4,618 research outputs found

    Multiple Resolution Nonparametric Classifiers

    Get PDF
    Bayesian discriminant functions provide optimal classification decision boundaries in the sense of minimizing the average error rate. An operational assumption is that the probability density functions for the individual classes are either known a priori or can be estimated from the data through the use of estimating techniques. The use of Parzen- windows is a popular and theoretically sound choice for such estimation. However, while the minimal average error rate can be achieved when combining Bayes Rule with Parzen-window density estimation, the latter is computationally costly to the point where it may lead to unacceptable run-time performance. We present the Multiple Resolution Nonparametric (MRN) classifier as a new approach for significantly reducing the computational cost of using Parzen-window density estimates without sacrificing the virtues of Bayesian discriminant functions. Performance is evaluated against a standard Parzen-window classifier on several common datasets

    A probabilistic approach to emission-line galaxy classification

    Get PDF
    We invoke a Gaussian mixture model (GMM) to jointly analyse two traditional emission-line classification schemes of galaxy ionization sources: the Baldwin-Phillips-Terlevich (BPT) and WHα\rm W_{H\alpha} vs. [NII]/Hα\alpha (WHAN) diagrams, using spectroscopic data from the Sloan Digital Sky Survey Data Release 7 and SEAGal/STARLIGHT datasets. We apply a GMM to empirically define classes of galaxies in a three-dimensional space spanned by the log\log [OIII]/Hβ\beta, log\log [NII]/Hα\alpha, and log\log EW(Hα{\alpha}), optical parameters. The best-fit GMM based on several statistical criteria suggests a solution around four Gaussian components (GCs), which are capable to explain up to 97 per cent of the data variance. Using elements of information theory, we compare each GC to their respective astronomical counterpart. GC1 and GC4 are associated with star-forming galaxies, suggesting the need to define a new starburst subgroup. GC2 is associated with BPT's Active Galaxy Nuclei (AGN) class and WHAN's weak AGN class. GC3 is associated with BPT's composite class and WHAN's strong AGN class. Conversely, there is no statistical evidence -- based on four GCs -- for the existence of a Seyfert/LINER dichotomy in our sample. Notwithstanding, the inclusion of an additional GC5 unravels it. The GC5 appears associated to the LINER and Passive galaxies on the BPT and WHAN diagrams respectively. Subtleties aside, we demonstrate the potential of our methodology to recover/unravel different objects inside the wilderness of astronomical datasets, without lacking the ability to convey physically interpretable results. The probabilistic classifications from the GMM analysis are publicly available within the COINtoolbox (https://cointoolbox.github.io/GMM\_Catalogue/).Comment: Accepted for publication in MNRA
    corecore