1,237 research outputs found

    Option-pricing in incomplete markets: the hedging portfolio plus a risk premium-based recursive approach

    Get PDF
    Consider a non-spanned security CTC_{T} in an incomplete market. We study the risk/return tradeoffs generated if this security is sold for an arbitrage-free price C0^\hat{C_{0}} and then hedged. We consider recursive "one-period optimal" self-financing hedging strategies, a simple but tractable criterion. For continuous trading, diffusion processes, the one-period minimum variance portfolio is optimal. Let C0(0)C_{0}(0) be its price. Self-financing implies that the residual risk is equal to the sum of the one-period orthogonal hedging errors, tTYt(0)er(Tt)\sum_{t\leq T} Y_{t}(0) e^{r(T -t)}. To compensate the residual risk, a risk premium ytΔty_{t}\Delta t is associated with every YtY_{t}. Now let C0(y)C_{0}(y) be the price of the hedging portfolio, and tT(Yt(y)+ytΔt)er(Tt)\sum_{t\leq T}(Y_{t}(y)+y_{t}\Delta t)e^{r(T-t)} is the total residual risk. Although not the same, the one-period hedging errors Yt(0)andYt(y)Y_{t}(0) and Y_{t}(y) are orthogonal to the trading assets, and are perfectly correlated. This implies that the spanned option payoff does not depend on y. Let C0^C0(y)\hat{C_{0}}-C_{0}(y). A main result follows. Any arbitrage-free price, C0^\hat{C_{0}}, is just the price of a hedging portfolio (such as in a complete market), C0(0)C_{0}(0), plus a premium, C0^C0(0)\hat{C_{0}}-C_{0}(0). That is, C0(0)C_{0}(0) is the price of the option's payoff which can be spanned, and C0^C0(0)\hat{C_{0}}-C_{0}(0) is the premium associated with the option's payoff which cannot be spanned (and yields a contingent risk premium of sum ytΔy_{t}\Deltater(Tt) e^{r(T-t)} at maturity). We study other applications of option-pricing theory as well

    On the Exact Solution of the Multi-Period Portfolio Choice Problem for an Exponential Utility under Return Predictability

    Full text link
    In this paper we derive the exact solution of the multi-period portfolio choice problem for an exponential utility function under return predictability. It is assumed that the asset returns depend on predictable variables and that the joint random process of the asset returns and the predictable variables follow a vector autoregressive process. We prove that the optimal portfolio weights depend on the covariance matrices of the next two periods and the conditional mean vector of the next period. The case without predictable variables and the case of independent asset returns are partial cases of our solution. Furthermore, we provide an empirical study where the cumulative empirical distribution function of the investor's wealth is calculated using the exact solution. It is compared with the investment strategy obtained under the additional assumption that the asset returns are independently distributed.Comment: 16 pages, 2 figure

    Option-Pricing in Incomplete Markets: The Hedging Portfolio plus a Risk Premium-Based Recursive Approach

    Get PDF
    Consider a non-spanned security C_{T} in an incomplete market. We study the risk/return trade-offs generated if this security is sold for an arbitrage-free price C₀ and then hedged. We consider recursive "one-period optimal" self-financing hedging strategies, a simple but tractable criterion. For continuous trading, diffusion processes, the one-period minimum variance portfolio is optimal. Let C₀(0) be its price. Self-financing implies that the residual risk is equal to the sum of the one-period orthogonal hedging errors, ∑_{t≤T}Y_{t}(0)e^{r(T-t)}. To compensate the residual risk, a risk premium y_{t}Δt is associated with every Y_{t}. Now let C₀(y) be the price of the hedging portfolio, and ∑_{t≤T}(Y_{t}(y)+y_{t}Δt)e^{r(T-t)} is the total residual risk. Although not the same, the one-period hedging errors Y_{t}(0) and Y_{t}(y) are orthogonal to the trading assets, and are perfectly correlated. This implies that the spanned option payoff does not depend on y. Let C₀=C₀(y). A main result follows. Any arbitrage-free price, C₀, is just the price of a hedging portfolio (such as in a complete market), C₀(0), plus a premium, C₀-C₀(0). That is, C₀(0) is the price of the option's payoff which can be spanned, and C₀-C₀(0) is the premium associated with the option's payoff which cannot be spanned (and yields a contingent risk premium of ∑y_{t}Δte^{r(T-t)} at maturity). We study other applications of option-pricing theory as wellOption Pricing; Incomplete Markets

    Option-Pricing in Incomplete Markets: The Hedging Portfolio plus a Risk Premium-Based Recursive Approach

    Get PDF
    Consider a non-spanned security CT in an incomplete market. We study the risk/return tradeoffs generated if this security is sold for an arbitrage-free price bC0 and then hedged. We consider recursive “one-period optimal” self-financing hedging strategies, a simple but tractable criterion. For continuous trading, diffusion processes, the one-period minimum variance portfolio is optimal. Let C0(0) be its price. Self-financing implies that the residual risk is equal to the sum of the oneperiod orthogonal hedging errors, Pt=T Yt(0)er(T -t). To compensate the residual risk, a risk premium yt.t is associated with every Yt. Now let C0(y) be the price of the hedging portfolio, and Pt=T (Yt(y) + yt.t) er(T -t) is the total residual risk. Although not the same, the one-period hedging errors Yt(0) and Yt(y) are orthogonal to the trading assets, and are perfectly correlated. This implies that the spanned option payoff does not depend on y. Let bC0 = C0(y). A main result follows. Any arbitrage-free price, bC0, is just the price of a hedging portfolio (such as in a complete market), C0(0), plus a premium, bC0 - C0(0). That is, C0(0) is the price of the option’s payoff which can be spanned, and bC0 - C0(0) is the premium associated with the option’s payoff which cannot be spanned (and yields a contingent risk premium of Pyt.ter(T -t) at maturity). We study other applications of option-pricing theory as well.

    On the Equivalence of Quadratic Optimization Problems Commonly Used in Portfolio Theory

    Full text link
    In the paper, we consider three quadratic optimization problems which are frequently applied in portfolio theory, i.e, the Markowitz mean-variance problem as well as the problems based on the mean-variance utility function and the quadratic utility.Conditions are derived under which the solutions of these three optimization procedures coincide and are lying on the efficient frontier, the set of mean-variance optimal portfolios. It is shown that the solutions of the Markowitz optimization problem and the quadratic utility problem are not always mean-variance efficient. The conditions for the mean-variance efficiency of the solutions depend on the unknown parameters of the asset returns. We deal with the problem of parameter uncertainty in detail and derive the probabilities that the estimated solutions of the Markowitz problem and the quadratic utility problem are mean-variance efficient. Because these probabilities deviate from one the above mentioned quadratic optimization problems are not stochastically equivalent. The obtained results are illustrated by an empirical study.Comment: Revised preprint. To appear in European Journal of Operational Research. Contains 18 pages, 6 figure

    A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability

    Get PDF
    We present a simulation-based method for solving discrete-time portfolio choice problems involving non-standard preferences, a large number of assets with arbitrary return distribution, and, most importantly, a large number of state variables with potentially path-dependent or non-stationary dynamics. The method is flexible enough to accommodate intermediate consumption, portfolio constraints, parameter and model uncertainty, and learning. We first establish the properties of the method for the portfolio choice between a stock index and cash when the stock returns are either iid or predictable by the dividend yield. We then explore the problem of an investor who takes into account the predictability of returns but is uncertain about the parameters of the data generating process. The investor chooses the portfolio anticipating that future data realizations will contain useful information to learn about the true parameter values.

    A short note on the problematic concept of excess demand in asset pricing models with mean-variance optimization

    Get PDF
    Referring to asset pricing models where demand is proportional to excess returns and said to be derived from a mean-variance optimization problem, the note formulates what probably is common knowledge but hardly ever made an explicit subject of discussion. This is an insufficient distinction between the desired holding of the risky asset on the part of the speculative agents, which is the solution to the optimization problem and usually directly presented as excess demand, and the desired change in this holding, which is what should reasonably constitute the excess demand on the market. The note arrives at the conclusion that in models with a market maker the story of the maximization of expected wealth should be dropped

    A Closed-Form Solution of the Multi-Period Portfolio Choice Problem for a Quadratic Utility Function

    Full text link
    In the present paper, we derive a closed-form solution of the multi-period portfolio choice problem for a quadratic utility function with and without a riskless asset. All results are derived under weak conditions on the asset returns. No assumption on the correlation structure between different time points is needed and no assumption on the distribution is imposed. All expressions are presented in terms of the conditional mean vectors and the conditional covariance matrices. If the multivariate process of the asset returns is independent it is shown that in the case without a riskless asset the solution is presented as a sequence of optimal portfolio weights obtained by solving the single-period Markowitz optimization problem. The process dynamics are included only in the shape parameter of the utility function. If a riskless asset is present then the multi-period optimal portfolio weights are proportional to the single-period solutions multiplied by time-varying constants which are depending on the process dynamics. Remarkably, in the case of a portfolio selection with the tangency portfolio the multi-period solution coincides with the sequence of the simple-period solutions. Finally, we compare the suggested strategies with existing multi-period portfolio allocation methods for real data.Comment: 38 pages, 9 figures, 3 tables, changes: VAR(1)-CCC-GARCH(1,1) process dynamics and the analysis of increasing horizon are included in the simulation study, under revision in Annals of Operations Researc
    corecore