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Abstract

The broadcast nature of wireless communication imposes the risk of information
leakage to adversarial or unauthorized receivers. Therefore, information security
between intended users remains a challenging issue. Currently, wireless security
relies on cryptographic techniques and protocols that lie at the upper layers of the
wireless network. One main drawback of these existing techniques is the necessity
of a complex key management scheme in the case of symmetric ciphers and high
computational complexity in the case of asymmetric ciphers. On the other hand,
physical layer security has attracted significant interest from the research community
due to its potential to generate information-theoretic secure keys. In addition, since
the vast majority of physical layer security techniques exploit the inherent random-
ness of the communication channel, key exchange is no longer mandatory. However,
additive white Gaussian noise, interference, channel estimation errors and the fact
that communicating transceivers employ different radio frequency (RF) chains are
among the reasons that limit utilization of secret key generation (SKG) algorithms
to high signal to noise ratio levels. The scope of this dissertation is to design novel
secret key generation algorithms to overcome this main drawback. In particular,
we design a channel based SKG algorithm that increases the dynamic range of the
key generation system. In addition, we design an algorithm that exploits angle of
arrival (AoA) as a common source of randomness to generate the secret key. Existing
AoA estimation systems either have high hardware and computation complexities
or low performance, which hinder their incorporation within the context of SKG.
To overcome this challenge, we design a novel high performance yet simple and
efficient AoA estimation system that fits the objective of collecting sequences of
AoAs for SKG.

Cognitive radio networks (CRNs) are designed to increase spectrum usage effi-
ciency by allowing secondary users (SUs) to exploit spectrum slots that are unused
by the spectrum owners, i.e., primary users (PUs). Hence, spectrum sensing (SS) is



vi

essential in any CRN. CRNs can work both in opportunistic (interweaved) as well
as overlay and/or underlay (limited interference) fashions. CRNs typically operate
at low SNR levels, particularly, to support overlay/underlay operations. Similar to
other wireless networks, CRNs are susceptible to various physical layer security
attacks including spectrum sensing data falsification and eavesdropping. In addition
to the generalized SKG methods provided in this thesis and due to the peculiarity
of CRNs, we further provide a specific method of SKG for CRNs. After studying,
developing and implementing several SS techniques, we design an SKG algorithm
that exploits SS data. Our algorithm does not interrupt the SS operation and does not
require additional time to generate the secret key. Therefore, it is suitable for CRNs.
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Chapter 1

Introduction

1.1 Research Motivation

Unlike wired communications where legitimate nodes are connected to the network
through cables, the broadcast nature of radio propagation mandates that wireless com-
munications to be accessible to both legitimate and illegitimate nodes. Conventional
wireless security such as symmetric ciphers require a complex key management
scheme, while asymmetric ciphers have high implementation complexity. Both
symmetric and asymmetric ciphering schemes lie at the upper layers of the network.
Cryptographic techniques mandate the exchange of encryption keys at one point
during the encryption–decryption process. This poses a serious threat to the secrecy
of the whole communication session (i.e., becomes a security bottleneck). Mini-
mization of the security risk, stemming from key exchange mechanisms, is the main
reason that cryptographic secrecy opts for key reuse (i.e., using the same key for
multiple packet encryptions), which introduces another secrecy weakness allowing
an eavesdropper to have more chances on guessing the encryption key. In addition,
current cryptographic techniques rely on the assumption of limited computational ca-
pabilities at the eavesdropper. However, with the fast growth of computational power
in modern computers and the rise of quantum computing, restricted computational
power assumption at the eavesdropper can be violated.

On the other hand, physical layer security relies on randomness characteristics
inherent in communication channels, which are common to the two trusted parties,
while being unknown to a potential eavesdropper. Thus, key exchange is no longer
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mandatory and key renewal is potentially possible for every packet transmission
rendering the secrecy potential higher than upper layers cryptographic methods while
maintaining lower computational complexity [1].

The wiretap channel, first presented by Wyner in 1975 [2], models two legitimate
nodes communicating through a noisy channel and an adversary receiving a dete-
riorated version of the exchanged signals between the legitimate parties through a
wiretap channel. The paper studied the maximum secured transmission rate between
the two legitimate nodes while minimizing the amount of information leaked to
the wiretapper, i.e., eavesdropper. The paper concluded that an ‘approximately
perfect’ secret communication between the two legitimate nodes is achievable up to
a specified rate without the use of secret keys. This paper presented the early studies
on the theoretical aspects of physical layer security.

In relatively recent literature [3–5], researchers started to exploit the randomness
in some physical layer characteristics as a potential source for key generation to
guarantee information hiding from eavesdroppers or in other words bound the amount
of information leaked to un-authorized nodes. These physical layer characteristics
have to be common to the two legitimate nodes and not shared with the adversarial
users. In other words, an estimation of this physical layer characteristic should be
approximately the same if measured from the receivers of either of the legitimate
nodes. In addition, the physical layer characteristic used to generate the secret
key should be randomly changing. Hence, the physical layer characteristic is also
referred to as a common source of randomness.

Typically, in the wiretap channel paradigm, the adversary (i.e., eavesdropper),
Eve, can listen to all communications between the two trusted parties (i.e., communi-
cating nodes), Alice and Bob. Eve can estimate the channel between itself and both
Alice and Bob. In addition, it can estimate the distances between itself and Alice and
Bob. Eve can move freely within the field and can visit any of the locations where
either Alice or Bob were or will be in the future. Eve, however, can not be in very
close proximity (i.e., within few wavelengths) to either Alice or Bob to ensure that
the collected signals are not correlated1. There is no limitation on the number of the
antennas Eve is equipped with nor its computational capabilities. It is assumed that

1From a practical perspective this would make the presence of Eve detectable by either Alice or
Bob.



1.1 Research Motivation 3

Eve is not capable of pursuing denial of service attack, person in the middle attack
or jamming attack2. Therefore, it is assumed that Eve is a passive adversary.

One main advantage of exploiting channel estimates to generate the secret key
is its high key generation rate. However, a major downside of using the channel
reciprocity for secret key generation (SKG) is that the additive white Gaussian noise
(AWGN) along with interference and estimation errors affect the reciprocity of
the channel measurements [6]. Moreover, involved transceivers employ different
radio frequency (RF) chains, i.e., chains with different characteristics, and therefore
introduce different RF imperfections, which further affect the channel reciprocity.
This drawback causes the bit mismatch rate (BMR) between the legitimate nodes to
rise, which affects the operation of SKG based on channel estimates, particularly, at
low and medium signal to noise ratio (SNR) scenarios. This issue was stated as one
of the challenges of physical layer security in [7]. Hence, developing novel SKG
algorithms that can operate at medium and low SNR levels is vital.

Cognitive radio networks introduce the idea of dynamic spectrum allocation.
They allow for higher spectrum efficiency through dynamically assigning the spec-
trum access [8]. In cognitive radio networks, secondary user (SU) access the spec-
trum whenever the primary user (PU) is not using it. Therefore, reliable spectrum
sensing is the core for any cognitive radio network. Cognitive radios can work both in
opportunistic (interweaved) as well as overlay and/or underlay (limited interference)
fashions. Cognitive radio networks typically operate at low SNR (particularly to
support overlay/underlay). Securing the communication between legitimate SUs is
a challenging issue due to the fact that numerous attacks can be launched against
cognitive radio networks. Comprehensive studies on this aspect [9–11] show that
two of the major physical layer attacks against cognitive radio networks are spectrum
sensing data falsification (SSDF) and eavesdropping. SSDF is performed on a col-
laborative sensing setup [12]: an attacker sends false spectrum sensing data to other
SUs, in case of distributed sensing decision, or to the fusion center [13], resulting in
a wrong spectrum access decision.

Conventional techniques to combat SSDF leverage a two-level defense mecha-
nism [14]. The first level authenticates all the collected spectrum sensing results,
while the second decides which spectrum sensing result is legitimate. Depending on

2The reader is referred to the references within [1] for further information on these types of attacks,
called active attacks.
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whether a fusion center is available or the system is fully distributed, schemes such
as the sequential probability ratio test (SPRT) [14], or reputation-based schemes
can be exploited [14]. Techniques designed to counteract SSDF, however, require a
long processing time for the two stages to occur. Moreover, either a large number of
SUs or many successful iterations are needed to achieve a good reputation. Clearly,
long processing time might lead to higher probability of missing the opportunity of
exploiting empty spectrum slots for SUs. In addition, authentication techniques such
as the approach in [15], where cyclo-stationary detection is used to classify and au-
thenticate signals, adds to the complexity and limitations of the system, while failing
to prevent a scenario where a malicious node mimics the SU’s signal properties.

Exploiting the concepts of physical layer security within the context of cognitive
radio network could have numerous advantages over existing security techniques.
Therefore, developing novel physical layer security schemes that suits the peculiarity
of cognitive radio networks is essential.

1.2 Research Contributions

The main contributions of this dissertation are summarized as follows:

• We survey the most popular common sources of randomness exploited for
secret key generation within the context of physical layer security. We present
the steps needed to extract a secret key from different physical layer charac-
teristics. In addition, metrics used to evaluate the generated secret key are
studied.

• We design a novel SKG algorithm based on combined estimates of channel
gain and phase. We create a secondary random process from the estimated
channel gain and phase and use it to generate the secret key. The generated
secret key through the channel secondary random process has much lower
BMR when compared to the key generated through conventional channel gain
and phase estimates.

• We develop a novel algorithm that exploits angle of arrival (AoA) as a common
source of randomness to generate a secret key. In addition, we design a novel
AoA estimation system that has low hardware and computational complexities
to be used in the context of secret key generation.
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• We develop an algorithm that exploits the combined channel and distance
measurements to generate a secret key. We collect channel measurements from
lab indoor environment through WARP hardware platform.

• We design spectrum sensing techniques within the context of cognitive radio
networks.

• We design a SKG algorithm that exploits general likelihood ratio based spec-
trum sensing statistics as a base for SKG.

1.3 PhD Research Outcomes

The outcomes for the conducted research during the course of this PhD dissertation
are summarized as follows:

1.3.1 Patents

[1] A. Badawy, T. Khattab, D. Trinchero, T. Elfouly and A. Mohamed “Method
and Apparatus for Simple Angle of Arrival Estimation”, US Patent Application
No 15268371.

• A. Badawy, T. Khattab, D. Trinchero, T. Elfouly and A. Mohamed
“Method and Apparatus for Accurate Low Complexity Direction of Arrival
(DoA) Estimation of Wireless Radio Frequency Signals,” US provisional
Patent Application No 62/219,617.

[2] A. Badawy, T. Khattab, T. Elfouly, C. Chiasserini, A. Mohamed and D.
Trinchero “Method for Generation a Secret Key for Encrypted Wireless Com-
munications,” US provisional Patent Application No 62339797 filed on May
20th, 2016.

[3] A. Badawy, T. Khattab, T. Elfouly, C. Chiasserini and D. Trinchero “Non-
Coherent High performance UWB Receiver’,” Submitted Application to Uni-
versity’s IP Office.
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1.3.2 Journal articles

[1] A. Badawy, T. Khattab, D. Trinchero, T. ElFouly and A. Mohamed, “A
Simple Cross Correlation Switched Beam System (XSBS) for Angle of ar-
rival Estimation,” in IEEE Access, vol. 5, no. , pp. 3340-3352, 2017.
This work is presented in Chapter 4

[2] A. Noel, A. Abddouli, A. Badawy, T. Elfouly, M. Hossam and M. Shehata
“Structural Health Monitoring using Wireless Sensor Networks: A Comprehen-
sive Survey,” in IEEE Communications Surveys & Tutorials , vol.PP, no.99,
pp.1-22.

[3] A. Badawy, T. Salman, T. Elfouly, A. Mohamed, T. Khattab and M. Guizani
“Estimating the number of sources: Simple Eigenvalues Based Approaches,”
Accepted in IET Signal Processing.

[4] A. Badawy, T. Elfouly, T. Khattab, A. Mohamed and M. Guizani “Unleashing
the secure potential of the wireless physical layer: Secret key generation
methods,” Elsevier, Physical Communication, Volume 19, June 2016, Pages
1-10, ISSN 1874-4907. This work is presented in Chapter 2.

[5] A.Badawy, Elfouly, T., Khattab, T., Chiasserini, C. -F., Mohamed, A., and
Trinchero, D. “Robust secret key extraction from channel secondary random
process,” Wiley, Wireless Communication and Mobile Computing, 16: 1389-
1400. doi: 10.1002/wcm.2695. This work is presented in Chapter 3

[6] A. Badawy, T. ELfouly, T. Khattab, C.-F. Chiasserini, and D. Trinchero “Ex-
ploiting Spectrum Sensing Data to for Key Management”, Elsevier, Computer
Communications, Volume 97, 1 January 2017, Pages 31-39, ISSN 0140-3664,
http://dx.doi.org/10.1016/j.comcom.2016.10.008.
This work is presented in Chapter 5

[7] A. Badawy, and R. Wolff, “A hardware based ricean fading radio channel
simulator,” Springer, Wireless Personal Communications, Volume 93, pp. 615-
727, 2017. [Online]. Available: http://dx.doi.org/10.1007/s11277-014-2217-x.
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1.3.3 Submitted journal articles

[1] A. Badawy, T. Khattab and T. Elfouly “A comprehensive Study on Spectrum
Sensing Techniques in Cognitive Radio Networks from Theory to Implementa-
tion: A Survey” submitted to Sensors.

1.3.4 Journal articles drafts

[1] A. Badawy, T. Khattab, T. Elfouly, C-F Chiasserini and D. Trinchero, “On
Non-coherent UWB Receivers: Revamping Single Sample Threshold Detection
via Order Statistics,” to be submitted to IEEE Communication Letters.

[2] A. Badawy, T. Khattab, T. Elfouly, C-F Chiasserini and D. Trinchero, “On
Practical Quickest Detection of Primary Users in Cognitive Radio Communica-
tions,” to be submitted to IEEE Transaction of Cognitive Communication and
Networking. This work is presented in Chapter 5

[3] A. Badawy, K. Allidina, T. Khattab, M. Elgamal and T. Elfouly, “Performance
Analysis of Non-coherent UWB Receiver Under Nakagami Fading Channel in
the Presence of Narrowband Interference ,” to be submitted to IEEE Transaction
on Wireless Communications.

1.3.5 Conference publications

[1] A. Badawy, T. Khattab, T. ElFouly, A. Mohamed, and D. Trinchero, “Secret
key generation based on channel and distance measurements,” in Ultra Modern
Telecommunications and Control Systems and Workshops (ICUMT), 2014 6th
International Congress on, Oct 2014, pp. 136-142.
This work is presented in Chapter 4

[2] T. Salman, A. Badawy, T. Elfouly, T. Khattab, and A. Mohamed, “Non-data
aided SNR estimation for QPSK modulation in AWGN channel,” in Wireless
and Mobile Computing, Networking and Communications (WiMob), 2014
IEEE 10th International Conference on, Oct 2014, pp. 611-616.

[3] A. Badawy, T. Khattab, T. M. Elfouly, C.-F. Chiasserini, A. Mohamed, and
D. Trinchero, “Secret key generation based on AoA estimation for low snr
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conditions,” in 2015 IEEE 81st Vehicular Technology Conference (VTC spring
2015), Glasgow, Scotland, May. 2015. This work is presented in Chapter 4

[4] A. Badawy, T. Khattab, T. M. Elfouly, C.-F. Chiasserini, A. Mohamed, and D.
Trinchero, “Channel secondary random process for robust secret key genera-
tion,” in IWCMC 2015 Security Symposium (IWCMC 2015 Security Sympo-
sium), Dubrovnik, Croatia, Aug. 2015. This work is presented in Chapter 3

[5] T. Salman, A. Badawy, T. M. Elfouly, A. Mohamed, and T. Khattab, “Estimat-
ing the number of sources: An efficient maximization approach,” in IWCMC
2015 Comm & Signal Processing Symposium (IWCMC 2015-Comm & Signal
Processing), Dubrovnik, Croatia, Aug. 2015.

[6] A. Badawy, T. Khattab, T. Elfouly, C. F. Chiasserini and D. Trinchero, "On the
performance of spectrum sensing based on GLR for full-duplex cognitive radio
networks," 2016 IEEE Wireless Communications and Networking Conference,
Doha, 2016, pp. 1-6. This work is presented in Chapter 5

[7] A. Badawy, T. Khattab, T. Elfouly, C. Chiasserini and D. Trinchero “Per-
formance of Eigenvalue Based Spectrum Sensing in Full-Duplex Cognitive
Radio Networks,” 2016 IEEE Canadian Conference on Electrical and Computer
Engineering (CCECE), Vancouver, BC, 2016, pp. 1-6.

[8] A. Badawy, T. Khattab, D. Trinchero, T. Elfouly and A. Mohamed “A simple
AoA Estimation System,” 2017 IEEE Wireless Communications and Network-
ing Conference (WCNC), San Francisco, CA, USA, 2017, pp. 1-6.
This work is presented in Chapter 4

1.4 Dissertation Outline

The rest of the dissertation is organized as follows:

• Chapter 2 surveys the different common sources of randomness used for SKG.
Most common steps used to extract the secret key from the common source
of randomness are investigated. Furthermore, both statistical and information
theoretic metrics used to evaluate the generated secret key are presented.
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• Chapter 3 presents our novel channel based SKG algorithm. The presented
SKG method relies on extracting a secondary random process from combined
channel gain and phase estimates. The extracted secondary random process is
used for SKG.

• Chapter 4 introduces our newly developed algorithm that exploits the AoA as
a common source of randomness for SKG. AoA based SKG can operate with
high efficiency at very low SNR levels. A novel AoA estimation system that
uses a single RF receiver is also presented. Moreover, a SKG algorithm based
on channel and distance measurements is presented.

• Chapter 5 presents the basic concepts of different methods for cognitive radio
networks. Design and analysis of likelihood ratio based spectrum sensing are
presented. In addition, issues and drawbacks of current security schemes in
cognitive radio networks are discussed. An algorithm that exploits spectrum
sensing data for secret key generation is then presented.

• Chapter 6 concludes the dissertation and highlights the key findings and
directions for future work.



Chapter 2

Secret Key Generation Methods

2.1 Introduction

The objective of this chapter is to present the fundamentals of secret key generation
in an explicit way. The flow of this chapter is organized as follows. In Section 2.2,
we survey the most common physical layer characteristics used as common sources
of randomness to generate the secret key. The steps used to extract the key from the
estimated physical layer characteristic is presented in Section 2.3. We then present
the metrics used to evaluate the strength of the secret key in Section 2.4. The chapter
is concluded in Section 2.5. Our work in this chapter is presented in [16].

2.2 Common Sources of Randomness

Several characteristics of the physical layer link between the two communicating
legitimate nodes, Alice and Bob, are shared only between them, while the eaves-
dropper, Eve, can only measure these characteristics between itself and each node
separately as depicted in Figure 2.1. The measures available to Eve may be (or may
be not) correlated to the characteristics shared between Alice and Bob. The most
commonly used physical layer characteristic as a common source of randomness is
channel randomness. Received signal strength can also be used for SKG. However,
exploiting distance as a reciprocal physical layer characteristic is limited due to
reasons provided in the discussion below.
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Alice Bob

Eve

Channel estimates, RSS, Distance

Fig. 2.1 Common physical layer characteristics used for secret key generation between two
authorized nodes Alice and Bob and an eavesdropper, Eve, listening to the communication
between them.

2.2.1 Channel estimates

One well known property of the communication channel is the reciprocity of its
effects. When two antennas communicate by radiating the same signal through a
linear and isotropic channel, the received signals by each antenna will be identical.
This is mainly because of the reciprocity of the radiating and receiving antenna
pattern [17, 18].

Most current physical layer security techniques are based on the channel reci-
procity assumption. One of the pioneering work on secret key generation based on
channel reciprocity was presented in [3]. They concluded that the maximum size
of the generated secret key mainly depends on the mutual information between the
channel estimates at the two legitimate nodes. They also derived an expression for
the mutual information for a general multipath channel. The most common feature
of the channel characteristics that is widely used is the channel gain; mainly because
of its ease of extraction [19, 20]. In [19], the authors studied the channel probing
rate effect on the secret key rate for different doppler shifts. They found that secret
key rate increases as the probing rate increases and saturates at 20 KHz probing rate
for the worst case doppler shift they assumed of 100 Hz. The smaller the doppler
shift the smaller the probing rate required to saturate the secret key rate. In [20],
the authors observed that as the carrier frequency increases, the probing rate should
increase to achieve a suitable key rate. This is mainly because the channel’s temporal
variation increases at higher carrier frequencies.
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In [21], the authors studied the theoretical limits of the SKG when Eve’s channel
is correlated with Alice-Bob’s channel. Furthermore, they developed a quantization
mechanism to mitigate errors by exploiting guard band to separate decision areas.
This guard band based technique is further developed in [22]. SKG algorithms are
also further investigated under a multiple input multiple output (MIMO) scheme
as in [23], the authors developed a SKG technique that exploits the eigenvalues of
the composite round trip channel to generate the secret key. In addition, a SKG
technique that uses the precoding matrix in MIMO OFDM system is presented in
[24], while the authors in [25] present a SKG algorithm in massive MIMO system
when the eavesdropper launches a pilot contamination attack.

Secret key generation algorithms in relay assisted channels are presented in
[26, 27], while [28] studies SKG when the relays are untrusted. In [27], it was
assumed that there is no direct channel between the two communicating nodes, Alice
and Bob. Their SKG technique showed a key rate that is larger than the rate of the
direct channel.

Others exploit the channel phase to generate the secret key as in [29–32]. Unlike
the channel gain, the channel phase is uniformly distributed. The authors in [29] and
[30], which were published in 1996 and 1998, respectively, were able to generate
a long key as compared to the conventional cryptographic techniques from the
estimated channel phase, while in [31], they extend their system to the use of relay
nodes. In [33], the authors developed a quantization algorithm to exploit channel
phase in SKG.

One main advantage of exploiting channel estimates to generate the secret key is
its high key generation rate. However, a main drawback of exploiting the channel
reciprocity to generate secret keys is that the additive white Gaussian noise (AWGN)
at both receivers, interference, estimation errors and the fact that involved transceivers
could employ different RF chains affect the reciprocity of the channel measurements.
Also, both nodes must collect the measurement simultaneously [6].

2.2.2 Received signal strength

Other reciprocal (common) parameters such as received signal strength (RSS), which
is a measure of the received signal’s power, can be used as a common source of
randomness to generate the secret key [4]. Available results show that it would
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require a signal to noise ratio (SNR) of at least 20 dB to generate a secret key
with appropriate agreement. A practical implementation of RSS based secret key
generation, presented in [34] shows that it would require a highly mobile scenario to
generate a secret key with acceptable entropy, i.e., key randomness. In IEEE 802.11,
RSS is exploited for SKG [35, 36] and also in IEEE 802.15.4 [37–39].

RSS is a very common metric that requires a simple circuitry to be extracted.
Nevertheless, its practical utilization as a common source of randomness is limited
because its key bit generation rate is very low, particularly, for mobile scenarios [40].

2.2.3 Distance

A recent physical layer security technique that is based on the distance reciprocity
to generate secret key bits is presented in [5]. SKG based on distance is best suited
for mobile scenarios. The authors in [5] studied the theoretical achievable secret
key bit rate in terms of the observation noise variance at the legitimate nodes and
the eavesdropper. They also tested their algorithm using of-the-shelf radios. Most
of the currently deployed localization techniques exploit the RSS to estimate the
distance between the two communicating nodes [41]. Estimating the distance based
on RSS requires an accurate modelling of the channel between the nodes. Moreover,
it has a low estimation accuracy. This implies that the secret key generated based
on distance will have a high BMR. There are other techniques to perform distance
measurements which are based on the time of arrival (TOA). Although distance
measurements based on TOA has a higher accuracy than RSS based, it requires
clock synchronization between the two nodes. Nevertheless, TOA based distance
estimation error is high at low SNR (< 0 dB).

SKG based on distance estimation is useful for mobile scenarios where either
or both of the two nodes are moving, therefore, the distance between the two
legitimate nodes changes. On the other hand, a secret key generated based on the
distance between the two communicating nodes is susceptible to be recovered by an
eavesdropper that is equipped with angle of arrival (AoA) estimation capabilities. In
this case, the eavesdropper estimates the AoA for both signals received from the two
nodes as well as the distances between itself and the two nodes. The eavesdropper
then easily estimates the distance between the two nodes. Once the distance between
the nodes is estimated, the secret key is recovered by the eavesdropper.
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2.3 Secret Key Generation Steps

The steps to generate the secret key from the physical layer characteristics are
based on whether a single or multiple common sources of randomness are used to
extract the key. It is inherited that both Alice and Bob have already agreed on the
common source(s), which will be used to generate the key. The vast majority of the
current research work exploits only a single common source of randomness, i.e.,
1-D. We explore the possibility of exploiting combined multiple common sources of
randomness and show how the technique used to extract the secret key will differ.
We first present the steps needed to extract the key exploiting 1-D common source of
randomness followed by the addition needed to extract the key in case of multiple
common sources of randomness.

2.3.1 Exploiting 1-D common source of randomness to extract
the key

A block diagram of the steps needed to extract the key from a single common source
of randomness is shown in Figure 2.2. The block diagram includes all the necessary
steps involved in the process of secret key generation. The two legitimate nodes start
by an initializing phase followed by estimating the underlining common randomness.
Quantization, encoding, information reconciliation and privacy amplification steps
are followed to convert the common randomness into a bit stream. The output of
the block diagram is the secret key, which both legitimate nodes use to encrypt the
transmitted data. The detailed steps are:

Initialization

This step is also known as beacon exchange. Both Alice and Bob start to exchange
signal from which the physical layer characteristic will be estimated. Multiple
beacon exchange might be needed based on the required length and rate of the key.
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Common Source of Randomness Estimation

Based on the received signal from the other legitimate node, both Alice and Bob
estimate the physical layer characteristic. For example, when exploiting channel
randomness to generate the secret key, Alice and Bob could use the received signal,
in this case the pilot signal, along with a channel estimation technique such as least
squares or minimum mean square to obtain the channel estimates.

Quantization & Encoding

Now that we have the common sources of randomness estimated at both Alice
and Bob, the third step is to convert them into a bit stream suitable for the secret
key generation. The conventional secret key length is between 128 and 512 bits
[19]. The most popular technique for quantization is the uniform quantization.
When using nq bits as the number of quantization bits, there will exist 2nq levels to
quantize the common sources of randomness. The quantized decimal valued are then
converted into bits. Moreover, the authors in [42–44] use a multi bit quantization
technique, which uses multiple thresholds and which differ based on the selection
of the threshold, to reduce the quantization error. Although uniform quantization is
easy to implement, increasing the quantization bit number, dramatically degrades
the performance of the algorithm since the bit mismatch rate between the two
communicating nodes increases. In [45], an encoding algorithm is proposed to tackle
this problem where each uniformly quantized value is encoded with multiple values,
ne bits. Moreover, Gray coding can be used to reduce the BMR.

Information Reconciliation

The generated bit streams at Alice and Bob will have some discrepancy, particularly
at very low SNR levels. This is due to several reasons such as interference, noise
and hardware limitations. A reconciliation protocol such as the one presented in [46]
can be used to minimize the discrepancy. Both Alice and Bob first permute their bit
streams in the same way. Then they divide the permuted bit stream into small blocks.
Alice then sends permutations and parities of each block to Bob. Bob then compares
the received parity information with the ones he already processed. In case of a parity
mismatch, Bob changes his bits in this block to match the received ones. Another
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approach for information reconciliation is presented in [47], where the reconciliation
step is treated as a source coding with side information problem. In this case, Alice
compresses her collected common source of randomness data and Bob decodes
them with the aid of his correlated collected data. Their reconciliation procedure
can accomplish security rates comparable to the theoretical limits. Their method
relies on multilevel coding and optimized low-density parity-check (LDPC) codes,
where Alice applies a labeling function on its generated bit stream then produces
supplementary information for Bob by calculating syndromes of the bit stream.

Privacy Amplification

Although information reconciliation protocol leaks minimum information, the eaves-
dropper can still use this leaked information to guess the rest of the secret key.
Privacy amplification solves this issue by reducing the length of the outputted bit
stream. The generated bit stream is shorter in length but higher in entropy. To do
so, both Alice and Bob apply a universal hash function selected randomly from a
set of hash functions known by both Alice and Bob. Alice sends the number of the
selected hash function to Bob so that Bob can use the same hash function.

2.3.2 Exploiting multiple common sources of randomness to ex-
tract the key

In some cases, it is possible to collect multiple common sources of randomness
simultaneously such as channel gain and phase, channel real and imaginary coeffi-
cients [48], linear combination of channel estimates in multiple antenna scenario
[49], RSS and distance, if distance estimation is based on RSS.

If multiple common sources of randomness were estimated and the nodes intend
to exploit them to generate the secret key, the steps to generate the secret key are
the same as in Figure 2.2 with a block added either at the raw data level after
Estimation of Phy Layer Characteristic block or at the bit level after the Encoding
block. The responsibility of this block is to combine the multiple common sources
of randomness. We shall call the step of combining the multiple common sources of
randomness as the Fusion Operation.
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Fig. 2.2 Secret key generation steps in case of 1-D common source of randomness
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2.4 Metrics to Evaluate the Generated Secret Key

We present the most commonly used metrics to evaluate the generated secret key,
which can be categorized into two main categories: information theoretic metrics
and statistical metrics.

2.4.1 Information theoretic metrics

We present three important information theoretic metrics, which are the secret key
rate, the secret key capacity and the outage secret key capacity.

Secret key rate

The concept of secret key rate, R, was first presented in the pioneering work of
Maurer in 1993 [50]. He derived the upper and lower bounds on the secret key
rate considering that the two legitimate nodes, Alice and Bob, have unlimited
access to a public channel, which Eve can listen to. Both Alice and Bob observe n
independent and identically distributed random variable X and Y , respectively. X
and Y are denoted by X = (X1, ...Xn) and Y = (Y1, ...Yn). At any instant of time i, the
corresponding observations at Alice and Bob Xi and Yi are highly dependant. These
observations are their estimates of the common source of randomness. On the other
hand, Eve observes a sequence of observation denoted by Z. The upper bound on
the generated secret key as defined by Maurer is given by:

S(X ;Y ||Z)≤ min [I(X ;Y ), I(X ;Y |Z)] (2.1)

where I(X ;Y ) is the mutual information between X and Y and I(X ;Y |Z) is the mutual
information between X and Y given Z. The lower bound is given by

S(X ;Y ||Z)≥ max [I(Y ;X)− I(Z;X), I(X ;Y )− I(Z;Y )] (2.2)

Secret key capacity

The supremum of the secret key rate is considered the secret key capacity Cs. Al-
though, secret key capacity in general is still an open problem, Maurer defined it
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as:

Cs = max
PX

S(X ;Y ||Z)

≤ min
[

max
PX

I(X ;Y ),max
PX

I(X ;Y |Z)
]

(2.3)

where PX is the probability density function of X .

Secrecy entropy

Entropy is a measure of the level of randomness of the generated key. Within the
context of SKG, the higher the entropy, the more random the generated key. Within
information theory context, entropy quantifies the uncertainty in a random variable
or random process. The maximum achievable entropy rate occurs when the random
variable follows a uniform distribution.

2.4.2 Statistical metrics

The statistical tests applied on the secret key generated based on a physical layer
characteristic are borrowed from the conventional cryptography test. As stated in
[51] "Each statistical test determines whether the sequence possesses a certain at-
tribute that a truly random sequence would be likely to exhibit; the conclusion of
each test is not definite, but rather probabilistic." The National Institute of Standards
and Technology (NIST) (US Department of Commerce) [52] provides tools (Pub-
lic key interpretability test suite certification path validation [53]) to evaluate the
statistical metrics of the generated secret key. The tools are developed to evaluate
the performance of conventional cryptographic techniques, however the generated
key through a physical layer characteristic can be tested using the provided tools by
NIST. There are five basic statistical tests presented in [51]. We add a more recent
test applied on the generated secret key, which is the bit mismatch rate between the
key generated at Alice and Bob. For a generated secret key s of length N bits, the six
tests are:
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Frequency test

The objective of this test is to determine if the number of 1’s and 0’s are approximately
the same, as predicted for a random binary sequence.

Serial test

The objective of this test is to determine if the number of occurrences of the two
bit subsequences 00, 01, 10, and 11 are approximately the same, as predicted for a
random binary sequence.

Poker test

To apply the poker test, the generated key s is divided into k non-overlapping
subsequences of length m. The objective of this test is to determine if the number of
occurrences of each of the subsequences of length m is approximately the same, as
predicted for a random binary sequence. If the length of the subsequence m = 1, the
poker test reduces to the frequency test.

Runs test

Each run is represented as subsequence of the generated key s consisting of consecu-
tive 0’s or consecutive 1’s. The subsequence of consecutive 0’s is referred to as gap,
while the subsequence of 1’s is referred to as block. The objective of this test is to
check if the number of runs of different lengths is as predicted for a random binary
sequence. The expected number of runs (either gaps or blocks) of length j in the
generated key s of length N is e j = (N − i+3)2 j.

Autocorrelation test

The objective of this test is to examine the correlation between the generated secret
key s and a shifted version of itself.
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Bit mismatch rate

The objective of this test is to estimate the bit mismatch between the two sequences
generated at Alice and Bob. The BMR should be less than a threshold to meet
reliability criteria.

2.5 Conclusion

In this chapter, we presented the most widely exploited common sources of random-
ness for SKG. Channel gain is commonly used due to its high key generation rate.
On the other hand, channel phase follows a uniform distribution and it is expected
that the key generated through channel phase will have higher entropy rate. RSS
is also commonly used due to its ease of implementation. However, SKG based
on RSS suffers from low key generation rate. Distance as a common source of
randomness can be exploited only in case of high mobility on the assumption that
the eavesdropper is not equipped with AoA estimation capabilities.

Furthermore, we presented the common steps used in the process of SKG. In
addition, both information theoretic and statistical metrics used to evaluate the
strength of the generated secret key were also investigates. BMR, secrecy entropy
and key rate are most widely accepted metrics for the generated secret key.



Chapter 3

Channel Secondary Random Process
for Secret Key Generation

3.1 Introduction

As we stated earlier, a major downside of using the channel reciprocity for SKG is
that the AWGN at both receivers affects the reciprocity of the channel measurements
[6]. This drawback causes the bit mismatch rate (BMR) between the legitimate nodes
to rise, which affects the operation of SKG based on channel estimates, particularly,
at low and medium signal to noise ratio (SNR) scenarios. As a matter of fact, this
major drawback was stated as one of the challenges of physical layer security in [7].

To address the latter drawback of physical layer security techniques, we design a
robust SKG technique to mitigate the effect of AWGN. We propose a SKG technique,
which we apply on the estimated channel gain only, channel phase only and combined
gain and phase, which enhances the performance of the SKG system at low and
medium SNR levels. In our technique, the estimated channel is considered our
primary random process, from which we derive a secondary random process (SRP)
that is then used to generate the secret key. The primary random process, which
is either the estimated channel gain or phase, is compared to a preset threshold.
The locations of the realizations at which the primary random process exceeds the
threshold are stored. The moving differences, which are the differences between
each two adjacent locations, are the realizations of our SRP. Those realizations are
then used to generate the secret key. The main reason for using the locations, i.e.,
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x-axis indices as the core for SKG rather than the gain (amplitude) or phase values,
i.e, y-axis points is that it is very likely that those locations are less affected by the
AWGN. In other words, due to AWGN, unlike those locations, the y-axis values,
whether they are channel gain or phase values, may differ at both communicating
receivers, which causes high BMR. Hence, our rational behind creating a SRP that is
based on those locations. We derive a closed form expression for the probability mass
function of those realizations. Our proposed technique improves the BMR drastically
and achieves a longer key length than the conventional techniques. The entropy
rate achieved through our technique is comparable to that achieved by conventional
techniques. In addition, we numerically compute the conditional probabilities used
in secret key capacity estimation.

The rest of this chapter is organized as follows: In Section 3.2 the system model
is presented. Our proposed channel SRP for SKG technique is presented in Section
3.3. The properties of our generated SRP are discussed in Section 3.4. The capacity
of our SRP secret key is presented in Section 3.5. We evaluate the performance of
our solution in Section 3.6. The chapter is then concluded in Section 3.7. Our work
in this chapter is presented in [54] and [55].

3.2 System Model

We assume that Alice and Bob use orthogonal frequency division multiplexing
(OFDM) system for transmission/reception. In particular, consider an OFDM system
where each OFDM symbol consists of N orthogonal subcarrier. After modulating the
input serial data streams, a serial to parallel converter converts serial data symbols to
parallel streams. Nt pilots, denoted by xt , are then inserted for the measurement of
channel conditions. This results in a vector X [k] for k = 0,1, ...,N −1. X [k] is then
used as input to an N-point Inverse Fast Fourier Transform (IFFT). The time domain
signal is now:

x[n] = IFFT{X [k]} n = 0,1,2, · · · ,N −1. (3.1)
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A guard interval of length Nd , also known as cyclic prefix, is appended according to:

x f [n] =

{
x[n+N], n =−Nd,−Nd +1, · · · ,−1,
x[n], n = 0,1, · · · ,N −1.

(3.2)

x f [n] is then passed through a parallel to serial converter and digital to analog
converter, and it is then transmitted to the other node. The received signal at Alice
and Bob is given by:

yA
f [n] = xB

f [n]⊗h[n]+wA[n], (3.3)

yB
f [n] = xA

f [n]⊗h[n]+wB[n], (3.4)

where xB
f is the transmitted signal from Bob to Alice, xA

f is the transmitted signal
from Alice to Bob, h is a random process that describes the wireless channel between
Alice and Bob and wA and wB are the additive white Gaussian noise (AWGN) at
Alice and Bob’s receivers, respectively. Note that the pilots, also known as training
signals or reference signal, within xA

f and xB
f are identical. The guard interval is

then removed from the received signal yielding y[n] = y f [n] for n = 0,1, · · · ,N −1.
y[n] is then passed through an N-point FFT yielding the frequency domain signal
Y [k] = FFT{y[n]} k = 0,1, ...,N −1. The pilots, whose locations are already known,
are then extracted from Y [k] yielding Yt , where t = 1, · · · ,Nt . Note that the signal
exchange between Alice and Bob is performed during the coherence time of the
channel.

For simplicity, we estimate the channel through the least squares (LS) estimator
in the frequency domain. The LS estimator minimizes the squared error as [56]:

Ĥ = argmin ||Yt −XtH||. (3.5)

The estimated channel at both Alice and Bob can be given by:

ĤA
LS = (Xt)

−1Y A
t , (3.6)

ĤB
LS = (Xt)

−1Y B
t , (3.7)

where Xt is the diagonal matrix defined as Xt = diag(x1, · · · ,xNt ) and Yt has a dimen-
sion of Nt ×1. Since the entries (x1, · · · ,xNt ) are non-zero, the matrix Xt is invertible.
The estimated channel at the pilot locations are then interpolated to estimate the
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channel across the entire OFDM symbol. The estimated channel gains at Alice and
Bob |ĤA

LS| and |ĤB
LS| as well as the phases, which are the angles of ĤA

LS and ĤB
LS, are

the common sources of randomness which are typically used to generate the secret
key and from which we will derive our SRP.

In our adversary model, we assume that an eavesdropper (Eve) can listen to
all the exchanged signals between the two legitimate communicating nodes (Alice)
and (Bob). Moreover, Eve can estimate the channel between itself and both Alice
and Bob. However, Eve can not be within a few wavelengths of either of the two
communicating nodes, Alice and Bob, which ensures that her estimated channel
between either of them is independent of that between Alice and Bob. In addition,
we assume that Eve is a passive adversary, that is not interested in active attacks.

3.3 Proposed SRP Technique

We design a simple SKG technique exploiting, indirectly, the estimated channel. Our
technique can be applied on the channel gain only, phase only or a combination of
the channel gain and phase as we will show later. It is assumed that Alice and Bob
have exchanged signals within the coherence time of the channel. They then have
estimated the channel using (3.6) and (3.7). They applied an interpolation technique
on their channel estimates at the pilot locations to estimate the channel across the
entire OFDM symbol. It is worth noting that our technique is not exclusive to OFDM
systems, rather it can be applied on the estimated channel in presence of any other
system.

3.3.1 Creating a secondary random process

Due to the reciprocity of the channel, the channel estimates at Alice and Bob, ĤA
LS

and ĤB
LS, are supposed to be identical. However, because of the AWGN added at the

two receivers, ĤA
LS and ĤB

LS are not identical. To address the BMR issue explained
earlier, we generate a secondary random process from the channel estimates. This
SRP is then used as common source of randomness to generate the secret key. The
steps, which can be applied on the estimated channel gain or phase, are reported
below. The steps are reported for the channel gain and apply similarly to the phase.
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For simplicity, we limit the description below to the case in which they are applied
to the estimated channel gain. The steps to generate our SRP are:

1. Both Alice and Bob use their estimated channel gain to estimate a threshold
(γg) as:

γ
A
g = E[|ĤA

LS|]+α std(|ĤA
LS|) (3.8)

γ
B
g = E[|ĤB

LS|]+α std(|ĤB
LS|), (3.9)

where E[.] is the mean operation, std(.) is the standard deviation operation and
α is a design parameter ∈ [−1 : 1]. The design parameter α decides how far
the threshold from the mean with a percentage of the standard deviation. For
example, when α = 0, γA

g = E[|ĤA
LS|]. For α ̸= 0, the threshold moves away

from the mean. Hence, covering a wide range of possible thresholds.

2. Both Alice and Bob compare their channel gain, recursively to the preset
thresholds γA

g and γB
g , respectively.

3. If the channel estimate is higher than the preset threshold, the location, i.e, the
index (x-axis) is stored in a vector S initialized to all zeros. Alice and Bob
estimate their vectors as SA

g and SB
g .

4. Alice and Bob then estimate the moving difference of their estimated locations
JA

g and JB
g for channel gain, which are computed as:

JA
g [i] = SA

g [i+1]−SA
g [i], i = 1, ...,N −1, (3.10)

JB
g [i] = SB

g [i+1]−SB
g [i], i = 1, ...,N −1. (3.11)

A flow chart of the SRP of the channel gain is presented in Figure 3.1 for Alice. The
realizations in the vectors JA

g and JB
g constitute the entries of our secondary random

process. In other words, we have created two SRPs, one for the channel gain and
another for the channel phase. These SRPs are considered our new common sources
of randomness which are then used by Alice and Bob to generate the secret key. In
Section 3.6, we provide an example of our SRP. Alice and Bob can use SRP extracted
from channel gain only, channel phase only or a combination of the two for the SKG.
Once the SRP is created, the secret key can be generated using the steps presented in
Chapter 2. Algorithm 1 summarizes the steps used to generated the secret key. In
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line 2, (3.8) and (3.9) are used to estimate the threshold, which is then used in lines
4 to 10 to compare the gain values to. The moving difference is estimated in line 11.
The rest of the algorithm contains the quantization, information reconciliation and
privacy amplification steps.

Algorithm 1 SRP SKG Technique for Channel Gain
1: Step 1: Creating secondary random process
2: Alice and Bob estimate their thresholds using (3.8) and (3.9), respectively.
3: Both Alice and Bob apply the following steps on |ĤA

LS| and |ĤB
LS|.

4: for i = 1: length(|ĤA
LS|) do

5: if |ĤLS|> γg then
6: S[i] = i
7: else
8: S[i] = 0
9: end if

10: end for
11: Both Alice and Bob estimate JA

g = SA
g [i+1]−SA

g [i] and JB
g = SB

g [i+1]−SB
g [i].

12: Step 2: Uniform Quantization
13: Alice and Bob use nq bits to quantize JA

g and JB
g .

14: Alice and Bob convert their quantized values into bitstreams.
15: Step 3: Information Reconciliation
16: Alice and Bob permute the bit streams and divide them into small blocks.
17: Alice sends the permutation and parities to Bob.
18: Bob compares the received parity information with his own.
19: In case of mismatch, Bob corrects his bits accordingly.
20: Step 4: Privacy Amplification
21: Alice sends the number of the hash function to Bob.
22: Alice and Bob apply the hash function to the bit stream.

3.4 Properties of SRP

In this section, we study the characteristics of our generated SRP. The first step in our
SRP creation is to compare the estimated channel gain or phase to a preset threshold.
This process can be considered as independent and identically distributed Bernoulli
trials. For the channel gain, the success is defined as |ĤLS[i]| > γg and the failure
defined as |ĤLS[i]| ≤ γg. The probability of success for the channel gain, pg, is given
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by

pg = Pr(|ĤLS[i]|> γg)

= 1−qg

= 1−Pr(|ĤLS[i]| ≤ γg), (3.12)

where qg is the probability of failure. The channel gain follows a Rayleigh distribu-
tion with probability density function defined as:

f (r) =
r

Ω2 exp
(
− r2

2Ω2

)
, for r ≥ 0 (3.13)

where r is the envelope amplitude of the received signal and 2Ω2 is the average
power of multipath signal prior to envelope detection. Hence,

pg = exp

(
−

γ2
g

2Ω2

)
. (3.14)

Similarly, for channel phase, the success is defined as ∠ĤLS[i]> γph and the failure
defined as ∠ĤLS[i] ≤ γph, where γph is the threshold for the channel phase. The
probability of success for the channel phase is

pph = Pr(∠ĤLS[i]> γph)

= 1−qph

= 1−Pr(∠ĤLS[i]≤ γph), (3.15)

where qph is the probability of failure. The channel phase, θ , follows a uniform
distribution with probability density function defined as:

f (θ) =
1

2π
, for 0 ≤ θ ≤ 2π (3.16)

Hence,

pph = 1−
γph

2π
. (3.17)
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Remember that the vectors Sg and Sph are initialized to all zeros. We search for the
locations at which the estimated channel gain or phase exceeds the threshold. These
locations are the nonzero entries in Sg and Sph. They are estimated as the number
of trials, v, needed to achieve u successes. Therefore, these locations, Vg, follow a
negative binomial (NB) distribution according to Vg ∼ N B (ug, pg) for the channel
gain and Vph ∼N B

(
uph, pph

)
for the channel phase. The probability mass function

of Vg is given by:

lg(vg,ug) = Pr(Vg = vg)

=

(
vg −1
ug −1

)
(1− pg)

vg−ug pug
g . (3.18)

lph(vph,uph) is defined similarly for the channel phase. Thus, the probability of
overwriting the initial zero in Sg is given by (3.18) and the probability that it remains
zero is l′g(vg,ug) = 1− lg(vg,ug). Also l′ph(vph,uph) is described in the same manner.
The entries in the vectors Jg and Jph are the moving differences between each two
consecutive entries in Sg and Sph, respectively. Hence, each entry in Jg and Jph has
four possibilities as follows. We present the cases for the channel gain only. The
four cases for the channel phase are similar with the probabilities assigned to the
channel phase vector entries.

• Case 1: the two consecutive entries in Sg are zeros. Consequently, the entry in
Jg is zero with probability l′g(vg,ug) l′g(vg +1,ug).

• Case 2: the two consecutive entries in Sg are the values of the NB random
variables (vg and vg +1). Consequently, the entry in Jg is 1 with probability
lg(vg,ug) lg(vg +1,ug +1).

• Case 3: the first (out of the two producing Jg entry) entry is zero and the second
is a value of the NB random variable. Consequently, the entry in Jg is the same
value of the NB random variable (vg) with probability l′g(vg,ug) lg(vg +1,ug +

1).

• Case 4: the first entry is a value of the NB random variable and the second
is zero. Consequently, the entry in Jg is the negative of the value of the NB
random variable (−vg) with probability lg(vg,ug) l′g(vg +1,ug).
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To find a closed form expression for the probability mass function of each entry in Jg,
which we denote by P(Jg[i] = jg), we use the Lagrange interpolating polynomial for-
mula [57]. Lagrange interpolating polynomial method finds the polynomial of degree
≤ nlg −1 which passes through nlg points ((xlg1

,ylg1
),(xlg2

,ylg2
), · · · ,(xlgnlg

,ylgnlg
)).

It is defined as

D(xlg) =
nlg

∑
ilg=1

Tlg(xlg), (3.19)

with

Tlg(xlg) = ylgilg

nlg

∏
klg=1
klg ̸=ilg

xlg − xlgklg

xlgilg
− xlgklg

. (3.20)

Using the four cases explained above, the probability mass function of each entry in
Jg for jg ∈ {−vg,0,1,vg} can be given by

P(Jg[i] = jg)

=
lg(vg,ug)lg(vg +1,ug +1) jg(vg + jg)(vg − jg)

(vg −1)(vg +1)

−
l′g(vg,ug)l′g(vg +1,ug)( jg −1)(vg + jg)(vg − jg)

v2
g

+
lg(vg,ug)l′g(vg +1,ug) jg(vg − jg)( jg −1)

2v2
g(vg +1)

+
l′g(vg,ug)lg(vg +1,ug +1) jg(vg + jg) ( jg −1)

2v2
g(vg −1)

. (3.21)

The probability mass function of each entry in Jg is zero otherwise. The mean,
E[Jg[i]], is then:

E [Jg[i]] = ∑
jg

jg P(Jg[i] = jg)

= lg(vg,ug) lg(vg +1,ug +1)

+ vg l′g(vg,ug) lg(vg +1,ug +1)

− vg lg(vg,ug) l′g(vg +1,ug), (3.22)
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and

E
[
J2

g [i]
]
= ∑

jg

j2
g P(Jg[i] = jg)

= lg(vg,ug) lg(vg +1,ug +1)

+ v2
g l′g(vg,ug) lg(vg +1,ug +1)

+ v2
g lg(vg,ug) l′g(vg +1,ug). (3.23)

Hence, the variance of Jg[i] can be given by:

var [Jg[i]] = E
[
J2

g [i]
]
− [E [Jg[i]]]

2

= lg(vg,ug) lg(vg +1,ug +1)

+ v2
g l′g(vg,ug) lg(vg +1,ug +1)

+ v2
g lg(vg,ug) l′g(vg +1,ug)

−
(

lg(vg,ug) lg(vg +1,ug +1)

+ vg l′g(vg,ug) lg(vg +1,ug +1)

− vg lg(vg,ug) l′g(vg +1,ug)

)2

. (3.24)

The probability mass function for the channel phase, P(Jph[i] = jph) is defined
similarly.

3.5 Secret Key Capacity

Since the entries in our generated SRPs are independent and identically distributed
(i.i.d.), our secret key rate after the information reconciliation and privacy amplifica-
tion exhibits the same generic results presented in [50]. The upper and lower bounds
for the channel gain SRP are given by [50]:

RU
g (J

A
g [i];JB

g [i]||JE
g [i])≤ min

[
I(JA

g [i];JB
g [i]),

I(JA
g [i];JB

g [i]|JE
g [i])

]
, (3.25)
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RL
g(J

A
g [i];JB

g [i]||JE
g [i])≥ max

[
I(JB

g [i];JA
g [i])−

I(JE
g [i];JA

g [i]), I(J
A
g [i];JB

g [i])

− I(JE
g [i];JB

g [i])
]
,

(3.26)

where I(JA
g [i];JB

g [i]) is the mutual information between JA
g [i] and JB

g [i] and
I(JA

g [i];JB
g [i]|JE

g [i]) is the mutual information between JA
g [i] and JB

g [i] given JE
g [i] for

the eavesdropper, Eve. The supremum of the secret key rate is considered the secret
key capacity Cg:

Cg = max
P(JA

g [i])
I(JA

g [i];JB
g [i]||JE

g [i])

≤ min
[

max
P(JA

g [i])
I(JA

g [i];JB
g [i]),

max
P(JA

g [i])
I(JA

g [i];JB
g [i]|JE

g [i])
]
. (3.27)

However, in the definitions above, it was assumed that Eve has access to the primary
random process, i.e., channel estimates. In order for Eve to collect correlated channel
measurements, she has to be within a half wavelength apart from either Alice or
Bob. In other words, Eve has to place herself within a close proximity (typically a
few centimeters) of either of them to obtain useful channel estimates, which is very
unlikely to occur. Therefore, as in [48], we disregard the feasibility of eavesdropping.
Consequently, the secret key capacity for the channel gain SRP can be given by

Cg = lim
N→∞

1
N

I
(

JA
g [i];JB

g [i]
)
. (3.28)

The mutual information is defined as

I
(

JA
g [i];JB

g [i]
)
=

∑
jAg∈[−vg,0,1,vg]

∑
jBg∈[−vg,0,1,vg]

[
P
(

JA
g [i] = jA

g ,

JB
g [i] = jB

g

)
log

(
P(JA

g [i] = jA
g ,J

B
g [i] = jB

g )

P(JA
g [i] = jA

g )P(JB
g [i] = jB

g )

)]
, (3.29)
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Table 3.1 P
(
JA

g [i] = jA
g |JB

g [i] = jB
g
)

❍
❍❍❍

❍❍❍jA
g

jB
g −vg 0 1 vg

−vg po
g pe1

g pe1
g pe2

g

0 pe1
g po

g pe2
g pe1

g

1 pe1
g pe2

g po
g pe1

g

vg pe2
g pe1

g pe1
g po

g

where P
(
JA

g [i] = jA
g ,J

B
g [i] = jB

g
)

is the joint probability mass function of JA
g [i] and

JB
g [i], while P(JA

g [i] = jA
g ) and P(JB

g [i] = jB
g ) are the probability mass functions of

JA
g [i] and JB

g [i], respectively, which are defined by (3.21). P
(
JA

g [i] = jA
g ,J

B
g [i] = jB

g
)

can be given by

P
(

JA
g [i] = jA

g ,J
B
g [i] = jB

g

)
=

P
(

JA
g [i] = jA

g |JB
g [i] = jB

g

)
P(JB

g [i] = jB
g ). (3.30)

Since the two vectors JA
g [i] and JB

g [i] are highly correlated, the probability that
the entry at JB

g is identical to the entry at JA
g is high. We denote this probability

by po
g. It is defined as po

g = P
(
JA

g [i] = jB
g |JB

g [i] = jB
g
)1. The probability that an

error occurred, i.e., the entry at JB
g is different from the entry JA

g is defined as
pe

g = P
(
JA

g [i] ̸= jB
g |JB

g [i] = jB
g
)
. The error can happen in two cases. The first case

occurs if either one of the entries in SA
g , which are used to generate the entry JA

g , is
different from its counterpart in SB

g . We denote this probability by pe1
g . The second

case occurs if the two entries in SA
g are different from their counterparts in SB

g . We
denote this probability by pe2

g . The relation between the three probabilities follow
po

g > pe1
g > pe2

g at medium and high SNR levels. Based on these probabilities, we
define P

(
JA

g [i] = jA
g |JB

g [i] = jB
g
)

for all possible values of jA
g and jB

g in Table 3.1.
Similarly, the secret key capacity for the channel phase, Cph, is defined in the same
manner with the probabilities po

ph, pe1
ph and pe2

ph. We compute the values of both
channel gain and phase probabilities in Section 3.6.

1Even if the two entries of SA
g and SB

g were different and resulted in JA
g [i] = jB

g |JB
g [i] = jB

g , we still
consider that as a success since jB

g is the value that will be used to generate the secret key and it
should be equal at both Alice and Bob. However, we would like to state that having the two entries in
SA

g and SB
g different and resulting in a success shall constitute a very small percentage of po

g because
the two vectors SA

g and SB
g are highly correlated.
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Table 3.2 Simulation parameters

Parameter Value

No. of subcarriers 1024

No. of FFT point 1024

Subcarrier spacing 15 KHz

Number of pilots 16.7%=171

Cyclic prefix length 25%=256

Modulation scheme QPSK

Channel type Rayleigh

Doppler shift 100 Hz

Chan. Estimation LS

Interpolation type Linear

α -0.2

m for Level crossing 4

nq 8 bits

Number of iterations 10000

3.6 Performance Evaluation

To evaluate the performance of our technique, we simulate an entire OFDM system
and estimate the channel using the LS estimator. Table 3.2 summarizes our simulation
parameters for the subsequent figures. We simulate the conventional channel gain
and phase techniques, level crossing technique, and proposed SRP technique for
channel gain only and for channel phase only. Then we obtain the combined SRP by
concatenating bitstreams from channel gain and phase SRPs. Our combined vectors
are given by

JA
c = [JA

g [1],J
A
p [1],J

A
g [2],J

A
p [2], · · · ,JA

g [N],JA
p [N]], (3.31)

JB
c = [JB

g [1],J
B
p [1],J

B
g [2],J

B
p [2], · · · ,JB

g [N],JB
p [N]]. (3.32)

We first present an example of our generated SRP. To show the effect of our proposed
SRP technique on the BMR, we simulate all techniques up to the quantization and
bitstream generation step. For a fair comparison, the level crossing technique is
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Fig. 3.2 (a) Estimated channel gain at Alice and Bob with γA
g and γB

g at SNR = 20 dB and (b)
our estimated JA and JB.

simulated without the information reconciliation step. In other words, channel
estimates at the locations GA and GB are quantized and converted into bitstreams.
We plot the BMR for all techniques. We then compute the secret key capacity
probabilities for both channel gain and phase SRPs. Afterwards, we estimate the
entropy rate of the generated key for our techniques versus existing techniques. The
secret key length is then presented.

3.6.1 SRP

In Figure 3.2-(a), we plot the estimated channel gain at both Alice and Bob, for SNR
= 20 dB and the thresholds estimated from (3.8) and (3.9). We then follow the steps
in Section 3.3.1 to estimate JA

g and JB
g and plot them in Figure 3.2-(b). The estimated

channel gain at Alice and Bob is almost identical with some discrepancy in the value
of the gain (y-axis) due to the effect of the AWGN. Note that SNR = 20 dB can be
considered a moderately high SNR level. The effect of AWGN at lower SNR levels
is more severe as can be seen in Figure 3.3, which is simulated at SNR = 3dB. On
the other hand, since our SRP depends on the locations (x-axis), the effect of AWGN
on our channel gain SRP is tolerable. The same conclusion is drawn for the channel
phase SRP.
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Fig. 3.3 (a) Estimated channel gain at Alice and Bob with γA
g and γB

g at SNR = 3dB and (b)
our estimated JA and JB.

3.6.2 BMR

We plot the BMR between the secret keys generated at Alice and Bob for all the
techniques in Figure 3.4. Our proposed SRP techniques drastically improve the
BMR achieving a BMR that is ranging from 10-15% at low and high SNR levels to
25% at medium SNR levels less than that of the conventional channel gain and phase.
In addition to that, our proposed SRP is achieving a BMR that is ranging from 12%
at low SNR levels to 40% at medium and high SNR levels less than that of the level
crossing technique. It is worth noting that on average the worst BMR achieved is 0.5
which is equivalent to random guessing. The level crossing technique is performing
the worst; achieving the highest BMR, which indicates that the strength of the level
crossing algorithm comes from the information reconciliation step. The combined
SRP technique achieves a BMR that is average between the SRP channel gain and
phase. Also, as expected, as the SNR increases, the BMR for all techniques improves.
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Fig. 3.4 BMR as a function of SNR for our scheme vs. existing techniques.

3.6.3 Probabilities for secret key capacity

We compute the probabilities, po
g, pe1

g and pe2
g numerically in Figure 3.5 for the

channel gain SRP and po
ph, pe1

ph and pe2
ph in Figure 3.6 for the channel phase SRP for

SNR ranging from 0 to 40 dB. As expected, since JA
g [i] and JB

g [i] are highly correlated,
po

g is much higher than pe1
g and pe2

g , particularly at medium and high SNR levels. As
SNR increases, po

g increases, while pe1
g and pe2

g decrease. In addition, pe1
g > pe2

g at
medium and high SNR levels since it is more likely for one entry in Sg to change
rather than the two entries. The same result is obtained for the channel phase. Note
that po

g +2 pe1
g + pe2

g = 1. In addition po
ph > po

g at low SNR levels, which suggests
exploiting the channel phase SRP over channel gain SRP at low SNR levels should
be preferred.

3.6.4 Entropy

Entropy is a measure of the level of randomness of the generated key. For example,
for our SRP channel gain, the entropy of a secret key generated from Alice’s esti-
mated channel gain is defined as H (JA

g [i]) = log
(
1/P(JA

g [i])
)
. The average entropy

is then E[H (JA
g )]. As expected from Figure 3.2-(b), the average entropy of our

SRP secret key will be less than that of the channel gain. We plot the achieved
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Fig. 3.7 Entropy as a function of SNR for our scheme vs. existing techniques.

entropy rate of all techniques in Figure 3.7. Our entropy rate for the channel gain
is consistent with the results obtained in [58]. Our SRP channel gain and phase
exhibit less entropy than all other techniques. To address this drawback, we proposed
the combined channel gain and phase SRP algorithm, which improved the entropy
rate of the generated secret key. We sacrifice a bit of entropy (15%) to greatly
improve the BMR. Also, it is worth nothing that the combined SRP technique does
not increase the complexity of the system since both channel gain and phase can be
calculated from the channel estimates. In addition to that, it only requires a simple
concatenation operation.

The reduction in entropy resulting from our method which is associated with
significant reduction in BMR has the advantage that less exchange of messages is
needed in the subsequent phases of information reconciliation and privacy amplifi-
cations. Knowing that more exchange of messages for information reconciliation
results in more side information available to Eve, which in turn will mean less
entropy of the final key after privacy amplification [59], we can argue in a qualitative
manner that we achieve a performance very close to classical key extraction methods
in terms of final key entropy. However, in this work we are not addressing the
subsequent phases mentioned above and we stop at showing that BMR is reduced.
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Fig. 3.8 Normalized key length as a function of SNR for our scheme vs. existing techniques.

3.6.5 Key length

Figure 3.8 shows the simulated key length of all techniques normalized to the length
of the secret key generated through the conventional channel gain technique. Our
proposed SRP channel gain and phase is achieving approximately the same key
length as of that of the channel gain and phase techniques, while SRP combined
is achieving twice that length. On the contrary, the level crossing technique is
performing the worst achieving a normalized key length of 30%. This implies that
for the level crossing rate technique to achieve a reasonable key length, the frequency
of channel propping should increase which decreases the throughput of the system.

3.7 Conclusion

We designed a simple yet robust technique to extract a secret key from a secondary
random process that is derived from the channel estimates. Our SRP technique can
be applied on the channel gain only, channel phase only as well as a combination of
the two. We derived a closed form expression for the probability mass function of an
entry of the SRP vector and simulated our technique using a complete OFDM system.
Compared to existing techniques, our SRP solution provided a drastic improvement
in the BMR, and achieved comparable entropy and a much longer key length in
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the case of the combined SRPs. We computed the conditional probabilities used to
estimate the secret key capacity for both the channel gain and phase SRP. In addition,
our SRP solution is easy to implement and does not increase the complexity of the
system.



Chapter 4

Novel Common Sources of
Randomness

4.1 Introduction

In Chapter 3, we designed a novel technique to exploit channel estimates to create a
SRP with the objective of mitigating the effect of AWGN and hence increasing the
dynamic range of the SKG system. However, for low SNR levels, i.e., SNR < 0 dB,
existing SKG techniques will fail to generate a secret key with appropriate BMR.
This is mainly because channel estimation is highly affected by AWGN.

To address this latter drawback, we design a novel algorithm that exploits angle
of arrival (AoA) between the two communicating nodes. AoA estimation techniques
can accurately function even at very low SNR level. To the best of the authors’
knowledge, exploiting the AoA as a common source of randomness has not been
presented in the literature before.

Although AoA estimation techniques can operate with high accuracy at low
SNR levels, they require more hardware and computational complexity than single
antenna systems. This is mainly because AoA estimation techniques employ antenna
array systems. We start this chapter by conducting a thorough literature review on
existing AoA estimation techniques so as to determine the advantages and drawbacks
of existing techniques and decide on the appropriateness of these techniques within
the context of SKG. In Section 4.2 we design a novel AoA estimation technique that
enjoys low hardware and computational complexity, hence appropriate for SKG. In
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Section 4.3, we present our AoA based SKG technique. Some of our work in this
chapter is presented in [60] and [61].

Furthermore, we investigate fusing multiple common sources of randomness for
SKG in Section 4.4. In particular, we implement least square channel estimation
technique on WARP [62] hardware platform to estimate channel gain. In addition,
we estimate the distance between the Alice and Bob and use both channel gain and
distance measurements for SKG. This chapter is then concluded in Section 4.5.

4.1.1 Literature review on AoA estimation techniques

Angle of arrival (AoA) estimation is a process that determines the direction of ar-
rival of a received signal by processing the signal impinging on an antenna array.
Estimating the AoA is a crucial step in many military and civilian applications, partic-
ularly related to security. Applications of estimating the AoA include beamforming,
tracking [63], localization and physical layer secrecy [60].

The subject of AoA has been extensively studied in the literature [64–68]. From
a system perspective, one can categorize AoA estimation systems into two main
categories [64]: (i) Switched beam system (SBS) which uses a fixed number of
beams to scan the azimuth plane. The AoA is the angle of the beam with the highest
received signal strength (RSS). SBS is easy to implement since it requires a single
receiver radio frequency (RF) chain and no baseband signal processing, however,
it fails at low signal to noise ratio (SNR) levels, and (ii) Adaptive array system
(AAS) which can steer the beam in any desired direction using baseband signal
processing. AAS requires M receiver RF chains to estimate the AoA using baseband
processing, where M is the number of antennas. AAS can operate at SNRs lower
than SBS, but has higher hardware and computational complexities.

AoA estimation using AAS can be divided into two main techniques: (1) Clas-
sical AoA techniques based on one of two main methods: Delay and Sum, also
known as Bartlett [69] and Minimum Variance Distortionless Response (MVDR),
also known as Capon [70]. In Bartlett, the AoA is estimated by steering the beams
electronically and estimating the power spectrum of the received signal looking
for the angle(s) corresponding to peak(s) in the spatial power spectrum. The main
drawback of the Bartlett technique is that signal impinging with angular separation
less than 2π/M can not be resolved. The Capon technique relatively solves the
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angular resolution drawback of the Bartlett method at the cost of more baseband
processing to perform matrix inversion [70], and (2) Subspace techniques based on
the concept of orthogonality of signal subspace to noise subspace. The most widely
investigated method in this group is multiple signal classification (MUSIC) [71, 72].
MUSIC provides high angular resolution while operating at low SNR levels. This
comes at the cost of requiring full a priori knowledge of the number of sources
and the array response, whether measured and stored or computed analytically [73].
The signal and noise subspaces are distinguished through an eigen decomposition
operation on the covariance matrix of the received signal. This operation requires a
substantial computational complexity. Another technique that is subspace based is
the Estimation of Signal Parameters via Rotational Invariant Technique (ESPRIT)
[74, 75]. Although ESPRIT has lower computational complexity relative to the
MUSIC technique since it does not require a sweeping through all possible array
response, it puts a constraint on the structure of the antenna array. ESPRIT requires
that the antenna element to be clustered in doublet with identical displacement vector.

Recent publications [76, 77] exploit the newly developed concept of co-prime
arrays to estimate the AoA. In addition, Kalman filtering is used in [78] in the first
stage to estimate the sources, while QR decomposition is needed in the second
stage to estimate the AoA. Although Kalman filter based techniques may have lower
computational complexity than MUSIC, they have high computational and hardware
complexity when compared to SBS.

Due to its attractive simplicity, several attempts have been performed to integrate
SBS with other theories to estimate the AoA as presented in [79]. Their methodology
is based on neural network, in which the AoA problem is transferred into a mapping
problem. This requires a priori knowledge of the number of sources as well as the
multiple access scheme adopted between them. It is also assumed that a power control
scheme is implemented such that the source powers are equal. Such requirements and
assumptions limit the deployment of the system to very few scenarios. Exploiting
the power ratio between adjacent beams to estimate the AoA is presented in [80]. A
table driven SBS system is presented in [81]. All of these variant techniques do not
tackle the drawbacks of the conventional SBS, but rather make its implementation
easier. In [82, 83] exploit sectorized antennas along to improve the performance of
SBS.
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4.2 Novel AoA Estimation Technique

We design a new simple AoA estimation system to estimate the AoA. Our system
goes through two phases of operation. In the first phase, we select a single antenna
element from the antenna array, while the rest of antenna elements are switched
off, to collect an omni-directional signal. In the second phase our system switches
the beam across the azimuth angular domain of interest. The received signal from
each beam is then cross correlated with the omni-directional signal collected earlier
in the first phase. The cross correlation between the omni-directional signal and
the signals received from the switched beams is the highest at the true AoA and
relatively negligible otherwise. Our contributions in this work as compared to
available literature are as follows:

• We design an intuitive, novel, low complexity and hardware friendly two-phase
cross correlation based AoA estimation system that is based on SBS to detect
the angles of transmitters.

• We provide the mathematical modelling and analysis of our proposed system.

• We address some practical aspects related to our proposed system.

• We compare the performance of the proposed system with the MUSIC algo-
rithm (famous for being one of the best performing state-of-the-art for low
SNR) and show that our proposed solution performs better, particularly for
low SNRs.

• We also compare the computational complexity of our approach with MU-
SIC and conclude that our approach has lower hardware and computational
complexities.

Since our system is based on beam switching, it requires a single receiver which
reduces the hardware complexity tremendously. Also, the computational complex-
ity of estimating the cross correlation coefficient is so trivial when compared to
estimating the eigen decomposition of the autocovariance function used in MUSIC.
At the same time, our proposed system can estimate the AoA at low SNR levels
which is very convenient for the application of SKG at low SNR levels. To the
best of the authors’ knowledge using the cross correlation coefficient between an
omni-directional signal and directed beam signal to estimate the AoA has not been



48 Novel Common Sources of Randomness

presented in the literature before. It is worth noting that our system can be used for
generic AoA estimation and not limited to the application of SKG.

The concept of using the cross-correlation function to extract features of a signal,
or to detect its presence, can be found in many applications. One of the most relevant
applications is passive radar systems [84, 85], which exploit the transmitters of
opportunity, such as television signals, to detect an airborne target. In passive radar
systems, a cross correlation between a reference signal from the first receiver and a
directional signal from the second is applied to estimate bistatic range and doppler
shift of the target. The AoA has to be estimated before that at the second receiver to
place a null in the direction of the reference signal [84, 85] such that the received
directional signal is the reflection from the airborne target.

4.2.1 System model for AoA estimation

In our system model, we assume that the transmitter sends a signal s(t). The receiver
at the other node is equipped with an SBS presented in Figure 4.1 consisting of M
antenna elements, separated by a fixed separation d and operating at frequency f .
Our antenna array has an array response vector (steering vector) a(φ) ∈CM given by

a(φk) = [wk1,wk2, ...,wkM], (4.1)

where φ is the azimuth angle, C is the set of complex numbers and wkm for m∈ [1 : M]

are the weights applied across the antenna array elements such that the steering vector
a(φ) is pointing to an azimuth angle φk. The received and sampled signal, x[n], in
the vector notation for the kth beam, xk, is

xk = a(φk)S+v, (4.2)

where xk (with dimensions 1×N) is the signal received from the kth beam (beam
pointing at angle φk) for k ∈ [1 : K], K is the total number of generated beams, N is
the total number of collected samples, S is the sampled version of the transmitted
signal (with dimensions M×N) as seen by the M elements of the antenna array and
v is the additive white Gaussian noise (AWGN) (with dimensions 1×N).

The weights are updated to change φk in order to scan the angular space of
interest. The steering vectors, a(φ), for linear, circular or planar array formations
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can be calculated analytically. It is worth noting that once the steering vector is set,
the operation of our proposed system is independent of the antenna array formation.
For a uniform linear array (ULA) with uniform excitation, a(φ) is given by [64]:

a(φ) =
[
1,e jβdcos(φ),e jβ2dcos(φ), ...,e jβ (M−1)dcos(φ)

]
, (4.3)

where β = 2π

λ
is the wave number, λ is the wavelength and φ ranges between [0 : π].

For a uniform circular array (UCA), a(φ), is given by [64]:

a(φ) = [e jβ r cos(φ−φ1),e jβ r cos(φ−φ2),

· · · ,e jβ r cos(φ−φM)], (4.4)

where φm = 2πm/M,m ∈ [1 : M], φ ranges between [0 : 2π] and r is the radius of
the antenna array. The elevation angle is assumed to be 90 degrees in 1-D AoA
estimation techniques. For a linear array of M elements with uniform excitation, the
total number of orthogonal beams that can be generated is M, i.e., K = M. However,
using non-uniform excitation such as Dolph-Chebyshev or Taylor [86], it is possible
to generate more orthogonal beams for the same number of antenna elements, M,
i.e., K > M, as will be discussed later.

We assume that the our scanning time is much less than the time it takes the
transmitter to move from one location to the next. In addition, we assume that
the transmitter continues to transmit highly correlated signal during our scanning
time. This can be safely assumed since the scanning time should not exceed few
milliseconds.

4.2.2 Review of MUSIC algorithm

Since we compare our results to the MUSIC algorithm, a brief derivation follows
for completeness. We chose to compare our results to MUSIC for two main reasons.
The first is that MUSIC is one of literature’s best performing AoA estimation
algorithms [87, 88]. In addition, MUSIC is one of the most popular AoA estimation
algorithms. MUSIC requires M receiver RF chains to down convert the received
signals from the M antenna elements to the baseband in order to estimate the AoA.
Hence, the definition and dimensions of the transmitted signal matrix is different
than our SBS system above. The received signal, X, is a matrix with dimensions
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M ×N. The MUSIC algorithm operates on the autocovariance function of the
received signal matrix X, with dimensions M ×N, which is denoted by RXX . Let
A = [aT (φ1), · · · ,aT (φL)], with dimensions M ×L, and (.)T denotes the transpose
operation. Also, let s(t) = [s1(t), · · · ,sL(t)]T . We have [87]

X = AS+V, (4.5)

where S and V have dimensions of L×N and M×N, respectively. After an eigen-
value decomposition (EVD) on RXX , it can be written as [87]

RXX = ARSSAH +σ
2I

= USΛSUH
S +UV ΛV UH

V , (4.6)

where RSS is the autocovariance matrix of the transmitted signal, σ2 is the noise
variance, (.)H denotes the hermitian operation, I is the M×M unitary matrix, US and
UV are the signal and noise subspaces unitary matrices and ΛS and ΛV are diagonal
matrices of the eigenvalues of the signal and noise. The spatial power spectrum for
the MUSIC technique is given by [71, 89]:

PMUSIC(φ) =
1

aH(φ)PV a(φ)
, (4.7)

where PV =UVUH
V . For MUSIC, number of sources is a prerequisite. If the number

of sources is not known a priori, it should be estimated prior to AoA estimation and
fed to MUSIC.

4.2.3 Cross-correlation switched beam system (XSBS)

The existing high performance AoA estimation techniques either have a low reso-
lution problem or require extensive computational complexity to estimate the AoA.
Moreover, they require M receivers to implement the AoA estimation technique
which increases the hardware complexity tremendously. On the other hand, although
conventional SBSs have low hardware and computational complexities, they fail to
operate at medium and low SNR levels.

We propose a novel cross-correlation based SBS (XSBS) AoA estimation tech-
nique. Our XSBS benefits from the low hardware complexity of the conventional
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SBS, which requires a single receiver, yet does not sacrifice the resolution or per-
formance at medium and low SNR levels. Moreover, our XSBS requires low com-
putational complexity to estimate the AoA since it is based on estimating the cross
correlation between two collected one dimensional vector of samples. With such
low hardware and computational complexity, our XSBS will consume less power
which will be very beneficial, particularly, if implemented on a portable device.
Furthermore, XSBS requires neither prior information on the number of the sources
nor the sources to be uncorrelated.

Our XSBS can be implemented within the conventional AoA estimation paradigm,
where a receiver tries to estimate the AoA of a transmitter that is trying to commu-
nicate with. However, our XSBS can be very advantageous within the paradigm of
SKG. In this case, sequence of AoAs are estimated at Alice and Bob to be used as a
common source of randomness.

In the following, we provide a detailed description of the operation of our
proposed XSBS alongside the corresponding basic mathematical modelling of the
system.

4.2.4 XSBS design

XSBS goes through two phases to estimate the AoA as follows.

• Phase I: the Weights Unit depicted in Fig. 4.1 controls the RF switches such
a single antenna element is turned on, while the remaining antenna elements
are switched off. In the selected antenna element branch, the applied weight
is unity gain and zero phase shift. Assuming approximate omni-directional
pattern for individual antenna elements, XSBS then acquires N samples to
collect the signal xo.

• Phase II: In this phase the omni-directional signal collected in the first phase,
i.e., xo, becomes our reference signal. The Weights Unit sends the sets of
weights a(φk), for k ∈ [1 : K]. The set a(φk) steers the main beam of the
antenna array to the direction φk. XSBS then acquires N samples to collect
the signal xk. A cross correlation operation between our reference signal xo

and the kth beam signal is applied. The cross correlation coefficient (Rko) is
calculated for K beams. The AoA is the index φ̂k with the highest Rko.
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4.2.5 Cross correlation estimation

In the second phase of estimating the AoA, XSBS cross correlates the omni-
directional reference signal, xo = [xo[1], · · · ,xo[n], · · · ,xo[N]], with the directed beam
signals, xk = [xk[1], · · · ,xk[n], · · · ,xk[N]], for k ∈ [1 : K] through the region of interest
as in (4.2). The cross correlation coefficient between the reference signal and the kth

signal is given by

Rko =
1
N

(
xk xH

o

)
. (4.8)

The cross correlation between the omni-directional reference signal and the signals
received from the switched beams is the highest at the true AoA and relatively
negligible otherwise. To show that, we provide the derivation below. The received
signal from the kth beam if k is the true AoA is

xTr
k [n] = Gks[n+ τ]+ v[n+ τ], (4.9)

where Gk is the directive antenna array gain and τ is a random time shift. The
received signal from the kth beam if k is not the true AoA is xF

k [n] = v[n+ τ]. The
cross correlation function in the case of the true AoA, RTr

ko , can be written as

RTr
ko =

1
N

N

∑
n=1

xTr
k [n] xH

o [n]

=
1
N

N

∑
n=1

[
(Gk s[n+ τ]+ v[n+ τ])

(
Go sH [n]+ vH [n]

)]
=

GoGk

N

N

∑
n=1

s[n+ τ] sH [n]+
Gk

N

N

∑
n=1

s[n+ τ] vH [n]

+
Go

N

N

∑
n=1

v[n+ τ] sH [n]+
1
N

N

∑
n=1

v[n+ τ] vH [n]. (4.10)
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The cross correlation function in the case that k is not the true AoA, RF
ko, can be

written as

RF
ko =

1
N

N

∑
n=1

xF
k [n]x

H
o [n]

=
1
N

N

∑
n=1

(v[n+ τ])
(
Go sH [n]+ vH [n]

)
=

Go

N

N

∑
n=1

v[n+ τ] sH [n]+
1
N

N

∑
n=1

v[n+ τ] vH [n]. (4.11)

With Rss being the autocorrelation function of s[n], Rsv the cross correlation between
s[n] and v[n], and s[n] and v[n] are stationary processes, (4.10) can be written as

RTr
ko = GoGk Rss[τ]+Gk Rsv[τ]+Go Rvs[τ]+σ

2, (4.12)

where σ2 is the noise variance. (4.11) can be written as

RF
ko = GoRvs[τ]+σ

2. (4.13)

Since s(t) and v(t) are uncorrelated, Rsv and Rvs can be considered negligible. Con-
sequently, (4.12) and (4.13) reduce to:

RTr
ko = GoGkRss[τ]+σ

2, (4.14)

RF
ko = σ

2. (4.15)

From (4.14) and (4.15), one can see that RTr
ko > RF

ko. As the transmitted power
increases, RTr

ko ≫ RF
ko.

4.2.6 Addressing practical aspects

In this section, we address some practical aspects of our proposed XSBS. We start by
presenting a schematic of XSBS, which details the required components needed to
implement XSBS. Then, we proceed to discuss incorporating non-uniform excitation
in order to increase the total number of orthogonal generated beams.
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Fig. 4.2 Schematic of proposed XSBS.

Schematic of XSBS

Fig. 4.2 shows the schematic of XSBS. Each antenna is connected to an RF switch,
attenuator and phase shifter. Signals from all antenna branches are combined using
an RF combiner/divider. A receiver circuitry is then followed to down-convert
the collected signal into baseband in order to be processed by the digital signal
processing (DSP) unit, which triggers the weights unit to send the pre-calculated
weights to the attenuators and phase shifters in order to steer the main beam of the
antenna array. The RF switches are added, primarily, because of Phase I of XSBS
operation. During this phase, the omni-directional signal, xo, should be collected
from a single antenna branch. RF switches are used to turn on the selected branch
and turn off the unwanted ones. This minimizes the leaked signal from the unwanted
branches, which could be leaked through the attenuators and phase shifters. During
Phase II of XSBS operation, all the RF switches are turned on.

Number of generated orthogonal beams

Orthogonal beams indicate that the peak of the current beam is located at a minima of
the two adjacent beams. Hence, when collecting a signal from one beam (assuming
a signal is impinging from the direction of the peak), no signal is leaked from its
adjacent ones. M is a key factor in determining the resolution of our XSBS. The
higher the number of antenna elements, the smaller the half power beam width
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(HPBW) of the antenna array beam. Hence, our AoA location grid (assuming
orthogonal beams) can become finer and finer, i.e., covering more and more locations
as required. A smaller HPBW leads to a better resolution. It is possible to generate
as many non-orthogonal beams as possible. For example, for ULA, it is possible
to generate 180 beams. However, this approach will increase the scanning time
significantly. When using orthogonal beams, the signal impinging on directions that
are not the peak location, will be detected by two adjacent beams with different
powers. We will show in Sec 4.2.7, that by simply using weighted average, we can
detect all AoAs with almost same accuracy. In weighted average the two adjacent
peaks are compared and if for example, they are approximately equal, then the signal
is impinging at a direction, which is the mid-angle between the two adjacent peaks.
On the contrary, a higher M will increase the hardware complexity of XSBS since
they will require more weight adjustment components.

Using a non-uniform excitation such as Dolph-Chebyshev excitation, it is possible
to generate more orthogonal beams using the same M antenna elements. In this case,
for ULA , the array response vector a(φ) is defined by the Chebyshev polynomial of
degree M−1, TM−1(y), in the scaled variable y as [86]:

a(φ) = TM−1(y), y = y0 cos
(

βd cos(φ)
2

)
. (4.16)

The scale factor, y0, is estimated as y0 = cosh
(

cosh−1(R)
M−1

)
, where cosh−1(.) is the

inverse hyperbolic cosine function, R is the main lobe to side lobe ratio. The elements
of the weight vector a(φk) for a fixed k and m ∈ [1 : M] can be calculated by creating
the z-transform of the array response factor from its zeros and then applying an
inverse z-transform. The M−1 zeros of TM−1(y) are [86]:

yi = cos
(
(i−1/2)π

M−1

)
, for i = 1,2, ...,M−1. (4.17)

Let ψ = βd cos(φ), the pattern zeros are [86]:

ψi = 2 cos−1
(

yi

y0

)
, Zi = 2exp [ jψi], (4.18)
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where cos−1(.) is the inverse cosine function, j =
√
−1. The z-transform of the array

factor, A(Z), is then [86]:

A(Z) = Z−(M−1)/2
M−1

∏
i=1

(Z −Zi). (4.19)

The coefficients, ac of dimension 1×M, of the inverse z-transform of A(Z) are the
weight vector , which is steered towards φk to generate a(φk) by ψk = βd cosφk, then
a(φk) = ac exp[ j ∗ψk].

Sequential vs. binary search

XSBS sequentially scans the angular region of interest to collect K directed signals.
XSBS then estimates the cross correlation coefficient for the K beams. This sequen-
tial search for the highest peak leads to a longer operation time to detect the AoA.
Therefore, quick estimation of the AoA is a key parameter in a efficient AoA system.
We propose to use binary search for the peak location rather than sequential, which
has two benefits. In binary peak location search, the angular region of interest is
divided into two equal regions. The cross correlation coefficient is estimated for the
two signals collected from the two regions. The half with the higher cross correlation
coefficient is then divided into two equal halves and so on. To do so, the Weights
Unit adjust the weights accordingly. A subset of the antenna array can be used to
achieve this target since lower number of antenna array elements leads to higher
HPBW. The rest of the antenna array elements will be switched off using the RF
switches. The first benefit of binary search is that it reduces the number of cross
correlation estimation from K to log2 K. For example, for our simulation below with
K = 32 beams, binary peak search requires the estimation of only 5 beams rather
than 32 as in the case of sequential search. The second benefit is that it significantly
increases the main lobe to side lobe ratio (R) such that almost no signal is leaked
through a side lobe. We start by high HPBW and then reduce it as we get closer to
the target. With high HPBW required, the main lobe to side lobe ratio can be very
high.
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RF receiver architecture

As we stated earlier, unlike MUSIC, which requires M RF receivers, XSBS requires
a single RF receiver to down convert the signal to the baseband. With appropriate
selection of the receiver architecture, it is possible to improve the estimation accuracy
and the noise floor. There exists several receiver architectures including heterodyne
and direct conversion receivers. One main drawback of heterodyne receivers is the
well known image frequency issue [90]. Typically, the mixing operation is followed
by a filter to get rid off the image. However, in order to reduce the image noise,
we can either increase the intermediate frequency in order for the filter to apply
more attenuation on the image or tolerate more loss in the filter. On the other hand,
direct conversion receiver architecture have several advantages over heterodyne
architecture such as simplified hardware design, higher power efficiency and lower
cost [91]. Therefore, configurable direct conversion receiver architecture could
be advantageous within the context of hiding transmitters due to it is low power
consumption and improved noise floor.

4.2.7 Performance evaluation of XSBS

First we present results for XSBS’s angular resolution. XSBS AoA estimation
performance is then compared to MUSIC in terms of peak to floor ratio (PFR), root
mean square error (RMSE) and 3-dB success rate for single transmitter case. We then
compare the spatial resolution and RMSE of XSBS and MUSIC for two transmitters.

XSBS practical aspects

We start by analyzing the resolution of XSBS; we plot the steered antenna array beam
for M = 17, separation d = 0.5λ , R = 15 dB, with Dolph-Chebyshev non-uniform
excitation in Fig. 4.3. The achieved HPBW is approximately 6 degrees with a total of
K = 32 orthogonal beams scanning the 180 degrees1. As M increases, the resolution
of XSBS improves since the HPBW decreases.

1Fig. 4.3 is plotted using the MATLAB toolbox of [86].
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Fig. 4.3 Beam switching antenna array for M = 17 with Dolph-Chebychev excitation, R = 15
dB and d = 0.5λ with a total of 32 orthogonal beams with HBPW = 6 degrees.

XSBS AoA estimation

In the following we evaluate the performance of XSBS AoA estimation with respect
to different aspects. We present the PFR as an intuition that XSBS can correctly
estimate the true AoA. We compare RMSE and 3-dB success rate of XSBS. We show
how XSBS performs when two sources are impinging on the antenna array. The
simulation settings in the subsequent figures is as follows. We simulate XSBS with
linear antenna array with Dolph-Chebyshev excitation using M = 17. MUSIC uses
uniform linear antenna array with M = 16. We plot the normalized cross correlation
coefficient (4.8) to represent the spatial power, versus the azimuth angle φ . We
assume strong line of sight with block fading (i.e channel is almost constant during
the whole processing time).

As we stated in the System Model, we can safely assume that the transmitter
continues to transmit a highly coherent signal during the scanning time of XSBS.
For example, for a number of beams K = 32 and if we collect N = 1000 samples
from each direction and for a sampling frequency of 5 MHz, the total scanning time
is 6.4 milliseconds. Moreover, we proposed binary search approach that reduces the
number of required scans from K to log2 k . For the provided example, the number
of scans reduces to 5, which reduces our scanning time to 1 millisecond.
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Fig. 4.4 PFR for XSBS vs. MUSIC for single run (top) and average of 1000 iterations
(bottom) at SNR = -10 dB for different number of samples (a) N = 100, (b) N = 1000 and
(c) N = 2000 samples.

Peak to floor ratio

In Fig. 4.4, we simulate XSBS and MUSIC at SNR = -10 dB for N = 100, 1000
and 2000 samples for a signal with arriving angle φk = 90◦ for a single run (top)
and an average of 1000 iteration (bottom). It is shown that XSBS can accurately
determine the correct AoA by having the highest peak at the location of the incident
angle. Increasing the number of samples improves the performance of XSBS. XSBS
achieves PFR = 8 dB, 15 dB and 17 dB for N = 100, 1000 and 2000 samples,
respectively. MUSIC has a higher PFR achieving PFR = 10 dB, 18 dB and 22 dB for
N = 100, 1000 and 2000 samples, respectively.
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Fig. 4.5 Effect of main lobe to side lobe ratio on the performance of XSBS for N = 1000
samples at SNR = -10 dB (a)R = 15 dB, (b) R = 25 dB and (c)R = 30 dB .

Effect of main lobe to side lobe ratio

As we stated earlier, the main lobe to side lobe ratio (R) is a design parameter. When
using binary search, we start by high HPBW, for which it is possible for R to be very
high such that the signal is received through the main lobe only. However, as we
get closer to the location of the incident angle, we must reduce the HPBW of the
main lobe, which results in signal getting leaked through a side lobe. This mainly
occurs during the last cross-correlation estimation step. In Fig. 4.5, we simulate the
scenario of the last binary search step for different values of R = 15,25 and 30 dB.
The results are the average of 10000 iterations. The true AoA is 90◦ and a signal is
leaked through a side lobe directed at 108◦. Even in the worst case scenario, i.e.,
R = 15 dB, XSBS still can correctly estimate the correct AoA with approximately
8 dB difference between the correct peak and the peak caused due to the side lobe
issue.

RMSE versus incident angle

In Fig. 4.6, we plot the RMSE of XSBS and MUSIC for N = 100 samples at SNR =
−10 dB with the incident angle spanning the 180◦. This shows that aside from the
poor performance towards the sides of the antenna array, which is common behavior
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Fig. 4.6 RMSE versus incident AoA for N = 100 samples at SNR = -10 dB.

between XSBS and MUSIC, the performance of XSBS is consistent regardless of
the location of the incident angle.

In Fig. 4.7, we plot the RMSE for XSBS when the transmitter signal is impinging
at angles 85◦, 86◦, 87◦, 88◦, 89◦ and 90◦ versus SNR for N = 100 samples. The
received signal is received by the two adjacent orthogonal beams at 84◦ and 90◦.
As can be seen by comparing the peaks at the two adjacent beams, we can get very
comparable performance for any received AoA using weighted average.

Performance for a single transmitter

Fig. 4.8 depicts the RMSE of XSBS and MUSIC versus SNR (in steps of 2 dB) for
different number of samples. XSBS achieves a comparable RMSE to MUSIC with
approximately 2 dB performance gap in favor of MUSIC. For example, for N = 1000
samples XSBS requires SNR >−16 dB to achieve RMSE of approximately zero,
while MUSIC requires SNR >−18.

Fig. 4.9 presents the 3-dB success rate versus SNR for XSBS and MUSIC for
different number of samples. The 3-dB success rate is defined as the rate at which
the estimated angle is the correct angle with the difference between the first peak
(success) and the following peak (false) is at least 3 dB. The 3-dB difference between
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Fig. 4.9 3-dB success rate for XSBS and MUSIC vs. SNR for different number of samples
for single transmitter.

the correct peak and the false peak ensures that the AoA estimation process can be
performed efficiently with lower probability of error. On the contrary of the RMSE,
XSBS outperforms MUSIC with respect to the 3-dB success rate. This indicates that
if the threshold is set at 3-dB level, XSBS will have lower probability of error than
MUSIC.

Performance for two transmitters

We evaluate the performance of XSBS versus MUSIC when two signals are imping-
ing on the antenna array. The two sources for MUSIC are uncorrelated while we use
un-coherent signals for the two sources for XSBS. In Fig. 4.10, we plot the RMSE
for XSBS and MUSIC for two sources versus SNR for different number of samples.
The degradation in performance for MUSIC and XBSS due to the second source is
approximately 2 dB.

In Fig. 4.11, we compare the multi-source resolution of XSBS to the multi-source
resolution of MUSIC. It is shown that the resolution of MUSIC highly depends on
the received SNR and number of samples while for XSBS, it depends mainly on
the HPBW of the main lobe, which is determined based on the number of antenna
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Fig. 4.10 RMSE XSBS vs. MUSIC for two sources at angles φ1 = 90◦ and φ2 = 114◦ using
N = 1000 samples for: (a) SNR = -10 dB and (b) SNR = -20 dB.

elements M and the type of excitation. For example for N = 1000 samples, the
resolution of MUSIC is about 8◦, while the resolution of XSBS is 12◦.

4.2.8 Complexity comparison

Table 4.1 Comparison between MUSIC and XSBS

Item MUSIC XSBS
Number of receivers M 1
EVD Yes No
Number of sources Must be known a priori Not needed
Correlation between
sources

Must be uncorrelated Works for both corre-
lated and uncorrelated

Maximum number of
sources

M−1 K

Computational Com-
plexity

O
(
M2N +M3 + JM

)
O (MN)

Complexity analysis provides a qualitative measure of system power consumption
as well as real-time processing abilities both on software and hardware subsystems
which are critical in dynamic environment such as battlefield.
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Fig. 4.11 Resolution of MUSIC vs. XSBS for different number of samples at SNR = -15 dB.

For MUSIC, there are three major computational steps needed to estimate the
AoA. The first one is the autocovariance function, which requires multiplication
of two matrices with sizes M×N and N ×M. The exact number of floating-point
operations (flops) needed for this matrix multiplication is M2(2N − 1). The com-
plexity of the first step is O

(
M2N

)
. The second step is the EVD operation, which

has a complexity of O
(
M3) [92]. The third step is obtaining the spatial pseudo-

spectrum, which has a complexity of O (JM) [89], with J being the number of
spectral points of the total angular field of view. Therefore, the complexity of MU-
SIC is given by O

(
M2N +M3 + JM

)
. In [92], the complexity of MUSIC is given by

O
(
M2N +M2P

)
, with P being the number of potential AoAs. In [93], the EVD is

simplified using the fast decomposition technique [94], which reduces the complexity
of MUSIC to O

(
M2P+M(M−P)J+(M−P)J

)
.

For XSBS, (4.8) is applied on two vectors each has a dimension of 1×N. The
vector multiplication in (4.8) for each k ∈ [1 : K] requires N multiplications and N−1
additions. Therefore, for K beams, the exact number of flops is K(2N −1). Hence,
the complexity of XSBS is O (KN). For non uniform excitation, K ≈ 2M, which
reduces the complexity to O (MN). Consequently, the computational complexity of
XSBS is considerably less than the complexity needed in the first step of MUSIC
only. In Table 4.1, we present a comparison between XSBS AoA estimation and
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MUSIC in terms of different criteria. It is clear that XSBS has lower hardware and
computational complexities and less stringent requirements than MUSIC.

4.3 Secret Key Generation Based on AoA

To generate a secret key based on AoA, the estimated AoA has to be common at
both Alice and Bob. In other words, both Alice and Bob estimate the same AoA.
To do so, Both Alice and Bob agree only once on a selected reference, let it be the
North, along with a rotation direction, let it be Clockwise as shown in Fig. 4.12 (a).
In this case, the estimated AoA at Alice φ1 is:

φ1 = φc, (4.20)

where φc is the common AoA and the estimated AoA at Bob φ2 is:

φ2 = φc +π (4.21)

Therefore, Bob estimates the common AoA, simply, by subtracting π from its
estimated AoA φ2. Another approach is that Alice uses the selected reference, let
it be the North and Bob uses the opposite reference which is in this case the South.
The rotation direction for Both is still the same, let it be Clockwise. As shown in Fig.
4.12 (b), the estimated AoAs are:

φ1 = φ2 = φc. (4.22)

Once Alice and Bob have agreed on the reference direction, they start collecting
sequences of the AoA. They then use Algorithm 2 to extract the secret key from
these sequences. Algorithm 2 follows same steps for SKG except at the beginning
from lines 1 to 5, where Alice and Bob agree on the reference and rotation direction
and then estimate the AoA sequence. Note that since estimation error as well as the
effect of AWGN is minimal on the estimated AoA, at SNR > 0 dB, it is possible not
to use the information reconciliation and the privacy amplification steps.
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Fig. 4.12 AoA estimation reference: (a) Both have the same reference, let it be the North and
(b) Alice has the reference as the North and Bob has the reference as the South.

Algorithm 2 Secret key generation algorithm exploiting AoA.
1: Step 0: Initialization
2: Alice and Bob agree on the reference and the rotation direction from which they

estimate the AoA.
3: Step 1: AoA Estimation
4: Alice and Bob estimate the common source(s) of randomness, φc, or φc and θc,

each using its implemented technique.
5: Step 2: Uniform Quantization & Encoding
6: Alice and Bob quantize the φc or φc and θc using nquan bits to convert the decimal

values into bits.
7: Alice and Bob encode each uniformly quantized value with multiple values

nencod .
8: Step 5: Information Reconciliation (Optional for very low SNR)
9: Alice and Bob permute the bit stream and divide them into small blocks.

10: Alice sends the permutation and parities to Bob.
11: Bob compares the received parity information with his.
12: In case of mismatch, Bob corrects his bits accordingly.
13: Step 6: Privacy Amplification (Optional for very low SNR)
14: Alice sends the number of the hash function to Bob.
15: Alice and Bob apply the hash function to the bit stream.
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Table 4.2 RMSE for MUSIC vs. XSBS for different number of samples.

SNR (dB)
RMSE (degrees)

N= 100 N= 1000 N= 2000
MUSIC XSBS MUSIC XSBS MUSIC XSBS

-0 0 0 0 0 0 0
-5 0 0 0 0 0 0

-10 0 0 0 0 0 0
-15 11 19 0 0 0 0
-20 34 42 9 17 1 5

4.3.1 Performance evaluation for AoA SKG

Fig. 4.8 presents the RMSE for both the MUSIC as well as the XSBS versus SNR
for different number of samples. Table 4.2 summarizes the RMSE values for both
MUSIC and XSBS for different number of samples at different SNR values. From
Table 4.2, one can see that both the MUSIC and the XSBS have a low RMSE at low
SNR levels.

We use the estimated RMSE to generate random angles and use them as the seed
to generate the secret key. We compare the BMR of the generated keys based on
AoA with the BMR of the most commonly used physical layer characteristics which
are the channel gain and phase. For a fair comparison between the different common
sources of randomness, we first scale the sequence of information collected to the
same scaling level such that all common sources of randomness used below, i.e.,
channel gain, channel phase and AoA fluctuate within the same levels.

4.3.2 MUSIC vs. XSBS

In Fig. 4.13 we compare the performance of the MUSIC algorithm versus the XSBS
in generating the secret key. It can be seen that the algorithm based on MUSIC
outperforms XSBS based algorithm, which was expected since the RMSE for the
XSBS is slightly higher than that for the MUSIC. Both MUSIC and XSBS based
SKG algorithms can operate without the need for information reconciliation and
privacy amplification steps and using a low number of samples (N = 100 samples)
for SNR 10 > dB. This is a significant improvement in SKG techniques since non of
the existing channel based algorithms can operate with an acceptable BMR at such
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Fig. 4.13 BMR for MUSIC and XSBS vs. SNR for different number of samples.

low SNR levels. In fact, most existing SKG algorithms assume an operation SNR
range that higher than 15 dB.

4.3.3 Effect of number of quantization bits

In Fig. 4.14, we compare the BMR of our XSBS based AoA SKG algorithm
to channel gain and phase based algorithms up to the quantization and encoding
steps versus SNR for different number of quantization bits. As can be seen, our
AoA based SKG algorithm has significantly improved the BMR. In fact, channel
gain and phase based SKG cannot operate at such low SNR range. In addition,
another advantage of our AoA based SKG algorithm is that it removes the need
for information reconciliation and privacy amplification steps making it suitable for
applications that require a quicker key generation time.

It is shown from Fig. 4.14 that as the number of quantization bits increases, the
performance of our algorithm slightly deteriorates. This is expected since as the
number of quantization bits increases, more levels are added. Therefore a smaller
mismatch or error between the estimated AoAs will lead to more mismatched bit.
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Fig. 4.14 BMR for the AoA based algorithm vs. channel based for (a) nq = 6 and (b) nq = 7
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4.4 Secret Key Generation Based on Channel and Dis-
tance Measurements

In this section, we investigate the possibility of fusing multiple common sources of
randomness for SKG. In particular, we exploit channel gain and distance between
the two communicating nodes. We implement channel gain and distance estimation
techniques on WARP hardware platform.

4.4.1 Channel gain measurements

As stated earlier, the channel gain is the most common channel characteristic to
generate the secret key. The received signal by Alice and Bob can be given by:

yA = x(t)h(t)+nA(t) (4.23)

yB = x(t)h(t)+nB(t) (4.24)

where x(t) is the transmitted signal, h(t) is the channel and nA(t) and nB(t) are
AWGN at Alice and Bob’s receivers, respectively. Then the estimated channel gain
|ĥ(t)| by Alice and Bob’s receiver are:

|ĥA(t)|= |h(t)|+ zA(t) (4.25)

|ĥB(t)|= |h(t)|+ zB(t) (4.26)

Where zA(t) and zB(t) are noise in estimation of |h(t)| at Alice (A) and Bob (B),
respectively. |ĥA(t)| and |ĥB(t)| are highly correlated. Since Eve listens to all the
communication between Alice and Bob, the received signal at Eve’s receiver for
both signals can be given by:

yA
E = x(t)|hA

E(t)|+nE(t) (4.27)

yB
E = x(t)|hB

E(t)|+nE(t) (4.28)

where |hA
E(t)|and |hB

E(t)| are the channel gains between Alice and Eve (E); and
Bob and Eve, respectively. Since it is assumed that Eve can not be less than half
wavelength near from either Alice or Bob, |hA

E(t)| and |hB
E(t)| are independent from

|ĥA(t)| and |ĥB(t)|.
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Fig. 4.15 Experimental Setup for the channel gain estimation

We implement channel gain estimation on an FPGA based WARP kits [62]. We
use three WARP nodes in our scenario, one is set as the transmitter (Tx), Alice, the
second as the intended receiver (Rx), Bob, and the third as the eavesdropper receiver,
Eve. Each WARP node has two RF daughter cards that operate as a transceiver in
the WiFi band. Figure 4.15 shows our experimental setup after programming the
FPGA on the three nodes. Without loss of generality, we implement our algorithm
in an indoor non-line of sight indoor environment. In other words, our algorithm
can be implemented in any other environment whether its an indoor or outdoor, line
of sight or non-line of sight. The Rx node and the eavesdropper node were placed
on the corners of the lab while Tx node was at the back of the lab. The separation
between the Rx and the eavesdropper was much larger than half the wavelength to
avoid channel gain correlation. We estimated the channel gain for both the Alice-Eve
channel as well as the Alice-Eve channel. Figure 4.16 shows the channel gain and
phase for the two channels for 200 samples.

4.4.2 Distance estimation based On RSS measurements

Most of the currently deployed radios are equipped with RSS estimation circuitry.
If the Tx-Rx radio propagation model is known, RSS can be used to estimate the
distance between the two communicating node, Alice and Bob. Also distance
estimation based on RSS readings does not require additional hardware for time
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synchronization such as the TOA based algorithms. The RSS readings measured by
Eve can determine the distance between itself and between either Alice or Bob. Eve
can only estimate the distance between Alice and Bob if Eve’s radio is equipped with
AoA estimation system. In this case, given the two angles between Eve and Alice,
and Eve and Bob and the two distances, Eve can estimate the distance between Alice
and Bob.

Unlike the free space propagation model and the two ray ground model, the log
distance path loss model is a more general model that can be used for both indoor
and outdoor environments. The log distance path loss model is given by:

Pr(d)(dBm) = Pr(d0)(dBm)−10np log10

(
d
d0

)
+Xσ (4.29)

where Pr(d) is the average received power in dBm, Pr(d0) is the received power at a
reference distance d0, np is the path loss exponent and Xσ is a normally distributed
random variable with zero mean and σ standard deviation. Using a reference distance
of 1 meter the equation reduces to:

Pr(d) =−10np log10(d)+C (4.30)

where C is Pr(1)+Xσ . The distance can then be estimated as:

d = 10−
RSS−C
10np (4.31)

For the non-line of sight indoor environment similar to our model, using linear
regression estimation, [95] represents Eq. (4.30) as:

Pr(d) =−23.411log10(d)−48.676 (4.32)

Based on the environment, (4.32) changes. One has to collect empirical data and
adjust (4.32) accordingly to minimize the estimation error.

The RSSI readings obtained from our WARP nodes have a dynamic range of 0
to -92 dBm. The average RSSI reading for the received samples after conversion is
-68.2 dBm for Bob and -72 dBm for Eve. The measured distance between Alice and
Bob is 3.6 meters and between Alice and Eve is 7.5 meters. Based on our non-line
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of sight indoor environment and WARP kits readings, we adjust Eq.(4.32) to be:

Pr(d) =−20.114log10(d)−55.8 (4.33)

The estimated distances between Alice and Bob and Alice and Eve are then 4.04 and
7.16 meters, respectively.

4.4.3 Fusing channel and distance measurements for SKG

Now that we have collected channel gain measurements and estimated the distances
between the two communicating nodes based on RSS measurements, we will use
these two parameters as common sources of randomness. For the fusion operation,
we XOR the two bit streams generated from the channel gain and distance. Algorithm
3 presents the algorithm used for SKG exploiting channel gain and distance, which
is similar to previous algorithms except line 9, which describes the fusion operation.

Algorithm 3 SKG algorithm exploiting channel gain and distance.
1: Step 0: Initialization
2: Alice and Bob exchange signals
3: Alice and Bob collect sequences of channel amplitude measurements
4: Alice and Bob collect sequences of RSS
5: Alice and Bob use average RSS to estimate distance
6: Step 1: Uniform Quantization & Encoding
7: Alice and Bob quantize channel amplitude measurements using Y =Q(X) X ∈

(di,di+1)
8: Alice and Bob quantize estimated distance using Y = Q(X) X ∈ (di,di+1)
9: Step 2: Combining the Two Bit Streams

10: Alice and Bob apply bit operation on the two bit streams (e.g., XOR)
11: Step 3: Information Reconciliation
12: Alice and Bob permute the bit stream and divide them into small blocks
13: Alice sends the permutation and parities to Bob
14: Bob compares the received parity information with his
15: In case of mismatch, Bob corrects his bits accordingly
16: Step 4: Privacy Amplification
17: Alice sends the number of the hash function to Bob
18: Alice and Bob apply the hash function to the bit stream
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4.4.4 Performance evaluation

Now that we have presented an implementation test-bed for our algorithm, we
evaluate its performance through extensive Monte Carlo simulations. We simulate
our algorithm in a Rician fading channel with high K-factor. The Rician K-factor
is the ratio between the collected power from the line of sight path to the collected
power from all non-line of sight paths. The higher the K-factor, the stronger the line
of sight path as compared to all non of light paths. We generate the secret key for
our algorithm and compare it to the secret key generated by the channel-only and
distance-only algorithms. We compare the bit mismatch rate (BMR) of the generated
secret key between A-B and between A-E after quantization and encoding. We also
compare the entropy of the secret key generated at either Alice or Bob to the entropy
of the secret key generated at Eve for the three algorithms; namely: channel only,
distance only and channel and distance. The bit operation applied on the two bit
streams at either Alice or Bob is not known to Eve. In Table. 4.3 we summarize the
simulation parameters for the subsequent figures.

In Fig.4.17, we present the simulation results for the three algorithms when the
A-B channel’s K-factor remains constant at 15 and the K-factor for the A-E channel
changes between 0 : 30. The standard deviation of the estimated distance at Eve is
higher than that for either Alice and Bob due to AoA error as well as the errors in
estimating the distances based on the received RSS’s. The mean in the two cases is
10 meters. At the same time, the A-E BMR is the highest for our algorithm (≃ 0.4).
The entropy of the secret key generated at either Alice or Bob for our algorithm is
higher than the achieved entropy of the key generated by the two other algorithms.
While the entropy of the secret key generated by Eve through our algorithm is the
lowest. In other words, our algorithms is achieving a higher secrecy rate than the
other two algorithms. The A-E BMR for the channel-only algorithm increases at
lower values of K-factor,i.e., weaker line of sight environment and saturates as the
K-factor increases. Correspondingly, the BMR of our algorithm is slightly lower at
lower values of the K-factor.

In Fig.4.18, we present the simulation results for the three algorithms when the
SNR of the received signal by either Alice and Bob remains constant at 10dB and
the received SNR by Eve changes between 0 : 30. Again, the A-B BMR for our
algorithm is low, close to the minimum achieved by the distance-only algorithm and
the highest between A-E. At the same time, the entropy of the secret key generated
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Table 4.3 Simulation Parameter for all the Subsequent Figures

– Fig.4.17 Fig.4.18 Fig.4.19

SNR A&B 10 15 10

SNR E 10 0:1:30 10

K-factor A-B 15 16 16

K-factor A-E 0:1:30 4 4

Channel Iter. 200 200 200

No. Iter. 10000 10000 10000

A &B Dist. STD 0.92 0.92 2.25

E Dist. STD 1.73 1.73 0:12

at either Alice or Bob for our algorithm is higher than the achieved entropy for key
generated by the two other algorithms. At lower values of Eve’s received SNR, the
performance of the channel-only algorithm was highly degraded since the A-B BMR
and the A-E BMR are very comparable. The performance of our algorithm was
slightly affected by changing Eve’s SNR.

It’s worth noting that changing either SNR or the Rician K-factor can be viewed
as simulating the mobility of Eve. In other words, Eve is moving to improve its
BMR with Alice or Bob.

In Fig.4.19, we present the simulation results for the three algorithms when the
standard deviation of the estimated distance between Alice and Bob remains constant
at 2.25 and standard deviation of the estimated distance by Eve changes between
0 : 12. The mean in the two cases is 20 meters. One can see that performance of
the distance only-algorithm was highly affected by changing the standard deviation
of the estimated distance by Eve. Changing the standard deviation of the Eve’s
estimated distances simulates the errors of estimating the two RSS’s and the two
AoA’s. The performance of our algorithm was again slightly affected.

4.5 Conclusion

Existing channel based SKG techniques fail to operate at very low SNR levels. For
applications that require to operate at low and very low SNR levels, it is essential to
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exploit a common source of randomness that is less effected by noise. We designed
a SKG algorithm that exploits AoA between the two communication nodes for SKG.
AoA estimation techniques can operate with high accuracy at low SNR level, hence
it is appropriate for this objective.

On the other hand, existing AoA estimation techniques either have high hardware
and computational complexity or low performance. For SKG, sequences of AoA
has to be collected. Therefore, this motivated the need to design an AoA estimation
technique that has low hardware and computational complexity, yet does not sacrifice
the performance. We designed XSBS that has comparable performance to MUSIC,
yet has much less hardware complexity since it uses only a single receiver chain.
Moreover, we showed that XSBS’s computational complexity is negligible when
compared to MUSIC’s.

Furthermore, we investigated fusing multiple common sources of randomness
for SKG. In particular, we used channel gain and distance for SKG. We implemented
channel estimation on WARP hardware platform as well as distance estimation
based on RSS. For strong line of sight environment, exploiting channel gain may be
inappropriate due to less fluctuation in the channel. Hence, it becomes necessary
in such scenario to fuse another common source of randomness to overcome this
shortcoming.



Chapter 5

Security in Cognitive Radio
Networks

Rapid deployment of wireless communication systems in diverse applications re-
sulting in an increasing urge for designated exclusive bandwidth allocations [96]
is challenged by the scarcity of dedicated spectrum resources. The classic way
of assigning the spectrum is that service providers acquire exclusive licenses for
designated frequency bands and bandwidth. Recent statistical studies of dedicated
spectrum usage revealed spectrum under utilization, which triggered the interest in
cognitive radio networks based on deploying dynamic spectrum allocation to achieve
higher spectrum utilization [8]. In cognitive radio networks (CRNs), a secondary
user (SU) accesses the spectrum whenever the spectrum owner, named primary user
(PU), is not transmitting, i.e., interweaving approach, or both PU and SU share the
spectrum under the PU’s defined terms of usage, i.e., underlay or overlay approach
(limited interference). Consequently, reliable spectrum sensing is paramount to
realization of efficient and successful cognitive radio networks.

To efficiently benefit from the available assigned spectrum, cognitive radios
or secondary users must have the ability of sensing the spectrum to allocate the
channels where the primary users are not using them. Several methods have been
proposed to sense the spectrum and different detectors have been implemented. The
quality of the detector mainly depends on how much information SUs know about
the PU’s signal. The performance of the detector is evaluated using the receiver
operating characteristic (ROC) curves. Higher probability of miss detection, i.e.,
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lower probability of detection, implies more interference with the PU signal, while
higher probability of false alarm implies less utilization efficiency of empty spectrum
slots. The SU’s goal is then to achieve the highest possible probability of detection
while maintaining the lowest probability of false alarm. In other words, achieving
the ROC constraints even at low signal to noise ratio (SNR) levels.

On the other hand, securing the communication link between legitimate SUs is
a challenging issue due to the fact that numerous attacks can be launched against
cognitive radio networks. These attacks include spectrum sensing data falsification,
eavesdropping, PU emulation and objective function attack.

Although CRN can benefit from our low SNR SKG techniques presented earlier,
which suit the underlay way of operation of CRNs, and due to the peculiarity of
CRNs where SUs exploit only empty spectrum slots for communication, it is of great
interest to develop CRNs oriented physical layer security schemes that enable SUs to
securely tap into the empty spectrum slots as soon as they are available. Since SUs
periodically collect spectrum sensing data, we developed an algorithm to exploit this
data for security without interrupting or affecting the sensing process. In other words,
the collected data will be used for spectrum sensing as well as SKG. By doing so,
SUs can securely exploit empty spectrum slots as soon as they are available rather
than employing other physical layer security techniques, which require additional
time to generate the secret key.

In this chapter, we first present literature reviews on different spectrum sensing
techniques as well as security in CRNs in sections 5.1 and 5.2, respectively. We
conduct performance analysis on likelihood ratio based spectrum sensing, which
is presented in Section 5.3. In addition, we develop a general likelihood ratio test
algorithm that can be used for both detection of PU signal as well as empty spectrum
slots. We extend our study on likelihood ratio based spectrum sensing to multiple
antenna case as well as full-duplex (FD) CRNs. In addition, we present FPGA
implementation of general likelihood ratio based spectrum sensing. Although, we
have some work on other spectrum sensing techniques including our work in [97]
and [98], we only focus on likelihood ratio spectrum sensing since the data collected
through this techniques is then exploited for SKG. In Section 5.4, we exploit general
likelihood ratio spectrum sensing data to extract secret key to counteract two popular
physical layer attacks on CRNs. The chapter is then concluded in Section 5.5. Some
of our work in this chapter is presented in [99] and [100].
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5.1 Literature Review on Spectrum Sensing Techniques

The literature in spectrum sensing is rich with numerous sensing methods and
varieties of detector implementations. See for example [101, 102]. Typically, the
quality of the detector depends on SU’s knowledge of the PU’s signal characteristics.
Spectrum Sensing techniques include matched filtering, energy detection, cyclo-
stationary detection (CSD), likelihood ratio based and eigenvalue based [103, 104].
Matched filtering provides the highest SNR in case of noise only. However, matched
filter detection requires a prior full knowledge of the PU’s transmitted signal [105].
This eventually leads to the need for a designated receiver for each PU’s signal format.
A simpler approach to spectrum sensing is to perform a non-coherent detection
through energy detection (ED). Energy detectors are easy to implement and best
suited for a quick decision. The measured energy is compared to a certain threshold
to decide whether or not the PU signal is present. The main drawback of ED methods
is that the performance of detectors is highly susceptible to varying background
noise and interference levels. The fundamentals of ED were first presented in the
classic paper by Urkowitz in 1967 [106]. A more sophisticated technique that
exploits the structure of the PU’s signal and can be used to detect random signals is
cyclo-stationary detection. Cyclo-stationary detectors take advantage of the spectral
redundancy or distinguished pattern of structured signals to determine whether or
not they are present. The fundamentals of cyclo-stationary detection were presented
in [107–109].

A different approach to signal detection is based on exploiting the signal’s
probabilistic models [110, 104]. Maximum likelihood ratio test (MLRT) is the most
commonly used probabilistic signal detection technique. MLRT is a measure of how
likely the data follows one probability model than the other. If all the probability
distribution parameters are known, the test is named MLRT. Otherwise, the test
is considered a general likelihood ratio test (GLRT) [105] and [110–112]. GLRT
compares the best probabilistic model out of a set of possible models under the first
hypothesis to the best probability model out of a set of possible models under the
second.

In order to enhance the performance of spectrum sensing and further mitigate
the effect of fading and shadowing, SU’s can utilize multiple antenna transceiver
systems and/or use collaborative decision making to decide on the existence of the
PU’s signal. The authors in [113] exploited the use of multiple antenna diversity
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schemes to mitigate the effect of different fading channels on the performance
of energy detectors. They compared three different schemes namely: equal gain
combining (EGC), selection combining (SC) and switch and stay combining (SSC).
They then studied other relevant schemes in [114] which are square law combining
(SLC) and square law selection (SLS) instead of EGC and SC. The main difference
between the two streams of schemes is that EGC and SC are pre-detection schemes
meaning that the signals are added before sampling while SLC and SLS are post
detection schemes meaning that the signals are added after sampling. Relevant work
on multiple antennas , but for the energy detection technique, was presented in
[115–117]. It was shown that multiple antenna schemes enhance the performance of
the system in combating fading and shadowing as the number of antennas increase.
It was also shown that EGC and SLC are superior to other schemes yet they are more
expensive to implement.

Applying the GLRT approach on multiple antenna systems was introduced in
[118–122], where all approaches are based on evaluating the sample covariance
matrix as well as the eigenvalue decomposition of the covariance matrix, which has
high implementation complexity. In [118], the authors reported that the optimal
detector is a maximum ratio combining when all the distribution parameters are
known. Their simulated results for the GLRT approach show that with number of
antennas of 2 and 8 collected samples, to achieve a probability of detection (Pd)
of 90% and a probability of false alarm (Pf ) of 10%, an SNR of almost 5 dB is
required. As the number of antennas as well as the number of the samples increase,
the required SNR to achieve reasonable Pf and Pd decreases. The authors in [120]
studied their approach under different MIMO schemes. For example, for Pd of higher
than 90%, Pf of 10%, number of SU antennas of 4, number of PU antennas of
2 and number of samples of 512, the required SNR is -8 dB under the Alamouti
scheme. The results in [121] are for an unreasonable number of collected samples
of 104. A comparison between GLRT, ED, arithmetic to geometric mean (AGM)
and maximum to minimum eigenvalue (MME) methods is presented in [122]. The
GLRT approach showed superior results over the aforementioned approaches.
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5.2 Literature Review on Cognitive Radio Security

Several attacks can be launched against CRNs. Comprehensive studies on this aspect
[9–11] show that two of the major physical layer attacks against cognitive radio
networks are spectrum sensing data falsification (SSDF) and eavesdropping. SSDF
is performed on a collaborative sensing setup [12]: an attacker sends false spectrum
sensing data to other SUs, in case of distributed sensing decision, or to the fusion
center [13], resulting in a wrong spectrum access decision. Eavesdropping attack-
ers instead are adversaries or unauthorized users that listen to the communication
between legitimate users.

Conventional techniques to combat SSDF leverage a two-level defense mecha-
nism [14]. The first level authenticates all the collected spectrum sensing results,
while the second decides which spectrum sensing result is legitimate. Depending on
whether a fusion center is available or the system is fully distributed, schemes such
as the sequential probability ratio test (SPRT) [14], or reputation-based schemes
can be exploited [14]. Techniques designed to counteract SSDF, however, require a
long processing time for the two stages to occur. Moreover, either a large number of
SUs or many successful iterations are needed to achieve a good reputation. Clearly,
long processing time might lead to higher probability of missing the opportunity of
exploiting empty spectrum slots for SUs. In addition, authentication techniques such
as the approach in [15], where cyclo-stationary detection is used to classify and au-
thenticate signals, adds to the complexity and limitations of the system, while failing
to prevent a scenario where a malicious node mimics the SU’s signal properties.

Alternatively, physical layer security techniques exploit the randomness inher-
ent to communication channels, which are common to the two trusted parties and
unknown to a potential eavesdropper, so as to generate secret keys [19, 123, 124].
Although these algorithms were not developed for cognitive radio network applica-
tions, they can be utilized by the SUs. However, physical-layer solutions, such as
channel estimation based on one or two level defence mechanisms, involve exchange
of multiple beacon signals as well as synchronization between legitimate SUs thus
requiring a long time to generate the link key and, hence an inefficient usage of the
spectrum.

To counteract eavesdropping, a power allocation approach is proposed in [125]
to increase the secrecy level between authenticated SUs. Alternatively, conventional
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wireless security, which relies on cryptographic techniques and application-layer
protocols, can be adopted [126]. Fundamentals of key management protocols are
presented in [127–129]. One drawback of these techniques however is that a complex
key management scheme is required in the case of symmetric ciphers, while high
computational complexity is needed in the case of asymmetric ciphers. In particular,
in the case of symmetric ciphers, the continuous exchange of encryption keys poses
a serious threat to the secrecy of the whole communication session. Minimizing the
security risk that stems from key exchange mechanisms is the main reason for key
reuse (i.e., using the same key for multiple packet encryptions), which introduces
another secrecy weakness allowing an eavesdropper to have more chances to guess
the encryption key.

5.3 Likelihood Ratio Based Spectrum Sensing

Likelihood ratio test (LRT) implies that all parameters about the two distributions of
the two hypotheses are known. Cumulative sum (CUMSUM) [130–132] minimizes
the worst case detection delay. We will present the case of detecting the entrance of
the PU signal first followed by the case of detection of empty spectrum slots. We
present a review on CUMSUM algorithm then provide our performance analysis for
it as well as its extension to multiple antenna systems.

In our system model, a SU, listening to a specific frequency band, collects
samples y[i]. If the spectrum slot is empty (hypothesis H0), y[i] = w[i], where w[i]
is the additive white gaussian noise (AWGN) with variance σ2

w. σ2
w is receiver

dependant and can be estimated ahead of time. If instead the PU is transmitting
(hypothesis H1), y[i] = x[i]+w[i], where x[i] = hs[i] is the product of the channel
gain h and the PU’s signal s[i]. x[i] is assumed to be Gaussian distributed with zero
mean and variance σ2

x . The value of σ2
x depends on the channel gain and the power

of the PU signal. Thus, in the presence of the PU’s signal, y[i] follows a Gaussian
distribution N (0,σ2

w +σ2
x ) [133–135], which we denote by F1. Instead, in the case

of an empty frequency band, y[i] follows N (0,σ2
w), which we denote by F0.

The authors in [133] presented a GLRT-based algorithm for the detection of the
entrance of the PU’s signal. In the presence of an empty spectrum slot, the samples
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collected by the SUs follow distribution F0 with density function f0, and

y[i] = w[i], for i = 1, · · · ,k−1. (5.1)

where k is the time instant at which the change of the frequency slot status is detected.
As the PU enters the frequency band, the distribution changes to F1 with density f1,
and

y[i] = x[i]+w[i], for i = k, · · · ,N (5.2)

where N is the number of samples corresponding to the periodicity with which SUs
make their spectrum sensing decisions.

5.3.1 Review of CUMSUM algorithm

Using the LRT based spectrum sensing [110], the problem is treated as a sequential
change detection, where the received samples are processed sequentially and the
decision is made after each sample. For an idle band, the collected samples by
the SU follow distribution F0 with density function f0. As the PU starts using the
frequency band, the distribution changes to F1 with density f1. The log-likelihood
ratio is estimated for each sample sequentially:

l(y[i]) = ln
{

f1(y[i])
f0(y[i])

}
, (5.3)

=
σ2

x y2[i]
2(σ2

x +σ2
w)σ

2
w
+

1
2

ln
{

σ2
w

σ2
x +σ2

w

}
. (5.4)

The Kullback-Leibler divergence of f0 from f1 exhibits a negative drift before the
entrance of PU signal and positive drift otherwise. The CUMSUM is formalized
through:

gN = max
k≤N

{
N

∑
i=1

l(y[i]−
k

∑
i=1

l(y[i]))

}
,

= max
k≤N

N

∑
i=k+1

l(y[i]). (5.5)
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Therefore, the decision statistic for the CUMSUM test is applied recursively through
[111]:

gi+1 = max

{
max
k≤N

{
N

∑
i=k+1

l(y[i])

}
+ l(y[i+1]),0

}
= max{gi + l(y[i+1]),0} , (5.6)

with g0 = 0.

5.3.2 Performance analysis of CUMSUM algorithm

Although the objective of CUMSUM test is to minimize the detection delay, it is
of high interest when exploiting CUMSUM in the context of spectrum sensing to
know the probability of false alarm as well as the probability of detection when the
decision statistic exceeds the threshold.

We derive a closed form expression for the performance parameters, which are
the probability of detection as well as the probability of false alarm, of the decision
statistic of the CUMSUM test, gi+1.

For two random variables X and Y , the probability distribution function of the
random variable Z = max[X ,Y ], FZ(z), can be given by

FZ(z) = Pr{X ≤ z,X > Y}+Pr{Y ≤ z,X ≤ Y} . (5.7)

In our case, gi+1 is a random variable defined as the maximum of another random
variable and zero. Let Xi+1 = gi + l(y[i+1]), hence

Fgi+1(h) = Pr{Xi+1 ≤ h,Xi+1 > 0}+Pr{0 ≤ h,Xi+1 ≤ 0} (5.8)

Since the threshold, h, is always positive, (5.8) becomes

Fgi+1(h) = Pr{0 < Xi+1 ≤ h}+Pr{Xi+1 ≤ 0} , (5.9)

= FXi+1(h), (5.10)

where FXi+1 is the cumulative distribution of Xi+1. The random variable Xi+1 is the
summation of likelihood ratios up to the sample i+ 1 with the chance that each
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gi will be reset to zero at any sample inside the i+ 1 (gi = max[gi−1 + l(y[i]),0]).
Regardless of the number, combination or the locations of each zero incident, what
matters is the location of the last occurring zero. Hence, Xi+1 has i+1 possibilities.
For example, if the output of the maximization with zero process resulted in no
zero, Xi+1 = ∑

i+1
j=1 l(y[ j]). If a zero occurred at the first sample, Xi+1 = ∑

i+1
j=2 l(y[ j]).

Hence

FXi+1 = Pr{Xi+1 ≤ h} (5.11)

= Pr

{
i+1

∑
j=1

l(y[ j])≤ h

}
+Pr

{
i+1

∑
j=2

l(y[ j])≤ h

}
+ · · ·+Pr{l(y[i+1])≤ h} (5.12)

=
i+1

∑
r=1

Pr

{
i+1

∑
j=r

l(y[ j])≤ h

}
. (5.13)

Note that

i+1

∑
j=r

l(y[ j])≤ h = k1

(
i+1

∑
j=r

y2[ j]

)
+(i+2− r)k2 ≤ h (5.14)

=
i+1

∑
j=r

y2[ j]≤ hn. (5.15)

where hn =
h−(i+2−r)k2

k1
, k1 =

σ2
x

2(σ2
x +σ2

w)σ
2
w

and k2 =
1
2 ln σ2

x
σ2

x +σ2
w

. Remember that the

received samples, y[i], follow a Gaussian distribution. Therefore, y2[i] follow a Chi-
square distribution. Thus, ∑

i+1
j=r y2[ j] is a summation of chi-square random variables,

hence it is a Chi-square random variable with i+ 2− r degrees of freedom. Let
G = ∑

i+1
j=1 y2[ j].

Pr

{
i+1

∑
j=r

l(y[ j])≤ h

}
= Pr

{
i+1

∑
j=r

y2[ j]≤ hn

}
(5.16)

=
γ

(
i+2−r

2 , hn
2σ2

)
Γ
( i+2−r

2

) , (5.17)
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where γ(·, ·) is the lower incomplete gamma function and Γ(·) is the gamma function.

FXi+1 =
i+1

∑
r=1

γ

(
i+2−r

2 , hn
2σ2

)
Γ
( i+2−r

2

) . (5.18)

The probability of false alarm for the (i+1)th sample where i ∈ [1 : N], is given
by:

Pfi+1 = Pr{Xi+1 > h,max [X1, · · · ,Xi]< h | H0}

=
(
1−FXi+1

)( i

∏
j=1

FX j(h)

)

=

1−
i+1

∑
r=1

γ

(
i+2−r

2 , hn
2σ2

w

)
Γ
( i+2−r

2

)
 i

∏
j=1

j

∑
r=1

γ

(
j+1−r

2 , hn
2σ2

w

)
Γ

(
j+1−r

2

)
 . (5.19)

The total probability of false alarm is then

Pf =
N

∑
i=1

Pfi. (5.20)

Likewise, the probability of detection can be given by

Pdi+1 = Pr{Xi+1 > h,max [X1, · · · ,Xi]< h | H1} (5.21)

=
(
1−FXi+1

){ i

∏
j=1

FX j(h)

}
(5.22)

=

1−
i+1

∑
r=1

γ

(
i+2−r

2 , hn
2(σ2

x +σ2
w)

)
Γ
( i+2−r

2

)
 i

∏
j=1

j

∑
r=1

γ

(
j+1−r

2 , hn
2(σ2

x +σ2
w)

)
Γ

(
j+1−r

2

)
 . (5.23)

The total probability of detection is then

Pd =
N

∑
i=0

Pdi+1. (5.24)
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5.3.3 Extension to multiple antenna system

Here, we investigate the use of multiple antennas with CUMSUM. Let YSLC[i] =

∑
M
m=1 y2

m[i], where M is the number of antennas. YSLC is a summation of M Chi-
square random variables each with 1 degree of freedom. Hence, YSLC follows a
chi-square distribution with M degrees of freedom. Therefore, the probability of
false alarm and the probability of detection can be given by:

Pfi+1 =

1−
i+1

∑
r=0

γ

(
M(i+1−r)

2 , hn
2σ2

w

)
Γ

(
M(i+1−r)

2

)
 i

∏
j=1

j

∑
r=0

γ

(
M( j−r)

2 , hn
2σ2

w

)
Γ

(
M( j−r)

2

)
 . (5.25)

The probability of detection can be given by

Pdi+1 =

1−
i+1

∑
r=0

γ

(
M(i+1−r)

2 , hn
2(σ2

x +σ2
w)

)
Γ

(
M(i+1−r)

2

)
 i

∏
j=1

j

∑
r=0

γ

(
M( j−r)

2 , hn
2(σ2

x +σ2
w)

)
Γ

(
M( j−r)

2

)
 .

(5.26)

5.3.4 GLR algorithm

When one of the parameters in the likelihood ratio test in (5.4) is unknown, the test
transforms into the generalized form. The scenario we are interested in is when σ2

w is
known and σ2

x is in the range [σ2
S ,σ

2
M]. The generalized log-likelihood ratio is given

by [111]:

BN = max
k≤N

sup
σ2

x

ln

{
N

∏
i=k+1

f1,σ2
x
(y[i])

f0(y[i])

}
(5.27)

= max
k≤N

sup
σ2

x

N

∑
i=k+1

{
σ2

x y2[i]
2(σ2

x +σ2
w)σ

2
w
+

1
2

ln
{

σ2
w

σ2
x +σ2

w

}}

Let

f (σ2
x ) =

σ2
x
∗y2[i]

2(σ2
x
∗
+σ2

w)σ
2
w
+(N − k)

1
2

ln
{

σ2
w

σ2
x
∗
+σ2

w

}
(5.28)
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To estimate the sup in (5.27), one has to solve for the σ2
x
∗ value that maximizes

f (σ2
x ) over the given σ2

x region. The authors in [111] defined k as the sample where
l(y) shows a consistent positive drift after. We have

σ
2
x
∗
=


σ2

Mx, (N − k̂)≤ ŷ
σ2

Mx+σ2
w
,

ŷ
N−k̂

−σ2
w,

ŷ
σ2

Mx+σ2
w
≤ (N − k̂)≤ ŷ

σ2
Sx+σ2

w
,

σ2
Sx, (N − k̂)≥ ŷ

σ2
Sx+σ2

w
,

(5.29)

where ŷ = ∑
N
i=k̂+1

y2[i].

For GLR test, σ2
x
∗ is estimated for each sample inside the N samples. Hence

BN = max
k≤N

∑
N
i=k+1

{
σ2

x
∗
[i]y2[i]

2(σ2
x
∗
[i]+σ2

w)σ
2
w
+ 1

2 ln
{

σ2
w

σ2
x
∗
[i]+σ2

w

}}
The probability distribution of BN is given by

FBN = Pr{gN ≤ h} (5.30)

= Pr

{
max
k≤N

N

∑
i=k+1

{
σ2

x
∗
[i]y2[i]

2(σ2
x
∗
[i]+σ2

w)σ
2
w
+

1
2

ln
{

σ2
w

σ2
x
∗
[i]+σ2

w

}}
≤ h

}
(5.31)

= Pr

{
max
k≤N

N

∑
i=k+1

(
C1[i]y2[i]+C2[i]

)
≤ h

}
(5.32)

= Pr

{
max
k≤N

N

∑
i=k+1

C1[i]y2[i]≤ αk

}
, (5.33)

where C1[i] =
σ2

x
∗
[i]

2(σ2
x
∗
[i]+σ2

w)σ
2
w

, C2[i] = 1
2 ln
{

σ2
w

σ2
x
∗
[i]+σ2

w

}
and αk = h−∑

N
i=k+1C2[i].

FBN = Pr

{
N

∑
i=1

C1[i]y2[i]≤ α0

}
×Pr

{
N

∑
i=2

C1[i]y2[i]≤ α1

}
×·· ·×Pr

{
C1[N]y2[N]≤ αN−1

}
. (5.34)

Note that each term in (5.34) is a linear combination of chi-square random variables
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5.3.5 Performance of spectrum sensing based on GLR in full-
duplex CRN

The residual self interference, z[i], is modelled as Gaussian with zero mean and
variance σ2

z = γzwσ2
w [136–138], where γzw is the residual self interference signal to

noise ratio. When the PU signal is present, yFD[i] follows N (0,γzw(σ
2
w +1)+σ2

x ),
which we denote by FFD

1 . When there exists an empty spectrum slot, yFD[i] follows
N (0,σ2

w(γzw +1)), which we denote by FFD
0 . The FD signal to noise ratio is given

by γFD = γHD/(1+ γzw). Due to residual self interference in FD systems, the log-
likelihood ratio for the detection of the entrance of the PU signal is estimated for
each sample sequentially as:

l2(yFD[i]) = ln
{

f FD
1 (y[i])

f FD
0 (y[i])

}
. (5.35)

By substituting the probability density functions f FD
1 and f FD

0 and taking the natural
log, (5.35) reduces to:

l2(yFD[i]) =
1
2

ln
{

σ2
w (γzw +1)

σ2
x +σ2

w (γzw +1)

}
+

σ2
x y2

FD[i]
2(σ2

x +σ2
w (γzw +1))σ2

w (γzw +1)
. (5.36)

While the spectrum is empty, i.e., H0

E f FD
0

{l2 (yFD[i])}=
∫

f FD
0 (yFD) ln

{
f FD
1 (yFD)

f FD
0 (yFD)

}
dy

=−D
(

f FD
0 || f FD

1
)
≤ 0, (5.37)

where the Kullback-Leibler divergence of f FD
0 from f FD

1 , D
(

f FD
0 || f FD

1
)
, estimated

as

D
(

f FD
0 || f FD

1
)
=−1

2
ln
{

σ2
w (γzw +1)

σ2
x +σ2

w (γzw +1)

}
− σ2

x
2(σ2

x +σ2
w (γzw +1))

. (5.38)
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After the entrance of the PU in the case H1,

E f FD
1

{l2 (yFD[i])}=
∫

f FD
1 (yFD) ln

{
f FD
1 (yFD)

f FD
0 (yFD)

}
dy

= D
(

f FD
1 || f FD

0
)
≥ 0, (5.39)

where D
(

f FD
1 || f FD

0
)

estimated as:

D
(

f FD
1 || f FD

0
)
=

1
2

ln
{

σ2
w (γzw +1)

σ2
x +σ2

w (γzw +1)

}
+

σ2
x

2σ2
w (γzw +1)

. (5.40)

l1(yFD) shows a negative drift during H0 and a positive drift during H1. The decision
statistic based on GLR for the FD system, EN , can be written as:

EN = max
k≤N

sup
σ2

x

{
N

∑
i=k+1

l2,σ2
x
(yFD[i])

}
,

= max
k≤N

sup
σ2

x

ln

{
N

∏
i=k+1

f FD
1,σ2

x
(yFD[i])

f FD
0 (yFD[i])

}
,

= max
k≤N

sup
σ2

x

N

∑
i=k+1

(
1
2

ln
{

σ2
w (γzw +1)

σ2
x +σ2

w (γzw +1)

}
+

σ2
x y2

FD[i]
2(σ2

x +σ2
w (γzw +1))σ2

w (γzw +1)

)
. (5.41)

Let:

f FD
1 (σ2

x ) =
N − k

2
ln
{

σ2
w (γzw +1)

σ2
x +σ2

w (γzw +1)

}
+

σ2
x ŷFD

2(σ2
x +σ2

w (γzw +1))σ2
w (γzw +1)

. (5.42)

σ
2
x
∗
=


σ2

Mx, (N − k)≤ ŷFD
σ2

Mx+σ2
w(γzw+1)

,
ŷFD
N−k −σ2

w (γzw +1) , ŷFD
σ2

Mx+σ2
w(γzw+1)

≤ (N − k)≤ ŷFD
σ2

Sx+σ2
w(γzw+1)

,

σ2
Sx, (N − k)≥ ŷFD

σ2
Sx+σ2

w(γzw+1)
.

(5.43)
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where ŷFD = ∑
N
i=1 y2

FD[i]. σ2
x is not known, we find its estimate σ2

x
∗ by solving (5.42)

for the value that maximizes it within the given range σ2
Sx ≤ σ2

x ≤ σ2
Mx, which results

in (5.43). So, in order to estimate the decision statistic EN , we first find σ2
x
∗ through

(5.43) and then substitute it in (5.41) for a preset N and iterative k.

The decision statistic EN is computed for the entire N samples and then compared
to a threshold λE to decide on the presence or absence of the PU’s signal according
to:

EN
H1
≷
H0

λE . (5.44)

The relationship between the average delay to false alarm, T0, and the threshold, h,
is obtained through [139, 140]:

λE =− ln{a/b}, (5.45)

where a is a design parameter, which is set based on T 0 according to:

T 0 ≥ 1/a, (5.46)

and b is given by:

b = 3ln

a−1

(
1+

1
DE( f FD

1,σ2
Sx
|| f FD

0 )

)2
 , (5.47)

where DE( f FD
1,σ2

Sx
|| f FD

0 ) is estimated as in (5.40) at σ2
Sx. When detecting an empty

spectrum slot, the probability of false alarm is defined as:

Pf = Pr (EN > λE |H1) , (5.48)

and the probability of detection as:

Pd = Pr (EN > λE |H1) . (5.49)
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5.3.6 Uncertainty in estimating the variance of residual self in-
terference and noise

So far perfect knowledge of the noise variance as well as the variance of the residual
self interference was assumed. However, in practical systems, due to several reasons
including lack of noise calibration and interference, noise uncertainty is inevitable.
In addition, error in estimating the variance of the residual self interference is likely
due to calibration and/or the self interference channel not being a flat fading channel.
This affects the sensitivity of the GLR algorithm presented above.

We study the sensitivity of the GLR algorithm in the FD case, when there is
uncertainty in the noise variance and/or the residual self interference. It is worth
noting that this is different from the case where the variance is completely unknown,
which leads to nonparametric detection as in [141]. Uncertainty in the noise variance
and/or the residual self interference leads to what is known as signal to noise ratio
(SNR) wall, which is the SNR level below which reliable sensing is impossible [142].
Below the SNR wall, increasing the number of collected samples does not improve
the performance of the sensing algorithm. In order to estimate the SNR wall for the
FD GLR algorithm presented above, we model both uncertainty by the parameter
ρ > 1, which quantifies the size of uncertainty. The variance of (z[i]+w[i]) lies in
the range

(
σ2

z +σ2
w
)
∈
[
(1/ρ)

(
σ2

z +σ2
w
)

: ρ
(
σ2

z +σ2
w
)]

. ρ = 1 indicates that there
exists no uncertainty in the variance of (z[i]+w[i]).

5.3.7 FPGA implementation of GLR based spectrum sensing

We introduce an implementation of our GLR algorithm on an FPGA. The design
is implemented on the WARP kits. Our design presented in Fig.5.1 is carried out
in ISE System Generator for DSP. The design is then incorporated with the WARP
core files using Xilinx Platform Studio (XPS) and Xilinx Software Development
Kit (SDK). After successful generation of the bit stream file, it’s downloaded to the
FPGA using iMPACT. Our design is represented in the Fix 16_15 format. It has a
series combination of two bit-division procedures. The minimum achievable sample
delay for each bit-division calculation is the number of the bits divided, which is
16 bits in our case. This means that an excess delay of 32 samples is added to the
algorithm detection time. Our design is for the unknown σ2

x . Before the design
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Fig. 5.1 FPGA design for GLR detection algorithm..

Table 5.1 Resources Table

Resources ED GLR CSD

Slices 985 6848 3093

Flip flops 1471 10184 4794

Block RAM’s – – 9

LUT’s 1327 9532 4418

IOB’s – – 150

Multipliers 1 6 39

is incorporated with the WARP core files, it was simulated using SIMULINK’s
Gaussian source as the input and the output was plotted on a scope.

Our design consists of several blocks. We first compute the square of the received
signal. The output of this block can be used to estimate the decision statistic for the
ED approach as well. We then estimate the value of σ2

x
∗ in the P Estimation block by

implementing equation (5.29). The decision statistic for our GLR algorithm is then
computed recursively in the Likelihood Ratio Calc block by implementing equation
(5.27).

We compare the resources used to implement GLR to the resources uses by
cyclostationary detection as well as energy detection (ED) [97]. Table 5.1 shows
the resources used in the implementation of the three techniques. It is shown that
the cylostationary detection consumes more resources than the conventional energy
detection technique and less than GLR based algorithm.
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5.3.8 Detection of empty spectrum slots

We develop the GLR algorithm to detect the transmission opportunities, i.e. empty
spectrum slots, rather than detecting the entrance of the PU’s signal. Again, at first
the samples collected by the SU follow distribution F1 with density function f1

(hypothesis H1), and

y[i] = x[i]+w[i], for i = 1, · · · ,k−1, (5.50)

As the PU leaves the frequency band, the distribution changes to F0 with density f0

(hypothesis H0) and ∃k ∈ [1,N]

y[i] = w[i], for i = k, · · · ,N. (5.51)

With l2(y) being the log-likelihood ratio in this case, note that:

N

∑
i=k̂+1

l2(y[i]) = ln

{
N

∏
i=k̂+1

f0(y[i])
f1,σ2

x
(y[i])

}

=
N

∑
i=k̂+1

{
1
2

ln
{

σ2
w +σ2

x
σ2

w

}
− σ2

x y2[i]
2(σ2

x +σ2
w)σ

2
w

}
. (5.52)

Let:

f (σ2
x ) = (N − k̂)

1
2

ln
{

σ2
x +σ2

w
σ2

w

}
− σ2

x ŷ
2(σ2

x +σ2
w)σ

2
w
. (5.53)

Since σ2
x is unknown, we find its estimate σ2

x
∗ by solving (5.53) for the value that

maximizes it, which results in:

σ
2
x
∗
=


σ2

Mx, (N − k̂)≤ ŷ
σ2

Mx+σ2
w
,

ŷ
N−k̂

−σ2
w,

ŷ
σ2

Mx+σ2
w
≤ (N − k̂)≤ ŷ

σ2
Sx+σ2

w
,

σ2
Sx, (N − k̂)≥ ŷ

σ2
Sx+σ2

w
,

(5.54)
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where ŷ=∑
N
i=k̂+1

y2[i]. Consequently, for a preset N, an iterative k̂ and σ2
x
∗ estimated

through (5.54), the decision statistic, denote by gN , is given by:

gN = max
k̂≤N

sup
σ2

x

ln

{
N

∏
i=k̂+1

f0(y[i])
f1,σ2

x
(y[i])

}

= max
k̂≤N

N
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1
2

ln
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w +σ2
x
∗

σ2
w

}
− σ2

x
∗y2[i]

2(σ2
x
∗
+σ2

w)σ
2
w

}
. (5.55)

The decision statistic gN is again compared to a threshold λg to decide on the

presence or absence of the PU’s signal according to: EN
H0
≷
H1

λg. The threshold,

λB =− ln{a/b}, is set based on the average delay for false alarm T0 ≥ 1/a where a
is a design parameter and b is given by

b = 3ln

a−1

(
1+

1
D( f0|| f1,σ2

Sx
)

)2
 , (5.56)

with D( f0|| f1,σ2
Sx
) being the Kullback-Leibler divergence of f0 from f1 estimated at

σ2
Sx. The Kullback-Leibler divergence of f0 from f1 is given by:

D( f0|| f1) = E f0 {l2 (y[i])}

=
∫

f0(y) ln
{

f0(y)
f1(y)

}
dy, (5.57)

where E denotes the expectation operator. Substituting f0 and f1 at σ2
Sx yields

D
(

f0|| f1,σ2
Sx

)
=

1
2

ln
{

σ2
w +σ2

Sx
σ2

w

}
− σ2

Sx

2(σ2
Sx +σ2

w)
. (5.58)

5.3.9 Proposed algorithm for dual detection

As presented in Section 5.3.7, the computational complexity of GLR based spectrum
sensing is much higher than other techniques. It is even higher than cyclo-stationary
based spectrum sensing as can be seen from Table 5.1. As a matter of fact, the
implementation presented in Section 5.3.7 was for the detection of the entrance of
the PU’s signal only, i.e., implementation of (5.27). However, as stated in [133], one
should implement (5.27) for the detection of the entrance of the PU’s signal and
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(5.55) for the detection of empty spectrum slots. One can see that this will increase
the computational complexity significantly. In order to address this issue, we design
a dual detection algorithm for which we continue to use the same decision statistic
for the detection of the entrance of PU’s signal, but for the entrance of an empty
spectrum slots. In other words, we use either (5.27) or (5.55) for both the detection
of the PU’s signal as well as detection of empty spectrum slot. For the detection of
the PU’s signal, (5.27) is used as is. And for the detection of empty spectrum slot,
we estimate the slope of the decision statistic according to

SBi =
Bi+ts −Bi

ts
, (5.59)

where ts is the number of samples at which the slope is estimated. Hence, for the
detection of empty of spectrum slots, we use

SBi < ε, (5.60)

where ε ≈ 0. We will show below how SBi is used for the detection of empty
spectrum slot. One can see that by using this simple approach, we save significantly
on computational complexity.

5.3.10 Results for likelihood ratio based spectrum sensing

We simulate the performance of the GLR FD algorithm presented above. We use
the half duplex (HD) case presented in Section 5.3.4 as a baseline against which we
compare the performance of the FD case. We start by plotting the decision statistic
for the GLR algorithm and proceed to present the probability of detection versus
the required number of samples at a fixed probability of false alarm. We then study
the effect of uncertainty in the noise and residual self interference variance on the
performance of the GLR FD algorithm. Typically, the requirement for an efficient
spectrum sensing is to achieve Pd ≥ 90%, while Pf ≤ 10%. The results below are
for a fixed Pf = 10%, σ2

Sx = 0.5σ2
x and σ2

Mx = 2σ2
x .
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Fig. 5.2 Decision statistic for the HD case, FD at ρ = 1 and FD at ρ = 2. The PU enter the
spectrum at the 100th sample.

GLR decision statistic

We start by plotting the decision statistic for both HD and FD GLR algorithms in Fig.
5.2. The simulation is for 400 samples with the PU entering the spectrum at the 100th

sample. γHD = 10 dB and γzw = 3 dB. The FD GLR algorithm is simulated at ρ = 1,
i.e., perfect knowledge of the variance of the noise and the residual self interference,
and at ρ = 2. As a PU enters the spectrum, the decision statistic in the three cases
starts to increase rapidly. However, the amplitude of the HD case is higher than the
two FD cases, which indicates that once a threshold is set, detection of the PU signal
will have a higher probability of detection at lower number of collected samples.

Probability of detection vs. number of samples

We numerically compute the probability of detection for HD GLR and FD GLR
(ρ = 1 and ρ = 2) algorithms at a fixed probability of false alarm for different
number of samples collected after the entrance of the PU signal. Fig. 5.3 shows
the simulation results for Pd vs. number of samples, where γzw was fixed at 6 dB,
while γHD changed from (a) 3 dB, to (b) 6 dB to (c) 10 dB. The same simulation
parameters are used in Fig. 5.4, but for γHD = 9 dB and (a) γzw = 9 dB, (b) γzw = 12
dB and (c) γzw = 15 dB. It can be inferred from both figures that HD GLR algorithm
performs better than FD GLR algorithm. This degradation in the performance of
the FD GLR algorithm is due to the residual self interference. As γHD increases,
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Fig. 5.3 Probability of detection vs. number of samples for γzw = 6 dB and (a) γHD = 10 dB,
(b) γHD = 6 dB and (c) γHD = 3 dB.

lower number of samples are required to achieve the target Pd ≥ 90%. For example,
for γzw = 6 dB and γHD = 3 dB, HD GLR requires approximately 10 samples, FD
GLR at ρ = 1 requires approximately 275 samples, while FD GLR at ρ = 2 fails to
achieve Pd > 70% for a preset number of collected samples of 300. Same notion is
inferred as γzw decreases.

Uncertainty in the variance of the noise and residual self interference

We first introduce different levels of uncertainty and study its performance on the FD
GLR algorithm. In Fig. 5.5, we plot Pd vs. ρ at (a) fixed γzw and different γHD and (b)
fixed γHD and different γzw. Regardless of the level of γzw and γHD, the degradation
in the performance of the FD GLR saturates at ρ ≥ 2. We then use ρ = 2 in Fig. 5.6
to evaluate the boundaries, i.e., the SNR wall of the FD GLR algorithm. We plot Pd

vs a large number of samples (1000) for (a) different levels of (γzw−γHD) and for (b)
low γHD levels. If γzw is approximately 9 dB higher than γHD, or more, Pd saturates
at 70%, no matter how many samples are collected. In addition, for γHD ≤−9 dB,
Pd also saturates to 70%, no matter how low γzw gets.
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Fig. 5.4 Probability of detection vs. number of samples for γHD = 9 dB and (a) γzw = 9 dB,
(b) γzw = 12 dB and (c) γzw = 15 dB.
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Dual detection algorithm

We first present how our slope based proposed decision statistic BN behaves when
used in the detection of empty spectrum slots in Fig. 5.7. The PU leaves the spectrum
at the 300th sample. As soon the PU leaves the spectrum, BN starts to decline. Hence
its slope takes a negative drift. In Fig. 5.8, we simulate SB for (a) ts = 10, (b) ts = 20
and (c)ts = 30 samples. As ts increases, it becomes easier to detect the entrance of
empty spectrum slots, however, it becomes harder to accurately detect the exact time
at which this occurred. In Fig. 5.9, we plot Pd at SNR = 0 dB and Pf = 1% for (a)
ts = 10, (b) ts = 20 and (c)ts = 30 samples. As expected, as ts increases, Pd improves.

5.4 Exploiting Spectrum Sensing Data for Security

Consider a radio cognitive network where the SUs sense the spectrum so as to detect
empty spectrum slots that they can exploit for communication, i.e., the spectrum is
already occupied by the PU’s signal and the objective is to determine the gaps in the
PUs communications. While communicating, SUs periodically sense the spectrum
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in order to be able to detect the entrance of a PU and, in case, retreat from using the
spectrum slot. The time intervals corresponding to the two operations are referred
to as Phase I and Phase II, respectively, and they are depicted in Figure 5.10. A
detection cycle is defined as the time period comprising the two phases. Note that the
length of the detection cycle and of the two phases therein is not constant. Indeed,
PUs exploit their assigned spectrum as desired and, therefore, the length of each
phase may differ from one detection cycle to the next.

We assume that every N samples, each SU makes its own decision about the
frequency slot status (empty/occupied) and sends it to the other SUs, in case of
distributed collaborative sensing, or to the SU acting as fusion center. The first
objective is to ensure that the decisions collected from all SUs, which will be used to
produce the overall decision on the presence or absence of PUs, are validated and
false samples generated by malicious nodes are discarded. To this end, decisions
from legitimate SUs are encrypted with a link key only known to them. A decision
maker can then easily decrypt the data and filter out information injected by malicious
nodes. Similarly, in the presence of an empty spectrum slot, legitimate SUs encrypt
their communication through a link key, so as to avoid eavesdropping by a malicious
user.

A link key is generated by SUs at every detection cycle. In order to do that,
we assume that an authorized network entity distributes a secret primary key to
legitimate SUs prior to the spectrum sensing operation, using any of the conventional
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cryptographic schemes presented in [143]. The primary key includes information
that is essential to the algorithm we devise to generate the link key. Note that the
primary key is also delivered to any legitimate SU that joins the network later on. A
new primary key is instead distributed whenever its effect on the link key generation
diffuses with time (e.g., every number of detection cycles), and whenever a legitimate
SU leaves the network. The latter is necessary to secure the network against the
scenario when a legitimate SU later becomes a malicious node.

Finally, our adversary model assumes that a malicious node can listen to the
spectrum used by the PU and can use the same SS technique used by the legitimate
SUs. In other words, the malicious node has access to the spectrum sensing data.
The malicious node’s intention is to launch an SSDF attack by transmitting false
spectrum sensing data to the other SUs, or to the SU operating as fusion center. It
can move freely within the field and can visit any of the locations where either the
PU or the SUs were or will be. In the case of eavesdropping, the malicious node is
assumed to be a passive adversary.

Time

PU Empty PU
Empty

PU

SU

Seed

Encrypted data

Phase I Phase II

Detection Cycle

Fig. 5.10 Spectrum sensing and link key generation during each detection cycle.

5.4.1 Secret key generation algorithm

In our proposed link key management algorithm, we will use the estimated GLR
decision statistic introduced before as a common seed for secret link key generation.
We assume that all the legitimate SUs employ the same spectrum sensing algorithm,
hence the decision statistic is already calculated at all the SUs. Below we first
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Fig. 5.11 Flow chart of the proposed algorithm.

provide an outline of our algorithm and then we detail the steps on how to generate
the secret link key from the decision statistic.

Algorithm outline

The flow chart of our algorithm is presented in Figure 5.11. The algorithm is
initialized at the first detection cycle, during Phase II. It is then repeated in Phase II
of every cycle.

As mentioned, our technique consists of a primary key distribution and a link key
generation algorithm. We assume that a primary secret key is pre-distributed to the
legitimate nodes. Using the information provided in the primary pre-distributed key,
our algorithm manipulates the samples collected by each legitimate SU during Phase
II, i.e., when SUs are sampling white noise. Doing so, the estimated decision statistic
at any two legitimate SUs will be very similar1, providing a common seed. This
manipulation process is performed by applying at the legitimate SUs a mathematical
operation on the collected samples, which can be as simple as a multiplication,
or more complex such as a nonlinear function. For simplicity, here we assume a
multiplication by a constant α , which, in the first cycle, coincides with one of the
pieces of information included in the primary secret key and is then updated in the
following cycles. Based on such samples, the decision statistic in (5.27) is computed.

Next, Ns samples are sequentially picked from the estimated decision statistic and
used as seed, S = [s1, . . . ,sNs]. S is shuffled, quantized using Nq bits and encoded to

1The seed used for link key generation (explained later) is not exactly the same, but it is similar
enough to act for link key generation. We will show that by plotting the bit mismatch rate between
the generated links keys in Section 5.4.2.
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generate a serial bit stream. An information reconciliation and privacy amplification
is applied to the generated serial bit stream in order to generate the final link key.
S is then used to generate the new α for the following detection cycle through a
pseudo-random number generator [144].

Counteracting SSDF and eavesdropping

The link key generated in one detection cycle is used in the two phases of the
following detection cycle. The aims are twofold.

1. To counteract SSDF: during Phase I of the following detection cycle, the SS
decision statistic estimated through (5.55) is encrypted with the generated link
key and transmitted to the fusion center. The fusion center being one of the
legitimate SU or another node having access to the spectrum has also generated
the link key. Hence, it decrypts the transmitted SS decision statistic sent from
legitimate nodes and easily filters out data sent from malicious nodes.

2. To counteract eavesdropping: once availability of an empty spectrum slot is
declared, legitimate SU start communicating. Data is encrypted using the
generated link key available at the legitimate SUs. An eavesdropper, which
does not have the key, will not be able to decrypt the transmitted data.

Primary key

As mentioned, the pre-distributed primary key is needed only once at the system set
up, or after a number of detection cycles. This primary key is not the secret link key
that will be used to encrypt the transmitted data. Rather, it contains some pieces of
information that will be used in the process of generating the secret link key at two
legitimate SUs. Specifically,

• the initial value of α;

• the set of the shuffled indices of the seed samples;

• the number of the compression function and universal hash function applied in
the information reconciliation and privacy amplification step;
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• the constants (β , γ and ρ) used in the process of generating the new value of
αn.

The number of quantization bits, Nq and the number of seed sample, NS are fixed
and given beforehand.

Seed generation

In Phase II, each legitimate SU listens to the spectrum and collects AWGN samples
before the entrance of the PU’s signal. The SU first multiplies the samples by
the initial value of α that is provided in the primary secret key, thus obtaining
yα [i] = αy[i]. Accordingly, distributions F0 and F1 change into N (0,α2(σ2

w +σ2
x ))

and N (0,α2σ2
w), respectively. We denote by Bα the decision statistic in (5.27) when

yα is used as input instead of y. Also, in Phase II, legitimate SUs may use either B or
Bα for signal detection; clearly, in the latter case, the threshold used for SS should
be adjusted accordingly.

Once Bα is available, the seed (S) is given by the Ns samples of Bα estimated
before the entrance of the PU’s signal. We will show that this seed does not depend
on the signal-to-noise ratio (SNR) at the legitimate SUs but it mainly depends on
α . This implies that, regardless of the received SNR, the generated seed can be
considered common to all legitimate SUs making it suitable for secret link key
generation.

Link key generation

The generation of the secret link key at legitimate users consists of the following
four steps.

1) Once estimated the common seed, its indices are shuffled according to a
sequence that is provided in the primary key. The main purpose of shuffling is to
increase the level of randomness of the seed.

2) Next, the shuffled seed has to be converted into a bit stream that is suitable
as link key. To quantize the seed samples, we use uniform quantization [145].
The number of quantization bits, Nq, determines the number of quantization levels,
L = 2Nq . The quantized decimal value is then converted into bits.
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3) Although uniform quantization is easy to implement, increasing the quantiza-
tion bit number dramatically degrades the performance of the algorithm since the Bit
Mismatch Rate (BMR) between two communicating SUs increases. To solve this
problem, we adopt the technique presented in [45]. There the authors proposed an
encoding algorithm and applied it on a uniformly quantized reciprocal link signatures.
On link signatures exhibiting a BMR up to 84.48%, their encoding scheme could
reduce the BMR to almost 4% thus leading to an excellent improvement.

4) The final step towards the link key generation is information reconciliation,
where the two legitimate SUs use a protocol, such as the one in [46], to minimize
the BMR between bit streams generated at two different SUs. In this protocol,
public communication over the channel must occur to correct the mismatched bits.
Consequently, some of the information will be leaked to the eavesdropper. Therefore,
information reconciliation is usually followed by data compression and universal
amplification where a universal compression function and a universal hash function
is selected randomly from a saved set and applied to the bit streams at both the
SUs [146]. The generated link key will then become shorter in length but higher
in entropy. In our algorithm, the number of the compression function as well as
the hash function is provided in the primary secret. It is worth noting that for the
information reconciliation step to be applied efficiently, the BMR after the encoding
step should not exceed a certain value, namely, 15% [146]. After this step, the link
key is generated and ready to be used to encrypt the transmitted data in the next
cycle.

At last, SUs have to compute a new value of α to be used in the next detection
cycle. To this end, the following operation is applied to the estimated seed:

SLGN = lnE [S]. (5.61)

SLGN is the input to the Linear Congruential Generator (LGN) – a pseudo random
number generator [144] requiring constants β , γ and ρ to compute the new value of
α as:

α = (βSLGN + γ)mod(ρ). (5.62)

where mod is the modulo operator. The constants β , γ and ρ are included in the
primary secret.
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We will use the root mean square error (RMSE) as the metric to evaluate the drift

in computing α between two legitimate SUs, i.e., RMSE =

√
E
[
(α|SU1 −α|SU2)

2
]
.

5.4.2 Results

We present the simulation results for our proposed key management algorithm. We
show the effect of multiplying the received samples by α on the estimated decision
statistic in Phase II. An example of shuffled seed is then illustrated. The effect
of change in SNR and α on the BMR of the generated link key is then presented.
We compare the bit mismatch and entropy rates of the key generated through our
algorithm to conventional channel based algorithm. In addition, we depict how the
value of α changes with different detection cycles.

Impact of α on seed generation

We start by presenting the impact of α on seed generation. Figure 5.12 shows the
simulation results obtained for Bα at the legitimate SUs, when α = 2.5 (top) and
5 (bottom), respectively. In both subfigures, the SNR is set to 15 dB at the first
legitimate SU, to 10 dB at the second, and 10 dB at the malicious node. Since
the malicious node does not know the value of α , it is assumed that it uses α = 1.
Although, the malicious node uses the same spectrum sensing technique, its decision
statistic before the entrance of the PU’s signal is almost zero making it unsuitable
for secret key generation. The change in SNR between the two legitimate SUs leads
to different values of Bα after the entrance of the PU’s signal, exhibiting higher
values as the SNR increases. Nevertheless, the seed S, which is zoomed-in in both
subfigures, is not affected by the different values of SNR, since it is generated from
the samples collected before the entrance of the PU’s signal. Rather, it is affected
only by the value of α . As α grows, the drift in the first 200 samples of B increases.
Moreover, S at both legitimate SUs is very similar. The samples used as seed at the
malicious node are close to zero, making them unsuitable for link key generation.
Furthermore, one can see that Bα can be used also to detect the entrance of the PU’s
signal instead of B, by properly adjusting the value of the threshold to account for
the effect of α .
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Fig. 5.12 Bα for α = 2.5 (top) and α = 5 (bottom) at two legitimate SUs, and B at the
malicious user. Bα and B are plotted as functions of time (400 samples, the seed is zoomed
in).
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Fig. 5.13 Shuffled S at the two legitimate SUs.

Seed shuffling

In Figure 5.13, we present a shuffled version of the samples of S. The shuffled
indices set is provided in the primary secret to the legitimate SUs. One can see that S
does not follow the continuously increasing pattern anymore. Rather, it is completely
randomized.

BMR

Next, Figure 5.14 shows the simulation results for the BMR of the link key extracted
at two legitimate SUs vs. the difference in SNR between the SUs. The SNR at
SU1 varies between 0 and 20 dB, while the SNR at SU2 is fixed at 10 dB. We set
α = 10 and use different numbers of quantization bits, namely, Nq = 4,6 and 8. We
compare the results of our proposed algorithm to conventional channel based secret
key generation algorithm [147]. Each BMR value is estimated through extensive
Monte Carlo simulation using 10,000 iterations. The results clearly show that the
change in SNR between the two SUs does not affect the performance of our link key
generation algorithm. As expected, as Nq increases, the BMR increases, however,
the achieved BMR after encoding is less than 10%. The achieved BMR before
information reconciliation and privacy amplification is well below the value provided
in [146] of 15%, thus leading to very good performance. The BMR achieved through
our algorithm shows comparable results to channel based physical layer security
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Fig. 5.14 BMR vs. the difference in SNR between the two legitimate SUs, for different
numbers of quantization bits.

scheme. However, unlike our proposed algorithm, the effect of change in SNR is
clear in channel based key generation algorithm. Furthermore, it is important to
stress that changing the value of α does not have much effect on the achieved BMR.
BMR results presented in Figure 5.15 highlight that the achieved BMR for α varying
between 5 and 30 is almost constant and equal to 44% before encoding, and to 11%
after encoding.

Entropy

Entropy is a measure of the level of randomness of the generated key. We compare the
entropy of the link key generated through our algorithm to channel based algorithm
[147] in Fig. 5.16 for Nq = 6 bits. The entropy rate achieved through our proposed
algorithm is comparable to that achieved by conventional channel based technique.

α vs. number of detection cycles

The way α evolves over time is depicted in Figure 5.17 (top), for α = 2, β = 18,
γ = 5, ρ = 200 and the SNRs at the two legitimate equal to 15 dB and 10 dB,
respectively. One can see that using the LGN makes the estimated α to fluctuate
randomly, which is exactly what we want in order to generate efficient link keys.
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Also, the results in Figure 5.17 (bottom) (obtained under the same settings) confirm
that the RMSE of α is very low.

How often should the primary key be distributed?

As stated earlier, a new primary key may need to be distributed when its effect on the
link key generation, through the parameter α , tends to dissolve. Then a reasonable
concern is about when a new primary key should be generated. Figure 5.18 depicts
the estimated α versus the number of detection cycles, for initial α = 2, β = 8, γ = 5
and ρ = 200 (top) and α = 2, β = 30, γ = 10 and ρ = 200 (bottom). From Figure
5.17 (top) and Figure 5.18, it can be inferred that the periodicity and randomness of



5.5 Conclusion 119

the newly generated α depends on the selection of the parameters2 β , γ , ρ and initial
α . Therefore, a new primary key is distributed whenever the value of α follows a
periodic pattern or does not fluctuate randomly from one detection cycle to the next
as desired.

A qualitative comparison

To counteract SSDF, reputation based techniques such as the ones presented in
[14, 148] require long time, i.e., many detection cycles, to build up a good reputation.
In addition, reputation is built based on the overall decision, which may be incorrect
in case of SSDF attacks launched by many malicious nodes. Non-reputation based
techniques such as [149–151], are also based on the assumption that the overall
decision is correct. On the other hand, our algorithm neither requires many detection
cycles to efficiently operate, nor it assumes the correctness of the overall decision.

Typical physical layer security techniques, such as [19], used to counteract
eavesdropping require extensive channel probing to generate a suitable link key. The
frequent channel probing requires multiple beacon exchange, synchronization and
employment of a channel estimation technique. In addition, they may need an initial
agreement on some parameters [19] as in our proposed technique. On the contrary,
our solution exploits the spectrum sensing data, which is already available at the
two legitimate nodes to extract the link key to make key exchange less frequent.
Thus, our algorithm requires a shorter time to generate the link key as well as much
lower computational complexity stemming from not deploying channel estimation
techniques.

5.5 Conclusion

In this chapter, we first presented literature reviews on spectrum sensing techniques
as well as security in cognitive radio networks. We conducted performance analysis
of likelihood ratio based spectrum sensing. Furthermore, we studied its performance
under residual self interference in full duplex CRN. We implemented general likeli-
hood ratio based spectrum sensing on WARP platform and compared its resource
utilization to both cyclo-stationary based as well energy detection spectrum sensing

2Refer to [144] for more details on the selection and limitations of the LGN parameters.
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techniques. We then proposed a general likelihood ratio based techniques that can
operate for both detection of the entrance of primary users and empty spectrum slots.
Hence, reducing the computational complexity.

We then explored a novel idea of exploiting general likelihood ratio based
spectrum sensing collected data for secret key generation. Our presented algorithm
is designed to counteract two popular attacks on cognitive radio networks, which are
spectrum sensing data falsification and eavesdropping. We presented all steps needed
to extract the secret key from the collected data. Our algorithm is designed such
that it does not interrupt the spectrum sensing operation. Furthermore, no beacon
exchange is needed in our algorithm. Hence, increasing spectrum usage efficiency.



Chapter 6

Conclusion and Future Work

Conventional cryptographic techniques depend on distribution of shared secret key,
which requires a complex key management scheme in the case of symmetric ciphers
and high computational complexity in the case of asymmetric ciphers, particularly in
large networks due to scalability issues. In addition, due to the broadcast nature of
the wireless network, key exchange becomes a security threat. Hence, key reuse was
introduced.

In the recent years, exploiting characteristics of the physical layer between the
two communicating nodes was proposed for secret key generation. Such character-
istics are common between the two legitimate nodes and unknown to unintended
nodes, i.e., eavesdroppers. By exploiting common physical layer characteristics,
key exchange is no longer required and a new secret key can be possibly generated
for every packet transmission rendering the secrecy potential higher than upper
layers cryptographic methods while maintaining lower computational complexity. In
addition, key management center is no longer required.

The most widely used physical layer characteristic for secret key generation is
the wireless channel. One well known characteristic of the communication channel
is reciprocity. When two antennas communicate by radiating the same signal through
a linear and isotropic channel, the received signals by each antenna will be identical.

In chapter two, we first presented a survey on common physical layer character-
istics used for secret key generation. In addition, we presented the common steps
used to extract the secret key from the common physical layer characteristic. We
investigated both statistical and information theoretic metrics used to evaluate the
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generated secret key. As a conclusion to the literature survey, we found out that
high key generation rate is one main advantage of exploiting channel randomness
for secret key generation. On the other hand, a major drawback is that additive white
Gaussian noise, interference and channel estimation errors at the receivers of both
legitimate nodes cause a high bit mismatch rate between the keys generated at the
two nodes, which limits the use of secret key generation based on channel estimates
to medium and high level of signal to noise ratios. This motivated the need for
developing novel techniques that overcome such shortcoming.

In chapter three, we proposed a novel algorithm that exploits both channel gain
and phase to create secondary random processes, which are then used to extract
the secret key. We investigated the distribution of the secondary random process.
Furthermore, we computed the probabilities used for secret key capacity estimation.
Our proposed algorithm reduced the bit mismatch rate by up to 25%. On the other
hand, our proposed algorithm slightly reduced the entropy of the generated secret
key. This issue was overcome by fusing both channel gain and phase secret key bits.
Not only the fusion process increased the entropy of the generated secret key, but
also increased the generated key length as well as reduced the overall bit mismatch
rate since we dropped the least significant bits before the fusion process. The least
significant bits are known to highly contribute to the bit mismatch. In addition, our
proposed secondary random process based secret key generation algorithm is easy to
implement.

Although our channel secondary random process presented in chapter three
improved the bit mismatch rate, i.e., increased the dynamic range of the system,
channel based secret key generation algorithms are still limited to signal to noise ratio
levels higher than 0 dB. For certain applications, the operational range will be lower
than 0 dB. Hence, it was essential to introduce a new physical layer characteristic
that can be estimated with high accuracy at low signal to noise ratio levels. Therefore,
in chapter four we investigated exploiting the angle of arrival as a common source of
randomness for secret key generation. One obstacle that we met was that angle of
arrival estimation systems have high implementation and computation complexities.
This motivated our work on developing a novel angle of arrival estimation system
that has low hardware and computation complexities yet can operate with acceptable
accuracy at low signal to noise ratio levels. We designed our cross correlation
switched beam system that has comparable performance to one of the best literature
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angle of arrival estimation algorithm, yet uses a single receiver and has negligible
computation complexity.

On the other hand, cognitive radio networks are designed to increase the efficiency
of spectrum usage by exploiting unused spectrum slots. Secondary users sense the
spectrum to detect transmission opportunities, i.e., spectrum slots that are not used
by primary users. Similar to other networks, cognitive radio networks are susceptible
to security attacks such as spectrum sensing data falsification and eavesdropping.
However, due to the peculiarity of cognitive radio networks, conventional physical
layer security schemes are not typically applied. This is due to the beacon exchange
process, which requires time that is not acceptable from the perspective of a secondary
user who wants to tap into the spectrum slot as soon as it is available. Therefore, we
first conducted a performance analysis on general likelihood ratio based as well as
developed a new technique that can be used in detection of empty spectrum slots as
well as PU entrance. We then developed an algorithm that exploits spectrum sensing
data already collected by secondary user to generate a link key. The link key is then
used to encrypt the transmitted data. Our developed algorithm neither interrupts the
spectrum sensing process nor requires additional time for beacon exchange, hence
suitable for cognitive radio networks.

6.1 Roadmap to the Future

Hybridization for key generation

As mentioned earlier, nodes can always benefit from estimating multiple common
sources of randomness simultaneously. As shown earlier in the case of using both
channel gain and phase to generate the secret key. The problem of combining
multiple common sources of randomness whether as raw data or bit streams remains
an open research direction. Different hybridization (i.e., combining) functions can
be applied on the multiple common sources of randomness with the objective of
minimizing the bit mismatch rate and maximizing the key entropy. In addition to
that, exploiting multiple common sources of randomness adds an extra degree of
freedom to the legitimate nodes since the function, which they will apply on the
common sources of randomness will be hidden from the eavesdropper.

Towards convergence of physical layer and cryptographic secrecy
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Till date, the two worlds of physical layer secrecy and cryptographic secrecy
speaks two different languages. While the former can only measure a non–vanishing
secrecy capacity under the assumptions of infinitely long keys without any key reuse
and assuming an infinite computation capabilities for the eavesdropper, the latter
measures secrecy under finite computational capabilities of the eavesdropper, finite
key lengths and mandatory key reuse. It would be highly desirable to find a way
to converge the two worlds in order to allow for practical comparisons between
conventional cryptographic methods and relatively recent physical layer secrecy
based methods. There is a potential to move the information theoretic measures
of the physical layer based methods towards more practical measures using some
approximate representations of secrecy capacity under certain allowable probabilities
of key breaking by the eavesdropper providing promising results towards arriving at
common secrecy measures that can be used by the two worlds.

Secret key generation in static environment

For channel based secret key generation techniques, static environments cause
key generation rate to drop significantly. This issue remains a challenging issue
within the context of secret key generation. Random beamforming was proposed
as a solution to this issue. However, this requires the employment of smart antenna
system, which increases the hardware complexity of significantly. Therefore, it is
of great interest to develop new techniques for channel based secret key generation
and/or exploit new physical layer characteristics to overcome the issue of static
environments.

Exploiting full duplex communication for key generation

The vast majority of existing secret key generation algorithm assume half duplex
communication. Recently, research in full duplex communication has attracted a
significant interest from the research community. One main advantage of generat-
ing a secret key using full duplex radios is that beacon exchange between the two
communication nodes during the coherence time of the channel can occur simulta-
neously. Hence, increasing the secret key rate. In addition, the collected signal at
the eavesdropper side is a superposition of the two exchanged signals, which may
enhance security. More work is needed in this area to model and analyze effect of
full duplex communication for secret key generation.

Secret key generation in 5G
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Millimeter wave communication, massive multiple input multiple outputs (MIMO)
communication and high mobility are integral parts of 5G standard. From the per-
spective of secret key generation, these can be thought of as both challenges and
opportunities. One main advantage of millimeter wave communication is that signal
fades a lot faster with distance than low frequency signals. Hence, an eavesdropper
may receive deteriorated version of the signal, which shall enhance security. Higher
key generation rate is expected with massive MIMO systems.

Security in cognitive radio networks

Due to the peculiarity of cognitive radio networks, conventional cryptographic
and physical layer security schemes may not be suitable for it. We presented a novel
algorithm that exploits the already collected general likelihood ratio based spectrum
sensing data for secret key generation. It is essential develop more techniques to
exploit spectrum sensing data collected through different spectrum sensing tech-
niques and/or exploit other common sources of randomness that are shared between
legitimate secondary users.
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