6 research outputs found

    Minimizing Flow Time in the Wireless Gathering Problem

    Get PDF
    We address the problem of efficient data gathering in a wireless network through multi-hop communication. We focus on the objective of minimizing the maximum flow time of a data packet. We prove that no polynomial time algorithm for this problem can have approximation ratio less than \Omega(m^{1/3) when mm packets have to be transmitted, unless P=NPP = NP. We then use resource augmentation to assess the performance of a FIFO-like strategy. We prove that this strategy is 5-speed optimal, i.e., its cost remains within the optimal cost if we allow the algorithm to transmit data at a speed 5 times higher than that of the optimal solution we compare to

    Information Gathering in Ad-Hoc Radio Networks with Tree Topology

    Full text link
    We study the problem of information gathering in ad-hoc radio networks without collision detection, focussing on the case when the network forms a tree, with edges directed towards the root. Initially, each node has a piece of information that we refer to as a rumor. Our goal is to design protocols that deliver all rumors to the root of the tree as quickly as possible. The protocol must complete this task within its allotted time even though the actual tree topology is unknown when the computation starts. In the deterministic case, assuming that the nodes are labeled with small integers, we give an O(n)-time protocol that uses unbounded messages, and an O(n log n)-time protocol using bounded messages, where any message can include only one rumor. We also consider fire-and-forward protocols, in which a node can only transmit its own rumor or the rumor received in the previous step. We give a deterministic fire-and- forward protocol with running time O(n^1.5), and we show that it is asymptotically optimal. We then study randomized algorithms where the nodes are not labelled. In this model, we give an O(n log n)-time protocol and we prove that this bound is asymptotically optimal

    Algorithms for Efficient Communication in Wireless Sensor Networks - Distributed Node Coloring and its Application in the SINR Model

    Get PDF
    In this thesis we consider algorithms that enable efficient communication in wireless ad-hoc- and sensornetworks using the so-called Signal-to-interference-and-noise-ratio (SINR) model of interference. We propose and experimentally evaluate several distributed node coloring algorithms and show how to use a computed node coloring to establish efficient medium access schedules
    corecore