363 research outputs found

    Vehicle Routing Problem in Cold Chain Logistics: a Joint Distribution Model with Carbon Trading Mechanisms

    Get PDF
    Fierce competition and the mandate for green development have driven cold chain logistics companies to minimize total distribution costs and carbon emissions to gain a competitive advantage and achieve sustainable development. However, the cold chain logistics literature considers carbon trading mechanisms in sharing economy, namely the joint distribution, is limited. Our research builds a Joint Distribution-Green Vehicle Routing Problem (JD-GVRP) model, in which cold chain logistics companies collaborate among each other to deliver cold chain commodities by considering carbon tax policy. Based on the real business data from four cold chain companies and 28 customers, a simulated annealing (SA) algorithm is applied to optimize the model. The results indicate that joint distribution is an effective way to reduce total costs and carbon emissions when compared with the single distribution. The total cost is positively correlated with the carbon price, while the carbon emissions vary differently when the carbon price increases. In addition, carbon quotas have no effect on the delivery path. This research expands cold chain logistics literature by linking it with joint distribution and carbon trading mechanisms. Moreover, this research suggests that cold chain logistics companies could enhance delivery efficiency, reduce the business cost, and improve competitiveness by reinforcing the collaboration at the industry level. Furthermore, the government should advocate the mode of joint distribution and formulate an effective carbon trading policy to better utilize social and industrial resources to achieve the balanced economic and environmental benefits

    Investigating the effect of carbon tax and carbon quota policy to achieve low carbon logistics operations

    Get PDF
    Developing a low-carbon economy and reducing carbon dioxide emission have become a consensus for both academics and practitioners. However, the existing literature did not pay enough attention in interrogating the impacts of Carbon Tax (CT) and Carbon Quota (CQ) policy on distribution costs and carbon dioxide emission in the field of vehicle routing problem. Moreover, the investigated subsidies factor is also incomplete. This research stands on the position of the company to study the impact of CT and CQ policy on aforementioned two aspects. A mathematical model is developed to achieve the best low carbon vehicle routing under the optimal policy. The optimization goal of this research is to minimize the total cost that includes vehicle-using, transportation, CT, CQ, and raw material subsidy costs. An improved optimization algorithm, namely Genetic Algorithm-Tabu Search (GA-TS), is proposed to solve a given business case. In the simulation experiments, GA-TS and a traditional GA are compared and the results show the advantage of GA-TS on reducing the total cost and carbon dioxide emission. Furthermore, the experiments also explore the total cost and carbon dioxide emission under three scenarios (Benchmark, CT and CQ), incorporating four policies: CT, Carbon Tax Subsidy (CTS), CQ, and Carbon Quota Subsidy (CQS). It is concluded that CQS is the ideal policy to minimize distribution cost and carbon dioxide emission. In addition, the impact of vehicles’ capacities on the total cost and carbon dioxide emission is also analyzed in this research. This research also aimed at assisting practitioners in better formulating delivery routes, as well as policy makers in developing carbon policies. Finally, the limitations and the future research directions of this research are also discussed

    Revisión del estado del arte del problema de ruteo abierto (OVRP)

    Get PDF
    En este documento se lleva a cabo una revisión bibliográfica del estado del arte del problema de ruteo abierto (OVRP; Open Vehicle Routing Problem). Se realiza la definición del problema, una clasificación de sus variantes y de los artículos e investigaciones publicadas en las bibliotecas virtuales: Scopus, Science Direct y Google Scholar acerca del tema. Además, se plantean los modelos de solución utilizados por los autores, las aplicaciones del estudio y las tendencias o futuras líneas de investigación. El OVRP es un problema de planificación de rutas de transporte, generalización del Problema del Agente Viajero muy conocido y ampliamente estudiado, tiene como característica diferenciadora que los vehículos una vez finalizadas las entregas correspondientes no están obligados a regresar al punto de partida o depósito. La revisión observa lo publicado hasta mayo del año 2017

    Fuel taxes and beyond : UK transport and climate change

    Get PDF
    The starting point for this report is climate change, and strategies to tackle it. Transport is one of the fastest growing sources of emissions – especially carbon dioxide (CO2) – contributing to climate change. Scientific advice, notably from the Intergovernmental Panel on Climate Change (IPCC, Houghton et al, 1990) and, more recently, from the Royal Commission on Environmental Pollution (RCEP 2000), is that, to stabilise atmospheric concentrations of carbon dioxide, emissions need to be cut to 40 per cent of their 1990 level by 2050. This report assumes that the transport sector will need to contribute a proportionate cut, and explains how this might best be done. Its focus is surface transport, since the issues and implications of aviation emissions are very different and will need to be addressed through different policy levers

    Smart Steaming: A New Flexible Paradigm for Synchromodal Logistics

    Get PDF
    Slow steaming, i.e., the possibility to ship vessels at a significantly slower speed than their nominal one, has been widely studied and implemented to improve the sustainability of long-haul supply chains. However, to create an efficient symbiosis with the paradigm of synchromodality, an evolution of slow steaming called smart steaming is introduced. Smart steaming is about defining a medium speed execution of shipping movements and the real-time adjustment (acceleration and deceleration) of traveling speeds to pursue the entire logistic system’s overall efficiency and sustainability. For instance, congestion in handling facilities (intermodal hubs, ports, and rail stations) is often caused by the common wish to arrive as soon as possible. Therefore, smart steaming would help avoid bottlenecks, allowing better synchronization and decreasing waiting time at ports or handling facilities. This work aims to discuss the strict relationships between smart steaming and synchromodality and show the potential impact of moving from slow steaming to smart steaming in terms of sustainability and efficiency. Moreover, we will propose an analysis considering the pros, cons, opportunities, and risks of managing operations under this new policy

    TOOLS TO SUPPORT TRANSPORTATION EMISSIONS REDUCTION EFFORTS: A MULTIFACETED APPROACH

    Get PDF
    The transportation sector is a significant contributor to current global climatic problems, one of the most prominent problems that today's society faces. In this dissertation, three complementary problems are addressed to support emissions reduction efforts by providing tools to help reduce demand for fossil fuels. The first problem addresses alternative fuel vehicle (AFV) fleet operations considering limited infrastructure availability and vehicle characteristics that contribute to emission reduction efforts by: supporting alternative fuel use and reducing carbon-intensive freight activity. A Green Vehicle Routing Problem (G-VRP) is formulated and techniques are proposed for its solution. These techniques will aid organizations with AFV fleets in overcoming difficulties that exist as a result of limited refueling infrastructure and will allow companies considering conversion to a fleet of AFVs to understand the potential impact of their decision on daily operations and costs. The second problem is aimed at supporting SOV commute trip reduction efforts through alternative transportation options. This problem contributes to emission reduction efforts by supporting reduction of carbon-intensive travel activity. Following a descriptive analysis of commuter survey data obtained from the University of Maryland, College Park campus, ordered-response models were developed to investigate the market for vanpooling. The model results show that demand for vanpooling in the role of passenger and driver have differences and the factors affecting these demands are not necessarily the same. Factors considered include: status, willingness-to-pay, distance, residential location, commuting habits, demographics and service characteristics. The third problem focuses on providing essential input data, origin-destination (OD) demand, for analysis of various strategies, to address emission reduction by helping to improve system efficiency and reducing carbon-intensive travel activity. A two-stage subarea OD demand estimation procedure is proposed to construct and update important time-dependent OD demand input for subarea analysis in an effort to overcome the computational limits of Dynamic Traffic Assignment (DTA) methodologies. The proposed method in conjunction with path-based simulation-assignment systems can provide an evolving platform for integrating operational considerations in planning models for effective decision support for agencies that are considering strategies for transportation emissions reduction

    Proceedings of the 23rd International Conference of the International Federation of Operational Research Societies

    Full text link

    Mathematical Methods and Operation Research in Logistics, Project Planning, and Scheduling

    Get PDF
    In the last decade, the Industrial Revolution 4.0 brought flexible supply chains and flexible design projects to the forefront. Nevertheless, the recent pandemic, the accompanying economic problems, and the resulting supply problems have further increased the role of logistics and supply chains. Therefore, planning and scheduling procedures that can respond flexibly to changed circumstances have become more valuable both in logistics and projects. There are already several competing criteria of project and logistic process planning and scheduling that need to be reconciled. At the same time, the COVID-19 pandemic has shown that even more emphasis needs to be placed on taking potential risks into account. Flexibility and resilience are emphasized in all decision-making processes, including the scheduling of logistic processes, activities, and projects
    corecore