1,026 research outputs found

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Structured Light-Based 3D Reconstruction System for Plants.

    Get PDF
    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance

    Visualization and Correction of Automated Segmentation, Tracking and Lineaging from 5-D Stem Cell Image Sequences

    Get PDF
    Results: We present an application that enables the quantitative analysis of multichannel 5-D (x, y, z, t, channel) and large montage confocal fluorescence microscopy images. The image sequences show stem cells together with blood vessels, enabling quantification of the dynamic behaviors of stem cells in relation to their vascular niche, with applications in developmental and cancer biology. Our application automatically segments, tracks, and lineages the image sequence data and then allows the user to view and edit the results of automated algorithms in a stereoscopic 3-D window while simultaneously viewing the stem cell lineage tree in a 2-D window. Using the GPU to store and render the image sequence data enables a hybrid computational approach. An inference-based approach utilizing user-provided edits to automatically correct related mistakes executes interactively on the system CPU while the GPU handles 3-D visualization tasks. Conclusions: By exploiting commodity computer gaming hardware, we have developed an application that can be run in the laboratory to facilitate rapid iteration through biological experiments. There is a pressing need for visualization and analysis tools for 5-D live cell image data. We combine accurate unsupervised processes with an intuitive visualization of the results. Our validation interface allows for each data set to be corrected to 100% accuracy, ensuring that downstream data analysis is accurate and verifiable. Our tool is the first to combine all of these aspects, leveraging the synergies obtained by utilizing validation information from stereo visualization to improve the low level image processing tasks.Comment: BioVis 2014 conferenc

    Three-view matching algorithm for multipolyhedron reconstruction using genetic algorithm

    Get PDF
    AbstractIn this paper, a novel stereo matching algorithm based on genetic algorithm (GA) is proposed to find the correspondences among multipolyhedron objects in a three-view system. Optimal camera configuration in the approach is used to reduce the feature searching area on the image plane, and GA is then used to refine the matching results. Due to optimal camera configuration, we can achieve a smaller searching area, less ambiguity, and a faster matching process. The features on the second image near the intersection of the two epipolar lines derived from the first and the third images considered as possible triplets are refined using GA. The fitness function for every corresponding triplet is assigned according to the corresponding distance between the feature location and the intersection of two epipolar lines. The consistent connection relationship is then enforced in the evolution process to resolve the ambiguous correspondence triplets. Experimental results show that the 3-D multiple polyhedra in a complex scene can be successfully reconstructed in a three-view system

    LIFT: Learned Invariant Feature Transform

    Get PDF
    We introduce a novel Deep Network architecture that implements the full feature point handling pipeline, that is, detection, orientation estimation, and feature description. While previous works have successfully tackled each one of these problems individually, we show how to learn to do all three in a unified manner while preserving end-to-end differentiability. We then demonstrate that our Deep pipeline outperforms state-of-the-art methods on a number of benchmark datasets, without the need of retraining.Comment: Accepted to ECCV 2016 (spotlight

    Comparison of two 3D tracking paradigms for freely flying insects

    Get PDF

    Contribution towards a fast stereo dense matching.

    Get PDF
    Stereo matching is important in the area of computer vision as it is the basis of the reconstruction process. Many applications require 3D reconstruction such as view synthesis, robotics... The main task of matching uncalibrated images is to determine the corresponding pixels and other features where the motion between these images and the camera parameters is unknown. Although some methods have been carried out over the past two decades on the matching problem, most of these methods are not practical and difficult to implement. Our approach considers a reliable image edge features in order to develop a fast and practical method. Therefore, we propose a fast stereo matching algorithm combining two different approaches for matching as the image is segmented into two sets of regions: edge regions and non-edge regions. We have used an algebraic method that preserves disparity continuity at the object continuous surfaces. Our results demonstrate that we gain a speed dense matching while the implementation is kept simple and straightforward.Dept. of Computer Science. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .Z42. Source: Masters Abstracts International, Volume: 44-03, page: 1420. Thesis (M.Sc.)--University of Windsor (Canada), 2005
    • …
    corecore