438 research outputs found

    Distributed Adaptation Techniques for Connected Vehicles

    Get PDF
    In this PhD dissertation, we propose distributed adaptation mechanisms for connected vehicles to deal with the connectivity challenges. To understand the system behavior of the solutions for connected vehicles, we first need to characterize the operational environment. Therefore, we devised a large scale fading model for various link types, including point-to-point vehicular communications and multi-hop connected vehicles. We explored two small scale fading models to define the characteristics of multi-hop connected vehicles. Taking our research into multi-hop connected vehicles one step further, we propose selective information relaying to avoid message congestion due to redundant messages received by the relay vehicle. Results show that the proposed mechanism reduces messaging load by up to 75% without sacrificing environmental awareness. Once we define the channel characteristics, we propose a distributed congestion control algorithm to solve the messaging overhead on the channels as the next research interest of this dissertation. We propose a combined transmit power and message rate adaptation for connected vehicles. The proposed algorithm increases the environmental awareness and achieves the application requirements by considering highly dynamic network characteristics. Both power and rate adaptation mechanisms are performed jointly to avoid one result affecting the other negatively. Results prove that the proposed algorithm can increase awareness by 20% while keeping the channel load and interference at almost the same level as well as improve the average message rate by 18%. As the last step of this dissertation, distributed cooperative dynamic spectrum access technique is proposed to solve the channel overhead and the limited resources issues. The adaptive energy detection threshold, which is used to decide whether the channel is busy, is optimized in this work by using a computationally efficient numerical approach. Each vehicle evaluates the available channels by voting on the information received from one-hop neighbors. An interdisciplinary approach referred to as entropy-based weighting is used for defining the neighbor credibility. Once the vehicle accesses the channel, we propose a decision mechanism for channel switching that is inspired by the optimal flower selection process employed by bumblebees foraging. Experimental results show that by using the proposed distributed cooperative spectrum sensing mechanism, spectrum detection error converges to zero

    On-Site and External Energy Harvesting in Underground Wireless

    Get PDF
    Energy efficiency is vital for uninterrupted long-term operation of wireless underground communication nodes in the field of decision agriculture. In this paper, energy harvesting and wireless power transfer techniques are discussed with applications in underground wireless communications (UWC). Various external wireless power transfer techniques are explored. Moreover, key energy harvesting technologies are presented that utilize available energy sources in the field such as vibration, solar, and wind. In this regard, the Electromagnetic(EM)- and Magnetic Induction(MI)-based approaches are explained. Furthermore, the vibration-based energy harvesting models are reviewed as well. These energy harvesting approaches lead to design of an efficient wireless underground communication system to power underground nodes for prolonged field operation in decision agriculture

    PSO AND SVD BASED ENHANCED SIGNAL DETECTION FOR COGNITIVE RADIO SYSTEM

    Get PDF
    Spectrum sensing is an essential problem in cognitive radio communication system. This paper presents covariance based spectrum sensing on the test bed if cognitive radio system. A series of tests show that the detection performance of Covariance Based spectrum sensing technique is not liable to be affected by the noise uncertainty in practical application and meets the need of the system primly. Furthermore, the performances of detection are also verified with different kinds of source signals. Simulations are carried out on MATLAB2010a and system performance is measured based on probability of detection vs. SNR, Probability of false alarm, sensing time and modulation techniques respectively

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems

    Practical Secrecy at the Physical Layer: Key Extraction Methods with Applications in Cognitive Radio

    Get PDF
    The broadcast nature of wireless communication imposes the risk of information leakage to adversarial or unauthorized receivers. Therefore, information security between intended users remains a challenging issue. Currently, wireless security relies on cryptographic techniques and protocols that lie at the upper layers of the wireless network. One main drawback of these existing techniques is the necessity of a complex key management scheme in the case of symmetric ciphers and high computational complexity in the case of asymmetric ciphers. On the other hand, physical layer security has attracted significant interest from the research community due to its potential to generate information-theoretic secure keys. In addition, since the vast majority of physical layer security techniques exploit the inherent randomness of the communication channel, key exchange is no longer mandatory. However, additive white Gaussian noise, interference, channel estimation errors and the fact that communicating transceivers employ different radio frequency (RF) chains are among the reasons that limit utilization of secret key generation (SKG) algorithms to high signal to noise ratio levels. The scope of this dissertation is to design novel secret key generation algorithms to overcome this main drawback. In particular, we design a channel based SKG algorithm that increases the dynamic range of the key generation system. In addition, we design an algorithm that exploits angle of arrival (AoA) as a common source of randomness to generate the secret key. Existing AoA estimation systems either have high hardware and computation complexities or low performance, which hinder their incorporation within the context of SKG. To overcome this challenge, we design a novel high performance yet simple and efficient AoA estimation system that fits the objective of collecting sequences of AoAs for SKG. Cognitive radio networks (CRNs) are designed to increase spectrum usage efficiency by allowing secondary users (SUs) to exploit spectrum slots that are unused by the spectrum owners, i.e., primary users (PUs). Hence, spectrum sensing (SS) is essential in any CRN. CRNs can work both in opportunistic (interweaved) as well as overlay and/or underlay (limited interference) fashions. CRNs typically operate at low SNR levels, particularly, to support overlay/underlay operations. Similar to other wireless networks, CRNs are susceptible to various physical layer security attacks including spectrum sensing data falsification and eavesdropping. In addition to the generalized SKG methods provided in this thesis and due to the peculiarity of CRNs, we further provide a specific method of SKG for CRNs. After studying, developing and implementing several SS techniques, we design an SKG algorithm that exploits SS data. Our algorithm does not interrupt the SS operation and does not require additional time to generate the secret key. Therefore, it is suitable for CRNs
    • …
    corecore