, 1k).

3. For i = 1 to r, do the following:

(a) Run the strong simulator for the random selection protocol RS, on
input ai with Arthur strategy A(), to obtain a simulated transcript
ti of the random selection protocol (i.e., ti <- sQ ( 1 , 1 q lk ,

(b) Let A('+') be the state of A() after additional history tj, aj,f3.

4. Output (ti, al,3 1 ,... ,tr,ar,,r; R).

between M and A* is exactly Distribution (I) in the strong simulability condition of the

random selection protocol (Proposition 6.3.3), taking A* to be A(i+). Now, in 3 each
ai+1 is uniform and independent of (ai,,01 ,... , aj, A) (and thus also of -y). Therefore, the

process by which tj+1 and aj+1 are obtained in S is exactly Distribution (II) in the strong
simulability condition of the random selection protocol. The strong simulability condition
tells us that Distributions (I) and (II) have statistical difference poly(e, 2kr).2--1(k) - 2--1(k).
Moreover, 3i+1 is chosen according to the same distribution (conditioned on 'yi, tj+j and

ai+1 ) in both (M, A*) and S - that is, according to the original M strategy. So 3 i+1
does not increase the statistical difference. Thus for every triple, (tiai, 3 i), the statistical
difference accumulates by at most 2 -0(k), for a total of r - 2-Q(k) = 2-0(k).

Now we deduce Theorem 6.3.5, Items 4 and 5, from Claim 6.3.9.

Statistical zero knowledge. Using the output of S instead of a true sample from (M, A)
can increase the simulator deviation by at most StatDiff (S, (M, A)), which is exactly the
simulator deviation for the protocol (M, A), which in turn is at most poly(k) times the
simulator deviation for the original proof system (Mo, Ao).

Computational zero knowledge. We need to show that the probability ensembles
Xf {(M, A*)(x, k)}Xery,kEN and X2 k{q(xlk)}xenrykEN are computationally in-

defdistinguishable for any probabilistic polynomial-time A*. Consider a third ensemble X3 =
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{ S (x, 1k)}xEIy,kEN. By Claim 6.3.9, X, and X 3 are statistically close and therefore com-

putationally indistinguishable. We claim that X 2 and X 3 are computationally indistinguish-

able, for any probabilistic polynomial-time A*. This holds because X 2 and X 3 are obtained
by performing the same probabilistic polynomial-time computation on the computationally
indistinguishable ensembles {S(x, 1 k ) }xEL,kEN and { (M, A) (x, 1 k )}xEL,kEN, respectively.

6.4 Random selection

In this section, we describe our random selection protocol and prove Proposition 6.3.3. Our

protocol builds on an earlier protocol of Damgird, Goldreich, and Wigderson [DGW94],
which we describe now. Their protocol takes two parameters s and q and produces an

element of {0, 1}' as output. Informally, the protocol works as follows: First, A chooses a

(succinctly described) partition of {0, 1}' into cells of size poly(s, q). Then, M chooses a

cell uniformly from the partition. Lastly, A uniformly selects an element of that cell, which

is the output. These "partitions" are implemented using a family F,q of hash functions

mapping {O, 1} to {0, 1 }t, for t = s-410g2 (3qs). The properties of this family of functions

are given in the following lemma.

Lemma 6.4.1 For every pair of integers s, q E N, there is a family of functions F,,q map-

ping {O, 1} to {0, 1}, for t = s - 41og2 (3qs), with the following properties:

1. Each f C F,q has a description of size poly(s, q).

2. There is a poly(s, q)-time algorithm that, on input f E Fs,q and x E {0, 1}, outputs

f(x).

3. There is a poly(s, q)-time algorithm that, on input f E Fs,q, y E {0, 1 }t, lists all the

elements of f- 1 (y). In particular, |f- 1(y)| <; p(s,q) for some polynomial p.

4. For every y E {0, 1}s and f E .Fs,q, f-1 (y) is nonempty.

5. Fs,q is a family of almost s-wise independent hashing functions in the following sense:

For every s distinct points x,... , Cz ({0, 1} \ {0, 1}t 0s'-), for a uniformly cho-

sen f E .Fs,q, the random variables f(xi),..., f(x,) are independently and uniformly

distributed in {0, 1}t.

Such a family can essentially be obtained by associating {0, 1} with GF(2S) and taking

all polynomials of degree s - 1 over this field, with the output of the polynomials being

truncated to t bits. The details of the construction can be found in [DGW94]. We can

view each f E .Fs,q as defining a partition of {0, 1} into 2 t cells of the form f - 1 (y), each

of size poly(s, q). For notational convenience, we will sometimes write cell y to refer to

the cell f-1 (y). A formal description of the DGW random selection protocol is given in

Protocol 6.4.2.
In [DGW94], it was shown that Protocol 6.4.2 has the following properties (roughly

speaking):

1. (Soundness) For any Merlin strategy MDGW, the output distribution on {0, 11' of

(MLGW, ADGW) deviates from uniform by at most 1/q (in statistical difference).
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2. (Simulability) Let A*GW be any strategy for Arthur. At least a 1/poly(s, q) fraction of
the elements x c {0, 1}' occur as possible outputs of the interaction (MDGW, A*GW)
and given such an x, one can simulate in poly(s, q)-time A* w's view of an interaction
resulting in x.

The main hindrance in applying the protocol as used by [DGW94] is that the simulator
is only guaranteed to work for a 1/poly(s, q) fraction of the x's. The new technique of this
paper is to interpret the output x of the DGW protocol as a set of 2 k strings, from which
a single string a is randomly selected by Merlin. It is this a, rather than x, that is the
output of the random selection protocol. The family of sets of size 2 k that we use has the
crucial property that every subset of them of density at least 1/poly(s, q) will still cover all
but an exponentially vanishing fraction of a's. Because of this, we will be able to simulate
the protocol for all but an exponentially vanishing fraction of the a's.

In order to define our sets of 2 k strings, we use 2-universal hash functions. Recall that
for every pair of integers f and m, we defined je,m to be the 2-universal family of all affine-
linear (over GF(2)) functions from {0, 1} to {0, 1}m. Each such function is of the form
h(x) = Ax + b, where A is an m x f matrix over GF(2) and b is an element of {0, 1}m, so
elements of Wj,m can be uniquely represented by strings of length m - (f + 1).

Our protocol takes three parameters i, q, and k as input and produces an element
of {0, 1} as output. The two parties use the DGW protocol to select an element h of
W = 1 i,i-k, and then Merlin selects the output uniformly from h- 1 (0). That is, the DGW
random selection protocol is called with parameters s and q, where s = (f - k) - (i + 1), so
that its s-bit output can be interpreted as an element of Ne,-ek. A full description of the
protocol is given in Protocol 6.4.3.

Protocol 6.4.2: DGW random selection protocol
DGW = (MDGW, ADGW) [DGW94]

Input: Parameters s and q (in unary)

1. ADGW: Select f +- Ys,q and send it to MDGW (i.e., select a random
partition).a

2. MDGW: Select y -- {0, 1 }t, and send it to ADGW (i.e., uniformly select a
cell).

3. ADGW: Select x - 1 (y) (i.e., uniformly select an element of the cell).

Output: X

'If, at any step, ADGW or MDGw do not select an object from the appropriate set, whatever
message they send is interpreted as a canonical element of that set.
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Protocol 6.4.3: Our random selection protocol RS = (MRS, ARS)

Input: parameters f, q, and k (in unary)

1. MRS, ARS: Set s = (i - k) - (f + 1), t = s - 4log2 (3qs), and W = llf-k

2. ARS: Select f F- Fs,q and send it to MRS.

3. MRS: Select y -- {0, 1 }t, and send it to ARS-

4. ARS: Select h - f- 1 (y) and sent it to MRS.

5. MRS: Select a +- h- 1 (0), viewing h as an element of W. (If h- 1 (0) = 0
then a is defined to be Ot.)

Output: a

We now prove that Protocol 6.4.3 satisfies Proposition 6.3.3. Efficiency is immediate

from the description of the protocol.

Soundness. Let M s be any cheating Merlin strategy and consider an execution of the

protocol (M S, ARS). Notice that that the probability that the output a lies in some set

T is bounded above by the probability that h-1(0) contains an element of T. Now, for h

chosen uniformly from W (instead of by the protocol), the probability that h- 1 (0) contains

an element of T is at most
Pr [~a) TIS - =0] =t-

aES

In our protocol, h is chosen using the DGW protocol. It shown in [DGW94, Prop. 1] that a

cheating Merlin can cause at most a 1/q statistical difference from the uniform distribution

on W, and so the soundness property follows.

Strong simulability. Recall that p = p(s, q) is polynomial bound on the size of f-1 (y)

for any f E .Fs,q, s is the description length for elements of R = -l,tek, and functions in
def

.7s,q map {0, 1}' to {0, 1 }t, where t = s - 41og2 (3qs). For a E {0, 1}, we write R" = {h E
H : h(a) = 0}. With these notations, the simulator is given in Algorithm 6.4.4.

From the various properties of the families .F,q and l-, such as the fact that f 1 (y) can

be enumerated in time poly(s, q), and the fact that s and p are poly(f, q, k), we see that the

running time of S " is poly(f, q, k).

Let us now show that Distributions (I) and (II) in Proposition 6.3.3 have statistical

difference poly(s, q) - 2 -Q(k). Each produces output of the form ((f, y, h, a), a). In both

cases, f is the (deterministically chosen) first message of A* s and y = f (h), so it suffices to
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Algorithm 6.4.4: The random selection protocol simulator S *S

Input: Parameters f, q, and k (in unary), a E {0, l}e, and oracle access to A*S

S1. Let f E Ys,q be the first message sent by A*

S2. Repeat the following up to k - 2(3sq)4 -p times:

(a) Choose h' uniformly from R,

(b) Let y = f(h') (i.e., y is the cell containing h'). Compute i =
If -1(y) nha. With probability 1- ), proceed to next iteration
of Step S2. (Otherwise continue.)

(c) Let h = A*(y), that is, the element (hereafter called the cell
representative) of cell y that A*RS gives in Step 6.4.3 after being
sent y in Step 6.4.3.

(d) If h(a) = 0, output ((f, y, h, a), a) and terminate the simula-
tion. Otherwise, proceed to next iteration of Step S2.

S3. If the simulator failed to produce output so far, output fail.
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show that the distributions restricted to their (h, a) components are statistically close. We

therefore define the Distributions (I') and (II') to be the Distributions (I) and (II) restricted

to their (h, a) components. To analyze these distributions, we make use of the following

Lemma, the proof of which is in Appendix B.

Lemma 6.4.5 There exists a universal constant c > 0, so that the following holds: Let

U = 7 e,m be the family of affine-linear maps from D = {0, 1 } to R = {0, 1}'. Let S C 71

be such that |SI > 6|7-i. Let e = . Then

Part 1: The statistical difference between the following two distributions is at most (c -

E 1/C6-c).-

(A) Choose h <- S. Let x +- h- 1 (0). Output (h,x).

(B) Choose x <- D. Let h <- Sfn-x. Output (h,x).

Part 2: For at least a 1 - (c - e1/c5-c) fraction of x E D,

in Hl> 612.
|NXI -

When we apply the lemma, we take m = i-k, E = 2 -k, and S = {A*s(y) y E {0, 1} }.
In other words, S is the set all possible cell representatives that A* s can send in Step 6.4.3

of the protocol (MRS, A*Rs). Notice that

3 Lf ISI 2 = = 2 -410g 2 (3sq) _

[WI 2s (3sq)4

and so, c - .1/c6-c = poly(e, q, k) - 2 -Q(k). Now, observe that the protocol (MRS, A* s)

selects h uniformly from S. (Recall that A* s is deterministic.) Thus, Distribution (I') is

exactly Distribution (A) of Lemma 6.4.5. Now we will show that the Distribution (II') is

statistically close to Distribution (B).

Let us consider a single iteration of Step S2 in SRS. In such an iteration, h' is chosen

uniformly from Wa, and y = f (h'). We write f (Wi) to denote the set of images of elements

of l-4, under f (i.e., f(71,) = {f(h) : h E 71,J). In other words, f(W"() is the set of cells

intersecting W,,. We want to establish that the distribution of h's produced by the simulator

will be uniform in S n ?ic. In order for this to happen, y must be uniformly selected from

f(Ii,). If f was chosen honestly by A* s, we would expect it to be one-to-one on the set Wa,

since 1t, is a vanishingly small fraction of the domain. However, f is chosen adversarially,
so we must do some work to ensure uniformity:

Notice that for any yo E f (Ii,), the probability that f (h') = yo when uniformly selecting

h' +- 71,, is exactly

1 n f -1(yo)I

In Step 5b, any such choice is maintained with probability 1/ INa n f (yo)I- Thus the
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probability that y = yo after Steps 5a and 5b in SRS is exactly

1

I|a

This is independent of yo, and therefore y is a uniformly chosen element of f(Ha) - that
is, a uniformly chosen cell intersecting W,. (These probabilities sum up to if (MA)/i|al,
which may be less than 1; this is due to the possibility that the iteration ends prematurely
in Step 5b.)

Now, since, in Step 5c, h = A*S(y) is taken to be the representative of cell y, the
function h is uniformly distributed over the representatives of cells which intersect W,,. In
Step 5d, we abandon any h not in W, so the resulting distribution on h is uniform over
cell representatives in W, that is, uniform over S nf 7. Thus a single iteration of the loop
produces an h uniformly chosen from S n ?ca, if it manages to produce output at all. This
is identical to how h is chosen in Distribution (B) of Lemma 6.4.5. So, to show that the
Distribution (II') is statistically close to Distribution (B), we need only to show that the
probability that the repeat loop fails to produce output in all its iterations is 2 -9(k) for at
least a 1 - 2 -Q(k) fraction of the a's in {0, 1}. We do this by showing that each iteration
produces output with probability at least k times the reciprocal of the number of iterations.

There are two places in which an iteration can be exited, causing it to fail to produce
output - Steps 5b and 5d. Observe that the simulator never exits in Step 5d if h' chosen
in Step 5a lies in S, because then h will equal h'. This occurs with probability

iSn w.1

By Lemma 6.4.5, for at least a 1 - 2 -0(k) fraction of a G {O, 1}e, this quantity is at least
6/2 = 1/2(3sq)4 .

Now suppose that h' has been chosen in S. The probability of not exiting in Step 5b is
at least 1/f -1(y)1, which is at least 1/p by the properties of the family Fs,q. Thus, for a
1 - 2 -Q(k) fraction of the a's, a single iteration produces output with probability at least
1/(2(3sq)4 .p). Since there are (2(3sq)4 .p) -k iterations, output is produced with probability
1 - 2--(*

We have shown that Distribution (I') is identical to Distribution (A) in Lemma 6.4.5
and Distribution (II') has a statistical difference of 2 -Q(k) from Distribution (B). So, by
Lemma 6.4.5, we conclude that Distributions (I) and (II) have statistical difference 2 -2(k)
and strong simulability is established.

6.5 Corollaries and open problems

We can use our transformation to translate many of the results about HVSZK to SZK.
Some of the results about HVSZK were already implicitly translated when we used Theo-
rem 5.4.15 as the starting point for the proof of Theorem 6.3.1. The nice properties of the
proof system given by Theorem 5.4.15, such as public coins, perfect completeness, and ex-
ponentially small simulator deviation, are all preserved by our transformation and therefore
appear in the statement of Theorem 6.3.1.
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A number of additional results that can be immediately translated are those that just

refer to properties of HVSZK as a class of promise problems; these now apply to SZK

simply by the equality HVSZK = SZK:

Corollary 6.5.1 Properties of SZK:

1. ENTROPY DIFFERENCE and STATISTICAL DIFFERENCE are complete for SZK.

2. SZK is closed under complement.

3. For every promise problem II, <)(H) E SZK. 9 .

4. SZK is closed under NC1 truth-table reductions.

5. weak-SZK = SZK.

For Item 5, we define weak-SZK via the obvious analogy to weak-HVSZK, and apply

the chain of inclusions

weak-SZK C weak-HVSZK = HVSZK = SZK C weak-SZK.

We have omitted analogues of some of the results that only refer to the class HVSZK simply

because the honest-verifier version of the result is the stronger one. This is the case with

upper bounds on the complexity of HVSZK, such as Corollary 4.2.2 and Theorem 4.8.4,
since the inclusion SZK C HVSZK is obvious even without Theorem 6.3.1.

The equality HVSZK = SZK also has implications for knowledge complexity in the

hint sense via Lemma 4.6.7. Specifically, if we define SKC*int(K(n)) to be the cheating-

verifier version of the class SKChint((n)), then Theorem 6.3.1 and Lemma 4.6.7 have the

following consequence:

Corollary 6.5.2 For every polynomially bounded function r, : N -+ N, SKChift(rs(n)) =

SKC[h.t(r(n)). Moreover, every problem in these classes has an interactive proof of statis-

tical knowledge complexity K(n) in the hint sense against cheating verifiers with the following

properties:

1. Black-box simulation with simulator deviation 2 -k for all verifiers.

2. Perfect completeness.

3. The proof system is public coin.

By this equality of the SKChint and SKC* hierarchies, it follows that the SKC~int(K(n))

hierarchy must also collapse by logarithmic terms, as in Theorem 4.6.11.

For computational zero knowledge, we can combine Theorems 5.4.16 and 6.3.2 to obtain:

Corollary 6.5.3 Every problem that has a 3-message honest-verifier computational zero-

knowledge proof also has cheating-verifier computational zero-knowledge proof (which is pub-

lic coin, has a black-box simulator, and has perfect completeness).

9 For a definition of 4(.) and NC 1 truth-table reductions, see Section 4.5
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Clearly, the main outstanding question about computational zero knowledge in this regard
is whether a transformation can be given for all of HVCZK (unconditionally, of course).

Open Problem 6.5.4 Does HVCZK = CZK?

A positive answer to Open Problem 5.4.19 would imply a positive answer to this problem.
It is important to note that several of our results about honest-verifier statistical zero-

knowledge proofs do not translate to cheating-verifier proofs. For one, we do not obtain true
cheating-verifier analogues of the results on the perfect knowledge complexity of HVSZK in
Theorem 4.6.13, since we do not know how to relate the honest-verifier and cheating-verifier
versions of the PKC classes.

A more significant result that does not translate is Corollary 4.1.1, which says that
every problem in HVSZK has a constant-message HVSZK proof system (with additional
nice properties). Even though the main transformation presented in this chapter preserves
message complexity upto a constant factor (Theorem 6.3.5), to obtain a result for all of
HVSZK we first had to apply the private-to-public coin transformation of Theorem 5.4.15,
which does not preserve message complexity. The HVSZK-to-SZK transformation of
Bellare, Micali, and Ostrovsky [BMO90b] does preserve message complexity (and applies
directly to private-coin proofs), but it relies on an intractability assumption. Applying their
transformation to the proof systems of Corollary 4.1.1, one obtains:

Proposition 6.5.5 If the DISCRETE LOGARITHM problem is hard, then every problem in
HVSZK has a (cheating-verifier) statistical zero-knowledge proof system with the following
properties:

1. The proof system exchanges a constant number of messages.

2. Black-box simulation (for polynomial-time verifiers).

3. Completeness error and soundness error 2

However, to obtain constant-message SZK proof systems unconditionally is still open.

Open Problem 6.5.6 Does every problem in HVSZK have a constant-message SZK
proof system?

A positive answer to Open Problem 5.4.20 would also imply a positive answer to this
problem, using even just the transformation of [DGW94].

Another property given by Corollary 4.1.1 that does not translate to the cheating-
verifier proofs is the fact that the prover is deterministic. This is inevitable, as only BPP
has cheating-verifier zero-knowledge proofs with a deterministic prover [G094].
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Noninteractive SZK

Iteraction is at once a blessing and a curse for zero-knowledge proofs. On one hand, in-

teraction is one of the ingredients that makes the seemingly paradoxical notion of zero

knowledge feasible. On the other hand, in many cryptographic applications where one

would like to use zero-knowledge proofs, interaction is either too expensive or completely

unavailable. While considerable research has been devoted to reducing the amount of inter-

action in zero-knowledge proofs (cf., Corollary 4.1.1, [FS89, BMO90a, GK96a, Oka96]), it
cannot be completely removed in the GMR paradigm of a proof system. Indeed, Goldreich

and Oren [G094] have shown that GMR zero knowledge becomes trivial (i.e., exists only

for problems in BPP) if one requires that the proofs are noninteractive (i.e., with only

unidirectional communication).

Suprisingly, however, Blum, Feldman, and Micali [BFM88] showed that by augmenting

the model slightly, it is possible to achieve zero knowledge in a noninteractive setting.

Specifically, they assume that the prover and verifier have access to a shared truly random

string, called the reference string. Aside from this assumption, all communication consists

of one message, the proof, which is generated by the prover (based on the assertion being

proven and the reference string) and sent from the prover to the verifier.

As in the interactive case, the zero-knowledge property is formalized by requiring that

there is a probabilistic polynomial-time simulator whose output distribution is "close" to

the verifier's view of the proof system (which now consists of the shared reference string and

the proof sent by the prover). Various interpretations of "close" give rise to three variants of

noninteractive zero knowledge proofs - perfect, statistical, and computational - defined

analogously the interactive case. (Formal definitions will be given in Section 7.1.)

Noninteractive zero-knowledge proofs, on top of being more communication efficient

by definition, have several applications not offered by ordinary interactive zero-knowledge

proofs. They have been used, among other things, to build digital signature schemes secure

against adaptive chosen message attack [BG89], and public-key cryptosystems secure against

chosen-ciphertext attack [BFM88, NY90, DDN91].
Until recently, most of the work on noninteractive zero knowledge has focused on the

computational type (cf., [BFM88, DMP87, DMP88, BDMP91, FLS99, KP98]). This is
probably due to the early results which showed that all of NP has noninteractive com-

putational zero knowledge proofs (under various assumptions [BFM88, DMP87, FLS99]),
and the ensuing cryptographic applications [BFM88, NY90, BG89]. In contrast, for a long
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time the only (nontrivial) noninteractive statistical zero-knowledge proofs known were the
one for QUADRATIC NONRESIDUOSITY [BDMP91] and variants of it [DDP94, DDP97], and
hence the study of such proofs was rather limited.1

In this chapter, we shall see that noninteractive statistical zero knowledge is richer than
might have been expected. Our first step towards demonstrating this is to exhibit two
natural complete problems for NISZK, the class of problems possessing noninteractive
statistical zero-knowledge proofs. This builds on earlier work of De Santis, Di Crescenzo,
Persiano, and Yung [DDPY98], who exhibited the first complete problem for NISZK. The
key feature of these complete problems is that they are natural restrictions of our complete
problems for SZK, STATISTICAL DIFFERENCE and ENTROPY DIFFERENCE. Thus, we
can use these problems to relate SZK and NISZK. Specifically, we show that if SZK is
nontrivial, then so is NISZK, where by nontrivial we mean that the class contains problems
outside of BPP. Recall that the hypothesis holds under various assumptions, such as the
intractability of the DISCRETE LOGARITHM [GK93] problem or approximate versions of the
SHORTEST VECTOR and CLOSEST VECTOR problems for lattices [GG98a]. By our result,
under any of these assumptions, NISZK is also nontrivial, even though no versions of
these problems were known to be in NISZK. Furthermore, we shed light on the question
of whether SZK = NISZK, i.e., whether all statistical zero-knowledge proofs can be made
noninteractive. Namely, we show that SZK = NISZK if (and only if) NISZK is closed
under complement. We note that [DDPY98] have claimed that NISZK is closed under
complement, but this claim has been retracted [DDPY99].

Organization. In Section 7.1, we give the formal definitions of noninteractive zero-
knowledge proofs and discuss some of the issues that arise in the definitions. In Sec-
tion 7.2, we introduce the problems ENTROPY APPROXIMATION and STATISTICAL DIFFER-

ENCE FROM UNIFORM, and state our Completeness Theorem for NISZK, which asserts
that these two problems are complete for NISZK. The proof of the Completeness Theo-
rem comes in Sections 7.3 and 7.4. In Section 7.5, we use the complete problems to study the
relationship between SZK and NISZK. Section 7.6 contains some additional applications
of the Completeness Theorem for NISZK.

7.1 The noninteractive model

We begin by defining noninteractive proof systems in the shared random string model.

Definition 7.1.1 (shared random string model) A noninteractive protocol in the shared
random string model os a pair of probabilistic algorithms (A, B) together with a polynomial-
time computable function : {0, 1}* -+ N. The communication from A to B on common
input x, denoted (A, B)(x),2 is the following probabilistic experiment:

'An exception is an unpublished manuscript of Bellare and Rogaway [BR90], which contains a noninter-
active perfect zero-knowledge proof for the language of graphs with trivial automorphism group, along with
some basic results about non-interactive perfect zero-knowledge.

2 We use the same notation as for interactive protocols, but it will always be clear from context which we
are referring to. Strictly speaking, f should also be included in the notation, but it too will always be clear
from context.
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1. Select the shared random string o +- {0, 1}e(x).

2. Let m <- A(x, o).

3. Let answer +- B(x,o-,m).

If answer = accept (resp., answer = reject), we say that B accepts (resp., rejects). We

say that (A, B) is polynomially bounded if f(x) and |proof are both bounded above by a

polynomial in Ix|. B's view of (A, B)(x) is the random variable (o-,m).

. The key features of the above definition are that both parties A and B have access to

the random string -, and B does not send any messages to A. Given this communication

model, proofs and zero-knowledgeness are completely analogous to the interactive case.

Definition 7.1.2 (noninteractive proofs) Let P and V be probabilistic algorithms and

let H be a promise problem. (P, V) is said to be an noninteractive proof system (in the

shared random string model) for H with completeness error c : N - [0, 1], and soundness

error s : N -+ [0, 1] if the following conditions hold:

1. (Efficiency) (P, V) is polynomially bounded and V is polynomial-time computable.

2. (Completeness) If x E Hy, then V accepts with probability at least 1 - c(k) in

(P, V)(x, 1 k)

3. (Soundness) If x V fy, then V rejects with probability at least 1-s(k) in (P, V)(x, 1 k).

We require that c(k) and s(k) be computable in time poly(k) and that 1 - c(k) > s(k) +

1/poly(k). If c = 0, then we say that the proof system has perfect completeness.

Definition 7.1.3 (noninteractive zero knowledge - NISZK, NIPZK) A noninter-

active proof system (P, V) for a promise problem H is said to be statistical zero knowledge

if there is a useful3 probabilistic polynomial-time algorithm S and a negligible function p(.)

such that for all x E Hy and all k > 0, S(x, 1k) has statistical difference at most p(k)

from V's view of (P, V)(x, 1k). The negligible function p is called the simulator deviation.

If p = 0, then (P, V) is said to be perfect zero knowledge. NISZK (resp., NIPZK)

denotes the class of promise problems possessing noninteractive statistical (resp., perfect)

zero-knowledge proofs.

Noninteractive computational zero knowledge (NICZK) is defined analogously, replac-

ing statistical closeness with computational indistinguishability, as in Definition 2.3.7.

Note that noninteractive zero knowledge is closed under parallel repetition, so the com-

pleteness and soundness errors can always be made exponentially small. (The problems that

arise with parallel repetition in interactive zero knowledge come from cheating verifiers, but

there is no way for a verifier to cheat when there is no interaction.) In fact, it is shown in

[BDMP91, BR90] that every noninteractive zero knowledge proof can be transformed into

one with perfect completeness.

3Recall that a probabilistic algorithm A is called useful if Pr [A(x) = f ail] <_ 1/2 for all x and A(x)
denotes the output distribution of A on input x, conditioned on A(x) 0 fail.
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7.1.1 Relationship with the interactive proofs

It is easy to see that that noninteractive proofs are equivalent to 2-message public-coin in-
teractive proofs, as the shared random string can play the role of the verifier's single random
message (and conversely). Similarly, we see that each of the three types of noninteractive
zero-knowledge proofs (perfect, statistical, and computational) are equivalent to the analo-
gous types of 2-message public-coin honest-verifier zero-knowledge proofs. Hence, we have
NICZK c HVCZK, NIPZK c HVPZK, and NISZK c HVSZK = SZK.

Without a zero knowledge constraint, the expressive power of noninteractive proof sys-
tems actually extends to all of AM; that is, the class of problems possessing constant-
message private-coin interactive proofs (rather than just 2-message public-coin proofs).
This follows from the transformation from private coins to public coins of Goldwasser and
Sipser [GS89] (which preserves the number of messages exchanged up to an additive con-
stant) and the Collapse Theorem of Babai and Moran [BM88] (which reduces the number
of messages in any constant-message public-coin proof system to two).

Like its interactive counterpart, noninteractive computational zero knowledge "hits the
roof" under an intractability assumption. Namely, it has been shown that NICZK =
AM under successively weaker intractability assumptions and ultimately one-way permu-
tations [BFM88, BDMP91, FLS99].

7.1.2 Contrast with the original definitions

Our definitions of noninteractive zero knowledge are stricter than those of Blum et. al. [BFM88,
BDMP91] in the same way that our definitions of interactive zero knowledge are stricter
than the GMR definition. First, we require the simulators to run in strict (rather than ex-
pected) polynomial time, but allow a failure probability. Second, we use a separate security
parameter, rather than the input length, to control the error parameters; this has also been
done in a number of previous works on noninteractive zero knowledge [FLS99, Kil94, KP98].
As in the interactive case, the use of a security parameter has the nice consequence that
noninteractive zero knowledge is closed under Karp reductions.

Proposition 7.1.4 If U has a noninteractive statistical zero-knowledge proof with simu-
lator deviation p(.), and r (Karp-)reduces to U, then r has a noninteractive statistical
zero-knowledge proof with simulator deviation p(-). Thus, NISZK and NIPZK are closed
under (Karp) reductions.

Analogous to Definition 2.4.2, we define weak-NISZK to capture the ways in which
the original definitions are weaker than ours.

Definition 7.1.5 (weak-NISZK)
A noninteractive proof system (P, V) for a promise problem H is said to be weak statistical

zero knowledge if for every c > 0, there is probabilistic polynomial-time algorithm Se such
that for all but finitely many x E fly, Sc(x) has statistical difference at most 1/|xc from
V's view of (P, V)(x, lixi). weak-NISZK denotes the class of promise problems possessing
weak noninteractive statistical zero-knowledge proofs.
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Later in this chapter, we will prove that weak-NISZK = NISZK, so our results about

NISZK (as we've defined it) also apply to NISZK as defined by [BFM88, BDMP91]. One
other minor difference between our definition and that of Blum et. al. is that we allow the

verifier to be probabilistic, whereas they require it to be deterministic. We feel that allowing

a probabilistic verifier maintains the spirit of noninteractive zero knowledge. In any case,
a probabilistic verifier can always be made deterministic by having the verifier use part of

the shared random string in place of its random coin flips (in combination with standard

error reduction via parallel repetition and majority/threshold rule).

7.1.3 Augmentations to the definitions

In applications, one often needs noninteractive zero knowledge proofs that have additional

properties beyond those guaranteed by Definition 7.1.3. For completeness, we briefly men-

tion some of these properties below, though we will be working with Definition 7.1.3. Var-

ious formulations of these properties and methods for achieving them can be found in

[BFM88, BDMP91, BG89, NY90, DY90, FLS99].

Proving many statements. In many applications of noninteractive zero knowledge,
one needs to prove many statements noninteractively using the same shared random string,
whereas our definition only refers to proving one statement. One way of proving t statements

is to use t independent executions of the proof system, but this multiplies the length of the

shared random string by a factor of t, and hence requires an a priori bound on the number

of statements to be proven. Ideally, the shared random string would be a fixed length
(polynomial in the input length and the security parameter) and can be used to prove an

arbitrary (polynomial) number of statements. Definition 7.1.3 is sometimes referred to as

bounded or single-theorem noninteractive zero knowledge in the literature.

Adaptive noninteractive zero knowledge. Another issue is whether the statements

to be proven can be selected "adaptively" after the shared random string is published.

Our definition only guarantees soundness and zero-knowledgeness if the statement to be

proven is fixed before the shared random string is selected. Preserving soundness in the

adaptive setting is not difficult - if one uses parallel repetitions to make the soundness

error of a nonadaptive proof system sufficiently smaller than 2-", then with high probability

the shared random string will be "good" (with respect to soundness) for all statements of

length n, and thus it does not matter if the statement is selected after the proof. Preserving

zero-knowledgeness in the adaptive setting, however, is much less straightforward.

Efficient provers. In order to actually implement a noninteractive zero knowledge proof

system, it is clearly necessary that the prover strategy can be implemented in polynomial

time given, say, some auxiliary information. This only makes sense for problems in NP, as

the auxiliary information can be viewed as an NP-proof.4

4 Strictly speaking, it also makes sense for problems in MA [BM88], as the verification might be
probabilistic.
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Solutions for NICZK. Feige, Lapidot, and Shamir [FLS99] show how to achieve all
of these properties for NICZK under intractability assumptions. Specifically, they show
that every problem in NP has a many-theorem adaptive NICZK proof with an efficient
prover, if trapdoor permutations exist. For NISZK and NIPZK, however, the relationship
between Definition 7.1.3 and the many-theorem and adaptive variants is still open.

7.2 The Completeness Theorem

We consider the following restricted versions of STATISTICAL DIFFERENCE and ENTROPY
DIFFERENCE are complete for NISZK.

Definition 7.2.1 STATISTICAL DIFFERENCE FROM UNIFORM is the promise problem SDU =
(SDUy, SDUN), where

SDUy = {X : StatDiff (X, Un) 1/n}

SDN = {X : StatDiff (X, Un) > 1 - 1/n}.

Above, X is a circuit encoding a probability distribution on {0, 1}n (where n is the number
of output gates of X), as in Definition 3.1.1, and Un is the uniform distribution on {0, 1}.

Definition 7.2.2 ENTROPY APPROXIMATION is the promise problem EA = (EAy, EAN),
where

EAy = {(X, t) : H(X) > t + 1}
EAN = {(X, t) H(X) t - 1}.

Above, X is circuit encoding a probability distribution, as in Definition 3.1.1, t is an integer,
and H(.) denotes the entropy function (Definition 3.3.1).

In Sections 7.3 and 7.4, we will prove the following completeness theorem for NISZK.

Theorem 7.2.3 (Completeness Theorem for NISZK) ENTROPY APPROXIMATION and
STATISTICAL DIFFERENCE FROM UNIFORM are complete for NISZK.

It is interesting to informally compare this with the Completeness Theorem for HVSZK
(= SZK) (Theorem 3.5.1):

Whereas (interactive) statistical zero knowledge captures those assertions that
can be cast as comparing two efficiently samplable distributions to each other (ei-
ther with respect to their statistical difference or their entropies), noninteractive
statistical zero knowledge consists exactly of those assertions which can be cast
as comparing a single distribution to the uniform distribution.

As was the case with HVSZK, the complete problems for NISZK are useful tools for
proving general theorems about the entire class. Our most dramatic application of these
complete problems comes from the fact that they are natural restrictions of the complete
problems for SZK. In Section 7.5, we exploit this relationship to get a better understanding
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of how NISZK compares to SZK. Other corollaries of the completeness theorem are given

in Sections 7.4 and 7.6.
Prior to this work, De Santis, Di Crescenzo, Persiano, and Yung [DDPY98] showed that

a different promise problem, called IMAGE DENSITY (ID) is complete for NISZK. Roughly

speaking, the YES instances of ID are distributions on strings of some length n (encoded

by circuits) which are statistically close to the uniform distribution on {0, 1}, and the

NO instances of ID are distributions whose support is a small fraction of {0, 1}". Thus,
for an appropriate quantification of "close" and "small fraction," ID is a restricted version

of SDU. The main interesting feature of our complete problems (as compared to ID) is

that they are more closely related to the complete problems for SZK. Specifically, we will

exploit the connection between ENTROPY APPROXIMATION and ENTROPY DIFFERENCE in

comparing SZK and NISZK.
We prove the Completeness Theorem via a "circle of reductions" analogous to (but

simpler than) the one used to prove the Completeness Theorem for HVSZK. First, in

Section 7.3, we prove that EA is in NISZK. Next, in Section 7.4, we show that SDU

reduces to EA. Finally, also in Section 7.4, we complete the circle by showing that every

problem in NISZK reduces to EA.

7.3 ENTROPY APPROXIMATION is in NISZK

7.3.1 The proof system

In this section, we exhibit a noninteractive statistical zero-knowledge proof system for EN-

TROPY APPROXIMATION. We begin by considering Protocol 7.3.1, which is a simple nonin-

teractive protocol for proving that the support of a distribution X on {0, 1}" is nearly all

of {0, 1}".

Protocol 7.3.1: Basic noninteractive proof system (P, V) for showing

a distribution has large support

Input: Circuit X (with m input gates and n output gates), and shared random

string x E {0, 1}

def
1. P: Select r uniformly from Qx(x) = {r' : X(r') = x} and r to V. (If

)x (x) = 0, then send f ail to V.)

2. V: Accept if X(r) = x, otherwise reject.

The prover's success probability in Protocol 7.3.1 is evident by inspection:

Claim 7.3.2 The prover strategy given in Protocol 7.3.1 makes the verifier accept with

probability exactly ISupp(X)|/2", and no prover strategy can make the verifier accept with

higher probability.
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Thus, the protocol is complete and sound: if the support of X is nearly all of {0, 1 }",the
verifier will accept with high probability, and if the support is a small fraction of {0, 1 }",the
verifier will reject with high probability no matter what strategy the prover uses. In fact,
if X has not just large support, but is close to uniform, the protocol also can be simulated
well, as done by Algorithm 7.3.3.

Algorithm 7.3.3: Simulator for Protocol 7.3.1

Input: Circuit X (with m input gates and n output gates)

1. Select r E {f, 1}'. Let x = X(r).

2. Output (x, r)

Claim 7.3.4 The statistical difference between the output of Algorithm 7.3.3 and the veri-
fier's view of Protocol 7.3.1 is exactly StatDiff (X, Un).

Proof: The statistical difference between the x-components of the two
exactly StatDiff (X, Un). Conditioned on x, r is selected uniformly from
distributions, so it does not increase the statistical difference.

distributions is

Qx(x) in both
E

Thus, to give an NISZK proof system for EA, it suffices to give a transformation
mapping YES instances to distributions that are close to uniform and NO instances to dis-
tributions with small support. This is given by the following lemma, which we prove in
Section 7.3.2.

Lemma 7.3.5 There is a polynomial-time computable function that takes an instance (X, t)
of EA and a parameter k (in unary) and produces a distribution Z (encoded by a circuit
which samples from it) such that, letting N be the number of output gates of Z, we have:

1. If H(X) > t + 1, then Z has statistical difference at most 2 -k from the uniform
distribution on {0, 1}N, and

2. If H(X) 5 t - 1, then the support of Z is at most a 2 -k fraction of {0, 1}N.

Lemma 7.3.5 essentially reduces to ENTROPY APPROXIMATION to IMAGE DENSITY, the
complete problem of De Santis et. al. [DDPY98]. Combining Lemma 7.3.5 with Claims 7.3.2
and 7.3.4, we obtain:

Theorem 7.3.6 ENTROPY APPROXIMATION is in NISZK. Moreover, it has a noninterac-
tive statistical zero-knowledge proof system with simulator deviation 2 -k and a deterministic
verifier.
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Protocol 7.3.1 (together with 7.3.5) gives a proof system with nonzero, though expo-

nentially small, completeness error. However, this completeness error can be removed using

a transformation given in [BDMP91, BR90], which converts noninteractive zero knowledge

proofs into ones with perfect completeness. (That transformation preserves both statistical

and computational zero knowledge, maintains an exponentially small simulator deviation

in the case of statistical zero knowledge, and keeps the verifier deterministic.)

7.3.2 Proof of Lemma 7.3.5

We now prove Lemma 7.3.5. The transformation is based on techniques we have used many

times - 2-universal hashing, the Leftover Hash Lemma, and flattening distributions (cf.,
Sections 3.4.1 and 3.4.3 for the definitions). Let (X, t) be an instance of EA. Recall that

the Leftover Hash Lemma converts nearly flat distributions with large entropy into nearly

uniform ones. This suggests the following first attempt at constructing the distribution Z:

1. Let X' consists of many, say s, independent copies of X so that the entropy of X' is

greater s - (t + 1) for YES instances and less than s - (t - 1) for for NO instances, while

X' is A-flat, for A < s.

2. Define Z to be the distribution (h, h(x)), where h is chosen uniformly from a 2-

universal family of hash functions with range {0, 1 }t and x is sampled according to

X'.

For a sufficiently large (but still polynomial) choice of the parameter s, this does indeed

map YES instances (X, t) of EA to distributions Z that are close to uniform. Unfortunately,
Z does not necessarily have small support when (X, t) is a NO instance. However, it almost

works: The fact that the entropy of X' is much smaller than st implies that if we remove

the very "light" strings from Supp(X') (i.e., the strings assigned probability mass much

smaller than 2 -H(X')), what remains is a set T of size much smaller than 2 *. The near-

flatness of X' implies that Pr [X' E T] is very close to 1. For any hash function h mapping

to st bits, h(T) will be a very small fraction of {0, 1}. So, the reason that Z might still

have large support is rare event that we obtain a very light sample from X'. The fact that

such samples x are very light means that {r : X'(r) = x} is atypically small. So, we add

to Z another two components (h', h'(r)), where h' is another hash function (mapping to a

different number of bits) and r is is the input to X' used to produce the sample x used in

the second component of Z. Thus, when x is one of these rare points outside T, h'(r) will

only hit a small fraction of its range, and Z will have small support.

To formalize this intuition, let (X, t) and k be given as in the lemma. Note that it

suffices for the transformation to achieve error parameters 2 -2(k) rather than 2 -k, as we

can compensate for this by first increasing k by a constant factor. Let m be the number of

input gates to X and n the number of output gates. Define X' = OX, for s = 4k - m 2

Thus, X' has sm input gates, sn output gates, and, by Lemma 3.4.6, is A-flat for A =

V/(4km 2 ) in = 2V/ - iM
2 . Consider the following distribution Z:

Z: Choose r +- {,1'}sm. Let x = X'(r). Select. h, +- 'sn,st and h 2 +- lsm,sm-st-k-

Output (hi,hi(x),h2 ,h 2(r)).
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We denote the (jointly distributed) random variables corresponding to the components
of Z by (Hi, Y, H 2, Y2 ). We also use X' to denote the distribution of x and R to denote
the distribution of r, so Y = H1(X'), Y2 = H2 (R) and X' = X'(R).

Claim 7.3.7 If H(X) > t + 1, then Z has statistical difference at most 2 -2(k) from the
uniform distribution on lin,st X {0, 1}'t X 7 sm,sm-st-k x {0, i}sm-st-k

Proof: First we analyze the distribution on the first two components (H 1 , H 1 (X')). Note
that X' has entropy at least s. (t+1) = st+2vWA. By the A-flatness of X', we can apply the
Leftover Hash Lemma (Lemma 3.4.7) with parameters 6 = 2 -k+1 and E = 2 -- A < 2-k to
see that (H 1 , H 1 (X')) = (H 1 , Y) has statistical difference at most 2 -9(k) from the uniform
distribution on Nsn,st x {0, 1}*. It follows that with probability at least 1 - 2-1(k) over
(h, 7y1 ) +- (H1, YI),

1 1
Pr [(Hi, Y) = (h1, yi)] > - -

2 -sn,st x {O, l}st|1

Fix any pair (hl, yi) such that this holds. Then the conditional distribution RI(H1 ,Y1)=(h1 ,y1 )
is uniform over the set {r hi(X'(r)) = yi}, which is of size

2sm -Pr [Y = yiJH1 = hi] = 2sm. Pr [(Hi, Y) = (hi, y1 )]
Pr [HI = hi]

> 2sm .1/ (2 - |Nhsn,st| - 2st)

1/|lisn,st|
_ sm-st-1.

Thus, by the Leftover Hash Lemma, (H 2 , H2(R))I(H,,Y1)=(hi,y1 ) has statistical difference

2 -(k) from the uniform distribution on 7 sm,sm-st-k x {0, 1}sm-st-. Recalling that this
holds with probability 1 - 2-2(k) over (hi, yi) <- (H 1 , Y) and that (H 1 , Y) has statistical
difference at most 2 -9(k) from uniform, we conclude that (H 1 , Y, H 2 , Y2 ) has statistical
difference at most 2 -n(k) from uniform. U

Claim 7.3.8 If H(X) t - 1, then the support of Z is at most an 0(2 -k) fraction of
1 sn,st X {0, 1}s X Wsm,sm-st-k x {0, 1 }sm-st-k*

Proof: Note that the entropy of X' is at most s - (t - 1) < st - v/3k -A - k. We will show
that, for every fixed h, E lism,st, the support S = Sh of (h,(X'), H 2 , H 2 (R)) is at most
an 0(2 -k) fraction of D = {0, 1}st X 1 sm,sm-st-k X {0, I}sm-st-k. Clearly this suffices to
prove the lemma.

Fix hl E Wsm,st. To bound the size of S = Sh, we divide it into three subsets, depending
on the probability mass of the first component hi (X') (as compared to a "typical," unhashed
sample from X'). Recall that a "typical" sample from X' has probability mass ~ 2-H(X') >
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2- st+v ,13k-A+k.

Si = {(yi, h2, y 2 ) E S 2 -st+k < Pr [hi(X') = yi]} ("not too light")

S2 = {(yi, h 2, Y 2 ) E S 2 -st-2k < Pr [hi(X') = y1] < 2 -st+k I

("too light, but not much too light")

S3 = {(y 1 , h2 , Y2 ) E S Pr [hi(X') = yi] 2 -st-2k} ("much too light")

Clearly, S = Si U S2 U S3. We will show that ISjI/IDI J O(2-k) for i = 1,2,3, and so

ISI/D 3. 0(2-k) - 0(2-k).
First, we bound Si. Clearly, there can be at most 2 st-k values of yi such that

Pr [h,(X') = yi] > 2 -st+k, so the first components of elements of Si cover at most a 2-k

fraction of {0, 1 }t*. Hence Si is at most a 2 -k fraction of D.

Now we bound I52|. Consider the set

A = {y1: 2 -st-2k < Pr [hi(X') = yi] 2 -st+k}.

We will show that A is of size at most 2 st-k+1; like the previous case, it then follows that

1S2 1/DI < 2- . Note that if hi(x) E A, then Pr [X' = x] 5 Pr [h,(X') = hi(x)] < 2-st+k*

Thus, if hi(x) E A, then x is V3k- A-light (since X' has entropy at most st-k-/5.-A). By

the A-flatness of X', Pr [h,(X') E A] is at most 2 -3k+1. Since every yi E A has probability

mass at least 2 -st-2k under hi(X'), it follows that JAl is at most 2 -3k+1/ 2 -st-2k - 2 st-k+1.

Finally, we bound 1S31. Note that, for any yi,

Pr [h,(X') = y1] = 2--sm I 1r : hi(X'(r)) = yi}I.

Thus, for any yi such that Pr [h,(X') = yi] < 2 -st-2k, there are at most 2 -st-2k - 2 sm

values of r consistent with hi(X'(r)) = yi. Hence, for any such yi and any h2 , the set

of Y2 such that (yi, h 2 , Y2) E S is of size at most 2 sm-st-2k (because each such y2 is of

the form h2(r) for some r such that hi(X'(r)) = yi). This implies that Si is at most a

2 sm-st-2k 1 2 sm-st-k - 2 -k fraction of D. U

We comment that the protocol obtained by combining the above transformation with

Protocol 7.3.1 yields a protocol that is closely related to the standard lower bound protocol

(Protocol 5.2.1). Indeed, proving an approximate lower bound on the entropy of a nearly

flat distribution X is almost equivalent to proving an approximate lower bound on the size

of Supp(X), except for difficulties caused by "light" samples. Our method for handling this

difficulty can be viewed as using another lower bound protocol on the inputs to X.

7.4 Proof of the Completeness Theorem

In this section, we complete the proof of the completeness theorem for NISZK. First, we

show that STATISTICAL DIFFERENCE FROM UNIFORM reduces to ENTROPY APPROXIMA-

TION.
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Lemma 7.4.1 SDU -Kp EA. In particular, SDU E NISZK.

Proof: Let X be an instance of SDU. First, we treat the case that log n > 4, where
n is the output length of the circuit X. In this case, we claim X - (X, n - 3) is a valid
reduction to EA. The correctness of this reduction follows from the following claim relating
the entropy of a distribution to its distance from the uniform distribution.

Claim 7.4.2 Let X be any distribution on a universe U and let U denote the uniform
distribution on U. Then

1. If StatDiff (X, U) < a, then H(X) log iU - (a + P ) - log JUl.

2. If StatDiff (X, U) /3, then H(X) log JUI - log

Applying this claim with U = {O, 1}, a = 1/n, and 0 = 1-1/n shows that YES instances
of SDU have entropy at least n -2 and NO instances have entropy at most n - log n < n -4.
This establishes the validity of the reduction.

Now we treat the case that log n < 4. In this case, the statistical difference between X
and U, can be approximated in probabilistic polynomial time by sampling X sufficiently
many times and counting the number of times each output occurs. So let A(X) be the
probabilistic algorithm which outputs 1 with probability at least 2/3 when X E SDUy
and outputs 1 with probability at most 1/3 when X E SDUN. Now consider the circuit Y
defined as follows:

Y: Run A(X) to obtain output b. If b = 1 output 9 random bits, and if b = 0 output 09.

Now, if X E SDUy, then H(Y) > (2/3) - 9 = 6. If instead X E SDUN, then H(Y) K

H2 (1/3) + (1/3) - 9 < 4. Thus X - (Y,5) is a valid reduction from SDU to EA in this
case. N

Now we complete the circle of reductions by showing that every problem in weak-NISZK
reduces to SDU.

Lemma 7.4.3 Every promise problem in weak-NISZK reduces to SDU.

By the correspondence between noninteractive proofs and 2-messsage public-coin inter-
active proofs, we could apply the simulator analysis for public-coin statistical zero-knowledge
proofs given in Section 3.2. However, since the case of noninteractive proof systems is much
simpler, we give the reduction directly. Our reduction is essentially the same as the reduc-
tion of De Santiset. al. [DDPY98] to their complete problem IMAGE DENSITY, with a small
complication caused by the fact that we allow the verifier to be probabilistic.

Proof: Let H be any promise problem in weak-NISZK. Let (P, V) be a weak-NISZK
proof system for II and let £ = e(n) be a polynomial bound on the length of the shared
random string on inputs of length n. We assume that (P, V) has completeness and soundness
error at most /9f (actually these can be assumed to be exponentially small by repeating
the proof system sufficiently many times in parallel). By the weak-NISZK property, there
is a simulator S for (P, V) which achieves simulator deviation 1/3f.

For an instance x of IH, consider the following distribution Xx:
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X,: Run S(x) to obtain a simulated transcript (o, proof ). Run V(x, o-, proof ) f times. If V

accepts in the majority of the executions, output a. Otherwise, output 0e.

We claim that x '-+ X, is the reduction we are seeking. Suppose x E fly. Consider

the distribution Xx which is the same as Xx, except that (a, proof ) is taken from (P, V)(x)

instead of from S(x). Xx and Xx have statistical difference at most the simulator deviation

(1/3f), so it suffices to show that Xx has statistical difference at most 2/3 from uniform.

For (o-, proof) taken from (P, V) (x), a is distributed uniformly, so we need only analyze

the probability that it is discarded and replaced with 0' in Xx. Let B be the set of

"bad" pairs (a, proof )'s for which Pr [V(x, o-, proof ) = accept] 2/3. The probability

that (o, proof) E B is at most 1/3f, for otherwise V would reject with probability greater

than (1/3f) - (1/3) = 1/9f, violating completeness By the Chernoff Bound, for any pair

(o-, proof) B, the probability that V(x, a, proof) accepts in the majority of f independent

executions is at least 1 - exp(-Q(e)). Thus, in Xz, a is replaced with 0 ' with probability

at most 1/3f + exp(-Q(f)) < 2/3f, and hence Xx has statistical difference at most 2/3f

from uniform.

Now suppose that x E HN- Consider the set B of "bad" a's for which there exists a proof

such that Pr [V(x, a, proof) = ac cept] > 1/3. The probability that a uniformly distributed

a is in B is at most 1/3f, for otherwise there would be a prover strategy which makes V

accept with probability greater than (1/3f) - (1/3) = 1/9f, violating soundness. However,
whenever a 0 B, Xx outputs 0 e with probability at least 1 - exp(-Q(f) (by the Chernoff

Bound). Hence, Xx is in B U {0 e} with probability at least 1 - exp(-2(f)) 1 - 1/3e,
whereas the uniform distribution is in B U {0 '} with probability at most 1/3f + 2 -' < 2/3,
for a statistical difference at least [1 - 1/3f] - 2/3f = 1 - 1/t.

The Completeness Theorem (Theorem 7.2.3) follows by combining Theorem 7.3.6 and

Lemmas 7.4.1 and 7.4.3. We can draw a couple of immediate corollaries from our proof of

the Completeness Theorem. By the fact that the reduction from NISZK to SDU actually

works for all of weak-NISZK, we obtain:

Corollary 7.4.4 weak-NISZK = NISZK.

Since the complete problem EA possesses an NISZK proof system with exponentially

vanishing simulator deviation (Theorem 7.3.6), so must all other problems in NISZK.

Corollary 7.4.5 Every problem in NISZK possesses a noninteractive statistical zero knowl-

edge proof system with simulator deviation 2 -k and a deterministic verifier.

7.5 Comparing SZK and NISZK

7.5.1 Nontriviality of NISZK

In this section, we use the complete problems to relate SZK and NISZK. The first result

is that if NISZK = BPP then SZK = BPP. This is done by giving a Cook reduction
from ENTROPY DIFFERENCE (ED) to ENTROPY APPROXIMATION (EA).
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Lemma 7.5.1 Suppose (X, Y) is an instance of ED. Let X' = &4X (resp., Y' = 0 4 Y)
consist of 4 independent copies of X (resp., Y), and let n denote the output length of X'.
Then,

(XY) E EDy =-> [((X',t) E EAy) A ((Y',t) E EAN)
t=1

(X, Y) E EDN -> [((X', t) E EAN) V ((Y',t) E EAy)]
t=1

Proof: Suppose (X, Y) E EDy, so that H(X') H(Y') + 4. Let t = [H(X')J - 2. Then
H(X') t + 1 (i.e., (X', t) E EDy). On the other hand, t + 3 > H(X') H(Y') + 4,
and hence H(Y') < t - 1 (i.e., (Y', t) E EDN). Suppose instead (X, Y) E EDN, so that
H(Y') > H(X')+4. Then for all t > FH(X')1+1, we have H(X') < t-1 (i.e., (X', t) E EDN)-
And for all t < FH(X')1 + 1, we have t + 1 < H(X') + 3 < H(Y') (i.e., (Y', t) E EDy). U

Thus, we conclude:

Theorem 7.5.2 NISZK 0 BPP iff SZK $ BPP.

Proof: By definition, BPP C NISZK c HVSZK, and HVSZK = SZK by Theo-
rem 6.3.1. Thus, if SZK = BPP, then NISZK = BPP.

Now suppose that NISZK = BPP. In particular, there is a probabilistic polynomial
time algorithm A which decides EA with exponentially small error probability. To prove
that SZK = BPP, it suffices to exhibit a BPP algorithm for ED, since ED is SZK-
complete. The algorithm is given as follows: Given an instance (X, Y) of ED, let X', Y',
and n be as stated in Lemma 7.5.1. Run A(X',t) and A(Y',t) for t = 1,...,n. If, for
some t, A(X', t) = YES and A(Y', t) = NO, then output YES. Otherwise, output NO. By
Lemma 7.5.1, this is a correct BPP algorithm for deciding ED.

7.5.2 Conditions under which NISZK = SZK

In this section, we use special properties of the reduction from ED to EA given in the
previous section to shed additional light on the relationship between NISZK and SZK.
Specifically, we will show that if NISZK is closed under complement, then in fact NISZK =

SZK.
The key observation is that the reduction from ED to EA is nonadaptive (i.e., all the

queries to EA can be asked at once) and the final answer is computed by applying the
simple Boolean formula of Lemma 7.5.1 to the responses. That is, it is an NCI truth-table
reduction, in the sense of Definition 4.5.8. In fact, the Boolean formula has constant depth;
this property is captured by the following definition.

Definition 7.5.3 (ACo truth-table reductions) A truth-table reduction f between promise
problems is an ACO truth-table reduction5 if the circuit C produced by the reduction on input

5This terminology is inherited from the AC hierarchy of languages, where ACi denotes the class of
languages decided by (uniform) families of circuits of unbounded fan-in and depth O(log n). See, e.g.,
[Pap94].
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x has depth bounded by cf, where cf is a constant independent of x. (C may have unbounded

fan-in.) If there is an ACO truth-table reduction from F to H, we write F AC0-tt II-

From Lemma 7.5.1, we have:

Proposition 7.5.4 ED <Ac-tt EA.

By this proposition, if NISZK were closed under ACO truth-table reductions, then

ED would be in NISZK and hence NISZK = SZK. Thus, we would like to capture the

minimal conditions for a complexity class to be closed under ACO truth-table reductions.

We define the following operator on promise problems to capture the notion of an unbounded

fan-in AND gate.

Definition 7.5.5 (unbounded AND) For any promise problem H, we define AND(H)

to be the following promise problem:

AND(H)y = {(X1, x 2 ,.. .X) : k > 0, Vi E [1, k] Xi E Hy}
AND(H)N = {(Xi, X2 ,. .X.,k) : k >!0, ]i E [1,k] xi E HN}

We say a class C of promise problems is closed under unbounded AND if H E C implies

that AND(H) E C.

Just as in Definition 4.5.1, we have defined AND(.) so that it has the weakest promise

condition possible to remain well-defined. In particular, AND(H)N is defined to include

Xi 's that violate H's promise, as long as just one of them is in HN-
We also need a way of combining two promise problems:

Definition 7.5.6 (disjoint union) For any pair of promise problems H and F, we define

the disjoint union of H and F to be the promise problem DisjUn(U, F) defined as follows:

DisjUn(H, F)y = {0} x fy U {1} x Fy

DisjUn(H, F)N = {0} X HN U {1} X FN

We say a class C of promise problems is closed under disjoint union if H, F E C implies

that DisjUn(H, F) E C.

With these definitions, we can give some conditions that imply closure under ACO

truth-table reductions.

Lemma 7.5.7 A promise class C is closed under ACO truth-table reductions if the following

conditions hold:

1. C is closed under Karp reductions.

2. C is closed under unbounded AND.

3. C is closed under disjoint union.

4. C is closed under complementation.
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Proof: First note that any unbounded fan-in circuit can be efficiently converted into a
circuit with only unbounded fan-in NAND gates (allowing also unary NAND gates), with
only a constant factor blowup in depth. So, as a first step, we observe that C is closed

defunder unbounded NAND: for any promise problem H, NAND(H) = AND(H) E C, by
closure under unbounded AND and complementation. To generalize this to constant depth
circuits with unbounded fan-in NAND gates, we first need a definition.

Definition 7.5.8 Fix any promise problem H, and define the validity of an m-tuple of
bits b = (b1 ,...,bm) E {0,1}m with respect to an m-tuple of strings i = (x 1 ,...,xm) as
in Definition 4.5.1. For all d E N we define Depthd(H) to be a promise problem whose
instances are tuples (C,T), where C is a circuit of depth at most d (using unbounded fan-in
NAND gates only) with m input gates and T = (x 1,..., xm) is an m-tuple of strings. The
YES instances of Depthd(H) are the pairs (C, Y) such that for all valid settings of b with
respect to T, C(b) = 1. The NO instances are the pairs (C,T) such that for all valid settings
of b with respect to T, C(b) = 0.

Using the fact that every ACO circuit can be efficiently transformed into one with
only NAND gates, we see that H AC 0 -tt F means that there exists some d such that
H Karp Depthd(F) under a Karp reduction. Hence if we can show that for all d > 0 and
promise problems H, Depthd(H) E C, the lemma will be established. We will prove this by
induction on d.

First, observe that a depth 0 circuit is simply a variable (negations of variables are
achieved with one unary NAND gate, so count as depth 1). Hence, Depth0 (H) Karp H E C.
Now assume that Depthd(H) E C. By definition, a depth d + 1 circuit is simply a NAND
of some number of depth d circuits. Using this fact, we will argue that that

Depthd+l (H) 5arp DisjUn(Depthd(H), NAND (Depthd (H))).

By the hypothesized closure properties of C, this implies that Depthd+1 (H) E C. The reduc-
tion works as follows. The input to the reduction is a tuple (C, Y) where Y = (x 1 , x2 , ... Xm).
If C is actually a depth d circuit, then it simply outputs (0, (C, T)). If not, then it extracts
from C the circuits C1, C2,... , Cs that provide input to the topmost NAND gate. Then
the reduction outputs (1, ((C1,Y), (C2,Y),... , (CsY))). It is clear that this map gives a
Karp reduction from Depthd+1(H) to DisjUn(Depthd(H), NAND(Depthd(H))), completing
the induction step and the proof.

Which of the conditions of Lemma 7.5.7 does NISZK satisfy? We have already shown
that Condition 1 is satisfied by NISZK (Proposition 2.4.1). We now argue that Conditions 2
and 3 are also satisfied:

Lemma 7.5.9 NISZK is closed under unbounded AND.

Proof: Let H be any problem in NISZK. Let (P, V) be a noninteractive statistical
zero-knowledge proof system for H with completeness and soundness errors at most 1/k
and simulator devation p(k) (where k is the security parameter). We now describe an
NISZK proof system (P', V') for AND(H): Given an instance (x 1 , ... , xm) of AND(H) and
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a security parameter k', P' and V' execute the (P, V) on each xi, using security parameter

k = 2k'm, and V' accepts if V accepts in each of these executions.

(P', V') is a noninteractive proof system for AND(H) with completeness error at most

m- 1/k < 1/k' and soundness error at most 1/k < 1/k'. Moreover, it can be simulated by

running the simulator for (P, V) on each of the inputs xi. This gives simulator deviation

m - p(k), which is (bounded by) a negligible function of k'.

Lemma 7.5.10 NISZK is closed under disjoint union.

Proof: If 11 o, HI c NISZK, an NISZK proof system for DisjUn(o, Hl) can be obtained

as follows: On input (a, x) and security parameter k, the prover and verifier execute the

NISZK proof system for H, on input x and security parameter k.

Combining everything, we can give a condition under which SZK = NISZK.

Proposition 7.5.11 If NISZK is closed under complementation, then SZK = NISZK.

Proof: Suppose NISZK is closed under complementation. By Lemmas 7.5.7, 7.5.9,
and 7.5.10 and Proposition 7.1.4, it follows that NISZK is closed under ACO truth-table

reductions. Combining Proposition 7.5.4 (ED AC 0 -tt EA) and Theorem 3.5.1 (ED is

complete for SZK), we see that every problem in SZK ACO truth-table reduces to EA.

Thus, SZK c NISZK. As NISZK C SZK is true from the definition of NISZK, we

conclude that NISZK = SZK.

Finally, we give a number of other conditions equivalent to NISZK = SZK.

Theorem 7.5.12 (conditions for SZK = NISZK) The following are equivalent:

1. SZK = NISZK.

2. NISZK is closed under complement.

3. NISZK is closed under NC1 truth-table reductions.

4. ED (resp., SD) Karp-reduces to EA (resp., SDU). ("general versions reduce to

one-sided ones")

5. EA (resp., SDU) Karp-reduces to its complement. ("one-sided versions reduce to

their complements")

Proof: 1 =* 3. This follows from Corollary 4.5.10, which states that SZK is closed under

NC1 truth-table reductions.
3 =* 2 =* 1. The first implication is trivial and the second is Proposition 7.5.11.

1 4 4. This follows from the Completeness Theorems (Theorem 3.5.1 and 7.2.3), which

assert that EA and SDU are complete for NISZK, and that ED and SD are complete for

SZK, and Proposition 7.1.4 (that NISZK is closed under Karp reductions).

2 - 5. This follows from Theorem 7.2.3 (that EA and SDU are complete for NISZK) and

Proposition 7.1.4 (that NISZK is closed under Karp reductions). U
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Theorem 7.5.12 can be interpreted as saying that if NISZK has a relatively weak closure
property (closure under complement), then the class is surprisingly rich (equals SZK) and
has a much stronger closure property (closure under NC1 truth-table reductions.) At first,
it might seem implausible that a class like NISZK with such an assymetric definition
would be closed under complement. But SZK, which has a similarly assymetric definition,
is known to be closed under complement [Oka96] (cf., Corollary 4.2.1). In light of this, the
closure of NISZK under complement would not be quite as unexpected, and Theorem 7.5.12
illustrates that proving it would have wider consequences.

The last two conditions in Theorem 7.5.12 show that these questions about noninter-
active versus interactive statistical zero-knowledge proofs are actually equivalent to basic
questions about relationships between natural computational problems whose definitions
have no a priori relationship to zero-knowledge proofs.

The equality of SZK and NISZK would have interesting consequences not just for
NISZK, but also for SZK. Note that NISZK = SZK would imply that every problem
in SZK = HVSZK has a 2-message public-coin HVSZK proof, giving a positive an-
swer to Open Problem 5.4.20. By the transformation of Damgird, Goldreich and Wigder-
son [DGW94], this in turn would imply that every problem in SZK has a 4-message public-
coin SZK proof system (against cheating verifiers, with inverse polynomial soundness error),
giving a positive answer to Open Problem 6.5.6.

In summary, it would be very interesting to answer the following question.

Open Problem 7.5.13 Does SZK = NISZK?

7.6 Other applications of the Completeness Theorem

7.6.1 Problems in NISZK

We can also use the complete problems to place other problems in NISZK. To do so, we
need only exhibit a reduction from the given problem to one of the complete problems. The
following observation will make exhibiting reductions to ENTROPY APPROXIMATION some-
what more convenient: While the definition of EA amounts to the problem approximating
entropy up to +1, actually it is equivalent to approximating entropy up to any additive
constant. More precisely, we have:

Proposition 7.6.1 There is an efficient transformation that takes a triple (X, tt 2 ), where
X is a distribution encoded by a circuit and t 1 > t 2 are rational numbers, and produces a
new distribution X' and an integer t such that

H(X) ! ti ->(X', t) E EAy
H(X)<t 2  - (X',t)EEAy

The transformation is computable in time polynomial in the input length and 1/(t 1 - t 2 ).

Proof: Let m = F 3
t 2], X' = Om X, and t = Fmt 2l + 1. Then
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and

H(X) <_ t2 = H(X') < Mt2 <_ t -.

Explicit proof systems for the problems we consider below can be obtained by combining
the reductions to EA given below with the Protocol for ENTROPY APPROXIMATION given

in Section 7.3. However, for these problems, the construction and analysis of the trans-

formation given by Lemma 7.3.2 can be somewhat simplified, since the distributions are

already flat. In particular, there are no "light" samples and hence the second hash function
is unnecessary.

The first problem we show to be in NISZK is the following promise problem NUMBER

OF PRIME FACTORS (NPF):

NPFy = {(n, k) E N x N : n has at most k distinct prime factors}

NPFN = {(n, k) e N x N n has more than k distinct prime factors}

Note that, since NPFN is exactly the complement of NPFy, NPF is actually a language.

Proposition 7.6.2 NUMBER OF PRIME FACTORS is in NISZK.

Proof: We reduce NPF to EA. The reduction is based on the following well-known fact.

Fact 7.6.3 If an odd integer n has exactly k distinct prime factors, then the map from Z*

to Z* given by x '-4 x2 mod n is 2k-to-1.

Now, we reduce a pair (n, k) to EA as follows: By exhaustive search, find all the prime

factors of n less than 4 log n. Let t be the number of such prime factors, and let m be

obtained by dividing all such prime factors out of n. Thus if n has at most (resp., more
than) k prime factors, m has at most (resp., more than) k - t prime factors. Now consider

the following distribution:

Xn,k: Choose x uniformly in Z* and output x 2 (mod m).

By Fact 7.6.3, Xn,k is uniform on a set of size IZ*1/ 2' = q(m)/2t, where f is the number of

prime factors of m, and hence H(Xn,k) = (log 0(m)) - £. Now, since m has no prime factors

smaller than (log n)/4,

M>O()=M1 4 log M4 log nm m4

pim

Therefore,

(n,k) E NPFy a H(Xn,k);>log(3m/4) -(k -t)>logm-k+t -. 5.

(n,k) E NPFN = H(Xn,k) logm-(k-t+1)=logm-k+t-1

Thus, taking X = Xn,k, t1 = log m-k+t-.5, and t 2 = log m-k+t-1 in Proposition 7.6.1,
we see that NPF reduces to EA. N
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Now we consider a version QUADRATIC NONRESIDUOSITY, which was the first problem
shown to be in NISZK.

QNRy = {(n, x) E N x N : x is a quadratic nonresidue modulo n, n is odd,
and n has exactly two distinct prime factors},

QNRN = NxN\QNRy

Proposition 7.6.4 ([BDMP91]) QUADRATIC NONRESIDUOSITY is in NISZK.

Proof: The fact that n is odd and has exactly two distinct prime factors can be proven in
NISZK by Proposition 7.6.2. Thus, we may assume that n is of the correct form, and need
only give a reduction to EA that works in this case. We also may assume that both of the
prime divisors of n are larger than (log n)/4, for otherwise one can factor n and decide if x
is a quadratic residue in polynomial time. Finally, we may assume that gcd(x, n) = 1, as

(n, x) E QNRN if this is not the case, and this can be checked in polynomial time. Consider
the following distribution:

X,,: Choose y uniformly in Z*. With probability 1/2, output y2 mod n, and with proba-
bility 1/2, output X. y2 mod n.

First, suppose that x is a quadratic residue modulo n. Then Xn,, is distributed uniformly
on the quadratic residues modulo n, which, by Fact 7.6.3, is a set of size 0(n)/4 < n/4.
Thus, H(Xn,.) log n - 2.

On the other hand, if x is a quadratic nonresidue modulo n, then the elements of Z* of
the form x -y2 are disjoint from those of the form y2 , so Xn,k is uniformly distributed on a
set of size 0(n)/2. As in the proof of Proposition 7.6.2, the assumption that n has no small
prime factors implies that 0(n) 3n/4, so H(Xfl,k) log((3n/4)/2) log n - 1.5.

Taking X = Xn,k, t1 = log n - 1.5, and t2 = log n - 2 in Proposition 7.6.1, we see that
QNR reduces to EA. U

Blum et. al. [BDMP91] actually consider a slightly different version of QNR, in which the
YES instances (n, x) also have the constraint that n is not a perfect square and that n has
Jacobi symbol 1. They show that their version of QNR is actually in NIPZK.

The final example we consider is a variant of GRAPH ISOMORPHISM, observed to be in
NISZK by Bellare and Rogaway [BR90]. If G is a graph, then Aut(G) denotes the group of
isomorphisms from G to itself, also known as automorphisms. Aut(G) is said to be trivial if
it consists only of the identity map. The problem we consider is TRIVIAL AUTOMORPHISM
GROUP (TAG), given by:

TAGy = {G : Aut(G) is trivial)

TAGN = {G : Aut(G) is nontrivial)

Proposition 7.6.5 ([BR90]) TRIVIAL AUTOMORPHISM GROUP is in NISZK.
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Proof: Consider the following distribution for any graph G:

XG: Uniformly select a permutation ir on the vertices of G and output 7r(G).

Standard group theory implies that XG is distributed uniformly on a set of size n!/IAut(G).

So if Aut(G) is trivial, H(XG) = log n!, whereas if Aut(G) is nontrivial, H(XG) log(n!/2)=

log n! - 1. Thus, taking X = XG, t1 = log n!, and t 2 = log n! - 1 in Proposition 7.6.1, we

see that TAG reduces to EA.

7.6.2 A Polarization Lemma for SDU

Combining Lemmas 7.3.5 and 7.4.1, we obtain an SDU-analogue of the Polarization Lemma

(Lemma 3.1.12).

Lemma 7.6.6 There is a polynomial-time computable function that takes a distribution

X on {0, }fl (encoded by a circuit) and a parameter k (in unary) and outputs a new

distribution X' on {0, 1}"' such that

StatDiff (X, Un) - StatDiff (X', Un') < 2 -k
n

StatDiff (X, Un) 1 - 1/n = StatDiff (X', U,) 1 - 2-k

Moreover, in the latter case, the support of X' is at most a 2 -k fraction of {0, l}'.

This can be generalized somewhat, observing that the reduction from SDU to EA given

in Lemma 7.4.1 actually works for more general thresholds:

Lemma 7.6.7 (Polarization Lemma for SDU) Let a, 3: N -+ N be any two functions

such that a(n) and 3(n) are computable in time poly(n) and, for some constant c,

1 1

Then, there is a polynomial-time computable function that takes a distribution X on {0, 1}

(encoded by a circuit) and a parameter k (in unary) and outputs a new distribution X' on

{O, 1}n' such that

StatDiff (X, Un) a(n) = StatDiff (X', Un,) < 2-k

StatDiff (X, Un) 3(n) = StatDiff (X', Un,) > 1 - 2-k

Moreover, in the latter case, the support of X' is at most a 2 -k fraction of {O, l}'.

Lemma 7.6.7 is proven using Claim 7.4.2 together with Proposition 7.6.1. We do not

know whether an analogous lemma can be proven for any pair of constant thresholds

0 < a < 3 < 1. One might hope to obtain such a result using the approach used in the

Polarization Lemma for statistical difference - alternating procedures which increase and

decrease statistical difference. However, while the Direct Product construction for increas-

ing statistical difference also applies to SDU, the XOR construction does not, as neither
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distribution it produces is uniform even if one of the original distributions is uniform. Thus,
the following problem remains open:

Open Problem 7.6.8 Can the Polarization Lemma for SDU be extended to any pair of
constant thresholds 0 < a < f < 1?



Chapter 8

Conclusion

In this thesis, we have addressed a number of fundamental questions about statistical zero-

knowledge proofs. Our main tools in this investigation were the two complete problems

ENTROPY DIFFERENCE and STATISTICAL DIFFERENCE. The central role played by these

problems in our study is a dramatic illustration of the power of completeness as a positive

tool.

First, these complete problems gave us a tight characterization of the problems that

possess statistical zero-knowledge proofs. Namely, we saw that the class SZK can be

identified with "approximate statistical properties of samplable distributions." Then these

complete problems provided a starting point for understanding a number of important

aspects of statistical zero-knowledge proofs. Among the issues we addressed were efficiency,
closure properties, private coins vs. public coins, honest verifiers vs. cheating verifiers, and

interactive vs. noninteractive proofs. Although we managed to answer some of the basic

questions in these areas, a number of intriguing problems remain. We have described many

of these open problems in the relevant chapters, but there are a few worth highlighting here.

Efficient SZK proof systems. In the course of this thesis, we have shown how to trans-

form an arbitrary HVSZK proof system into one with various desirable additional prop-

erties, such as being zero knowledge versus cheating verifiers (Theorem 6.3.1), exchanging

a constant number of messages (Corollary 4.1.1), and using public coins (Theorem 5.1.1).

However, we do not know how to achieve the constant-message property together with ei-

ther of the other two properties. In particular, the following questions remain open (Open

Problems 6.5.6, 5.4.20, and 7.5.13):

" Does every problem in HVSZK possess a constant-message SZK proof system?

" Does every problem in HVSZK possess a constant-message public-coin HVSZK

proof system?

" Does HVSZK = NISZK?

Recall that a positive answer to the second or third questions implies a positive answer to

the previous ones.
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Extending more techniques to CZK. One broad research project is to extend more
of the techniques developed here to other forms of zero-knowledge proofs, such as com-
putational zero-knowledge proofs and zero-knowledge "arguments" [BCC88] (which we did
not discuss). In particular, three questions about computational zero knowledge stand out
(Open Problems 4.7.5, 5.4.19, 6.5.4).

" Can one exhibit a natural complete problem for (honest-verifier) computational zero
knowledge? or at least give a nontrivial result such as Proposition 4.7.3 without
restricting to private coins?

" Can private-coin (honest-verifier) computational zero-knowledge proofs be transformed
into public-coin ones? (We showed how to do this for 3-message private-coin proofs.)

" Does honest-verifier computational zero knowledge equal cheating-verifier computa-
tional zero knowledge? (We answered this question in the positive for the case of
public-coin proofs.)

Recall that it is only of interest to answer these questions unconditionally, as essentially
everything about computational zero knowledge has been resolved under the assumption
that one-way functions exist.

More complete problems. Another general research avenue is to exhibit additional
natural complete problems for SZK. In particular, it would be very interesting to exhibit a
combinatorial or number-theoretic complete problem, such as one of the problems of crypto-
graphic interest known to be in SZK. While we have primarily used SZK-completeness as
a positive tool, it also could provide strong evidence of intractability, as SZK contains many
problems believed to be hard. Indeed, we are in need of alternatives to NP-completeness for
hardness results, as there are important cases in which it seems out of reach. For example,
for most of the problems on which modern cryptography is based, we would like to prove
hardness results, but NP-hardness is unlikely due to these problems lying in AM n co-AM
(cf., [Bra79, BHZ87, GG98a, GG98b]). In contrast, this does not rule out the possibility of
SZK-hardness, as SZK C AM n co-AM.

SZK vs. PZK. A final open problem is the relationship between statistical zero knowl-
edge and perfect zero knowledge (Open Problem 4.6.14). In fact, it was this question, asked
to us by Shafi Goldwasser, that started the research in this thesis, and unfortunately the an-
swer remains a mystery. For a number of years after zero-knowledge proofs were introduced,
there were no natural examples of problems known to be in SZK but not known to be in
PZK; now the complete problems STATISTICAL DIFFERENCE and ENTROPY DIFFERENCE
are examples of such problems. On one hand, this may be regarded as evidence that the
classes are different. On the other hand, the problem of proving that SZK = PZK is now
reduced to giving a perfect zero-knowledge proof for either of the complete problems.
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Chernoff Bounds

The following useful bound shows that if one has n independent events, each which occur

with probability p, then roughly np of the events occur with high probability.

Theorem A.1 (Chernoff Bound [Che52]) Suppose X 1 ,..., X, are independent random

variables such that for all i, Pr [Xi = 1] = p and Pr [Xi = 0] = 1 - p. Let X = E _ X

Then for any 6 > 0,

Pr [X p + 6] exp (-2n62) , and

Pr [X < p - 6] exp (-2n 2 ).

The following generalization of the Chernoff bound to non-Boolean random variables

will also be useful to us.

Theorem A.2 (Hoeffding Inequality [Hoe63]) Suppose X 1 ,..., Xn are independent ran-

dom variables with mean p, taking values in the real interval [a, b], and X = E 1 X,.

Then for any A > 0,

Pr [X +A] exp (2n ), and
((b - a)2

Pr [X < p - A] exp (2nA .
((b - a)2

A proof of this version of the Hoeffding Inequality can be found in [Hof95, Sec. 7.2],
and the Chernoff Bound above can be obtained by setting a = 0, b = 1, A = 3, and p = p.
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Appendix B

Hashing Lemmas

In this appendix, we prove the two lemmas about 2-universal hash functions that we used

- Lemmas 5.4.10 and 6.4.5.

B.1 Proof of Lemma 5.4.10

We denote the two distributions on pairs (h, z) in Lemma 5.4.10 by A = (AW, Az) and

B = (BW, Bz). By the definition of statistical difference, it suffices to show that for every

set S C R x D, Pr [A E S] - Pr [B E S] 5 3(6 + E1/3). In order to do this, we first will argue

that for "most" pairs (h, z), Pr [A = (h, z)] is not too much greater than Pr [B = (h, z)].

Observe that both distributions A and B only output pairs (h, z) such that h(z) = 0. Now,
for any (h, z) E N x D such that h(z) = 0, we have

Pr[A=(h,z)] = Pr[AW=h]-Pr[Az=z|AW=h]
1 Pr [Z = z]

|| ZwEh-1(0) Pr [Z=w]'

and

Pr[B=(h,z)] = Pr[Bz=z]-Pr[BH =h|Bz=z]
1

= Pr[Z = Z] h
|{h' : h'(z) = 0}1

= Pr [Z = z] - |R|
|N1,

where the last equality follows from 2-universality.

Thus, showing that Pr [A = (h, z)] is not too much greater than Pr [B = (h, z)] for most

pairs (h, z) amounts to showing that for most h, EwEh-1(0) Pr [Z = w] is not too much

smaller than 1/IRI. In order to prove a lower bound on this sum (for most h), we restrict

the sum to a slightly smaller set of w's. Let L = {w E D : Pr [Z = w] 5 e/IRI}, so by
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hypothesis, Pr [Z E L] = 1 - 6. For w E D and h E N, define indicator functions

xw(h) I if h(w)= 0
0 otherwise

Define f (h) = EWEL Pr [Z = w] - Xw (h). Thus,

Z Pr[Z=wI=ZPr[Z=w]-Xw(h);>f(h)
wEh-1(0) wED

By 2-universality, for h selected uniformly in N, the random variables {Xw(h)}wED each
have mean 1/IRI and are pairwise independent. Thus,

E[f(h)] = EPr[Z = w]
h WEL

Var[f (h)]
h

R1-

ZPr[Z=w]2
wGL |RI

Pr[Z=w]-E
wEL |R12

JR12

By Chebyshev's inequality,

Pr f (h) -
h I R1I

< Varh(f (h)) < E1/3

~(61/3/|R| )2 -

Let G = {h C 71 : f(h) > (1 - 6 - e1/ 3 )/|RI} be the set "good" h's
not too much smaller than 1/|RI. Then for every z E D and h E G,

for which f(h) is

Pr [A = (h, z)] < Pr [Z = z]
- N7I

Pr [B = (h, z)]

i _J- _ 1/3 -

Thus, for any S C 71 x D,

Pr [A E S] Pr [A E S and Aw E G]+ Pr [Aw V G]

< Pr [B E S and BW E G] + e1/3
1 - 6 - 61/3

" Pr[BES](+ 6+-/ 3  Pr[B E S]
<1 - -E 

1/ 
3

" Pr [B ES] +3(J + El/3)1

(as long as 6+e1/3 < 1/2, which we may assume as otherwise the lemma is trivially satisfied).

and

< J1/ I

E 1/3
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This completes the proof.

B.2 Proof of Lemma 6.4.5

Here we provide a proof of the Hashing Lemma used to analyze the transformation from

honest-verifier zero-knowledge proofs to cheating-verifier zero-knowledge proofs. We restate

the lemma here:

Lemma B.2.1 (Hashing Lemma) There exists a universal constant c > 0, so that the

following holds: Let W = '4,m be the family of affine-linear maps from D = {0, 1} to

7? = {0, 1}m. Let S C 1h be such that |SI >! 6|I. Let e = IR|I/ID. Then

Part 1: The statistical difference between the following two distributions is at most (c

e1/cj-c).

A = (A, Ax): Choose h +- S. Let x <- h- 1(0). Output (h, x).

B = (BW ,Bx): Choose x +- D. Let h - S n wx.1 Output (h, x).

Part 2: For at least a 1 - (c e1/C3-c) fraction of x E D,

IS n rl| 1 SI> 6
|-Hxl - 2 IIHI - 2'

Proof: We define a perfect hash function h E 71 to be one of the form h(x) = Ax + b,
where the matrix A is full rank (and hence h is surjective). Note that a straightforward

calculation shows that at most an E fraction of the functions in W are not perfect. We first

establish Part 1 of the Hashing Lemma for the special case of perfect hash functions.

Sublemma B.2.2 Part 1 of the Hashing Lemma holds when S contains only perfect hash

functions.

Proof: First, we consider the relationship between distributions Ax and Bx.

Claim B.2.3 StatDiff (Ax, Bx) 30/3 /.

Proof of claim: Note Bx is uniform over D. To establish the claim, it suffices

to show that for all C C ,

Cl 3&l/3
Pr[Ax EC]- 3

Note Pr [Ax E C] - I = Pr [Ax E (D \ C)] - , so it suffices to considerI ID 1I

sets C such that I ;> . From the definition of A, we observe:

Pr[AxEC] = E h-1 (0) ||l 1 -h- 1(0) n Cj
A1E h-1(O)I 1 E

'Recall that W,,, denotes {h E W : h(x) = 0}.
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where the last equality is due to our assumption that every h E S is perfect,
and hence h- 1 (O)I = 1/-.

To analyze the expression above, which refers to a sum over h E S, we first
consider the behaviour of the sum over all h E W. This will enable us to use the
2-universality of W and Chebyshev's inequality. Consider the probability space
uniform over W, and define, for every x E C, an indicator random variable:

Xx() 1 if h(x)=0
Xx(h)= 0 otherwise

Let Wc(h) = E - h- 1(o) n Cj = e - E Xx(h). Since 'R is a 2-universal family
xEC

of hash functions, the Xx's are pairwise independent with PrhE-H[Xx(h) = 1] =

1/IR = 1/(e - IDP). Thus,

E [Wc(h)] = e E [Xx(h)] = E -C=
hEW XCC hEW xEC NI A

Var[Wc(h)] = E2 Var[Xx(h)] =&2 . 1 (i- E.
xEC xEC

By Chebyshev's inequality,

Pr[Wc(h) - C > E1/ 3 lCIl < Var[Wc]
hEW A IP1 E1/3. jICI2

31/1/3
< ICI < 2e13

where the last inequality is because CI ID1/2. Since 1S|/1Wl > 6, we can

apply the above to the probability space uniform over S and conclude that

Pr Wc(h) - > 1/3 I 21/3
hES 'P1I I

Recall that

Pr [Ax E C] = I Wc(h).
hES

Hence, for all but at most 2'/ 3 -|S terms in the sum, Wc(h) - J 1/3

Since for every h it is true that 0 < Wc(h) < 1, we have,

Pr [Ax E C] - C <el/3 +C 2E1/3 < 3/3IAP TFTI + 6 -6

And the claim is proved.
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We are now ready to complete the proof of the Sublemma. For all x E D and all h E S

such that h(x) = 0, we have, by Bayes' Law:

Pr [Ax = xJAW = h] - Pr [AW = h]
Pr [ A-t= h|Ax =x] =Pr[A = ]Pr [Ax .x]

Ih-1(0)1-' - 1 3|l e -
Pr [Ax= x] Pr [Ax = x]

where the last step is because for all perfect h, h- 1 (0)I = 1/e. Note that this value has no

dependence on h. Hence, for every x, given Ax = x, the distribution AW is uniform over

{ h c S : h(x) = 0}. Note that for all x, given Bx = x, BW is also uniform over the same

set. Thus, conditioned on the value of x, the distributions AW and BW are identical.

Hence StatDiff (A, B) = StatDiff (Ax, Bx) El, and the sublemma is established. U

Before we argue Part 1 of the Hashing Lemma in general, we will show how Part 2

follows from Sublemma B.2.2. In the sequel, it will be convenient to introduce the following

notation: For any subset I C W, we will write Ix to denote the set {h E I : h(x) = 0}.

In order to apply Sublemma B.2.2, we will consider the subset S' C S of all perfect hash

functions in S. Since less than an e fraction of all hash functions are not perfect,

jS'l S - e - jiW 2 (1 - )IS (6 - e) - |WH.

We define the following two modifications of the distributions A and B, using S' instead of

S:

A' = (A' , A'): Choose h - 5'. Let x - h-1 (0). Output (h, x).

B' = (Bk, B'>): Choose x <- D. Let h <- S' n Wx. Output (h, x).

The following claim establishes Part 2 of the Hashing Lemma:

Claim B.2.4 Let El f . For at least a (1 - \/i) fraction of x E D, > 6/2.

Proof of claim: By the definition of A'>,

Pr [A'=x]=1 1 =ES'
rA'x = E] =h-l(0)| 1S11hES'

where the last equality follows because jh- 1 (0)1 = 1/E for all h E S'. However,
by the Sublemma, StatDiff (A' , B') < El. Note that B' is uniform over D, so

for a (1 - f) fraction of x E D, it must be that

esI =Pr[A'=x] (1- VE)-[.
|S'| |x

Thus,

LniN NX >( V6 IDI - N2I |i)I
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where the last equality follows from e I D = |RI and IRI -I., = IW 1. Using the
fact that l > (1 - )s , we have, for a (1 - y ) fraction of x E D,

|WL1 6 2

Note that the final inequality follows because we can safely assume that / +
< -. This is because we can freely assume that c / < 1, since otherwise

the statement of the Hashing Lemma becomes trivially satisfied. Since V + j
is upper bounded by k - El/k 3 -k for some constant k, our assumption can be
made to imply that -,AY + i < 1 by choosing c > 2k. l

Finally, we establish Part 1 of the Hashing Lemma in general by showing that the
presence of imperfect hash functions will not disturb our computations. First, since |S'l >
(1 - IS!, the statistical difference between A and A' can be at most E/6. To see that
the statistical difference between B' and B is sufficiently small, it suffices to show that
for almost all x, the probability that BW outputs an imperfect hash function, given that
Bx = x, is small. First we argue:

Claim B.2.5 For every x E D, Pr [h is imperfect] < e.
hEWX

Proof of claim: Observe that for any x E D, Wx consists exactly of those
functions h(y) = Ay + b where b = -Ax. Thus, there is exactly one function
in Wl for every matrix A. Hence, the fraction of imperfect functions in - x is
precisely the fraction of matrices A that do not have full rank, which is at most
E. El

For any x E D, the probability that BW outputs an imperfect hash function given that
Bx = x is

Pr [h is imperfect] < Pr [h is imperfect] - ._
hE Sx hE Rx |SX|

Using Claim B.2.4 and Claim B.2.5 above, we have that for at least a (1 - V ) fraction of
defx E D, this probability is at most e2 = e.(2/6). Thus, StatDiff (B, B') _< (1-Y)-c2+v <

2 + f. We have already observed that StatDiff (A', A) < j, and Sublemma B.2.2 showed
that StatDiff (B', A') < El. Hence StatDiff (A, B) 61 + i + 2 + ,'Ri7, and the Hashing
Lemma is established. U
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