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Abstract

Consider a non-spanned security CT in an incomplete market. We study the risk/return trade-

offs generated if this security is sold for an arbitrage-free price bC0 and then hedged. We consider
recursive “one-period optimal” self-financing hedging strategies, a simple but tractable criterion.

For continuous trading, diffusion processes, the one-period minimum variance portfolio is optimal.

Let C0(0) be its price. Self-financing implies that the residual risk is equal to the sum of the one-

period orthogonal hedging errors,
P

t≤T Yt(0)e
r(T−t). To compensate the residual risk, a risk

premium yt∆t is associated with every Yt. Now let C0(y) be the price of the hedging portfolio,

and
P

t≤T (Yt(y) + yt∆t) er(T−t) is the total residual risk. Although not the same, the one-period

hedging errors Yt(0) and Yt(y) are orthogonal to the trading assets, and are perfectly correlated.

This implies that the spanned option payoff does not depend on y.

Let bC0 = C0(y). A main result follows. Any arbitrage-free price, bC0, is just the price of a
hedging portfolio (such as in a complete market), C0(0), plus a premium, bC0 − C0(0). That is,

C0(0) is the price of the option’s payoff which can be spanned, and bC0 − C0(0) is the premium

associated with the option’s payoff which cannot be spanned (and yields a contingent risk premium

of
P

yt∆te
r(T−t) at maturity). We study other applications of option-pricing theory as well.
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1 Introduction

In an incomplete market there is not a replicating portfolio for those non-spanned securities, and thus,

one cannot apply the law of one price, and obtain a unique solution. On the contrary, there are an

upper and a lower arbitrage bound, which contain the non arbitrage prices (see Merton (1973)). One

must make further assumptions to select one of these prices, or to constrain the arbitrage bounds.

Consider a non-spanned option CT with maturity T . Let C−0 and C+0 be the arbitrage bounds.

We study the risk/return trade-offs generated if this security is sold for bC0 ∈ ¡C−0 , C+0 ¢ and then
hedged. We consider recursive “one-period optimal” self-financing hedging strategies, a simple but

tractable criterion. For continuous trading, diffusion processes, the one-period hedging errors are

Gaussian. This implies that the one-period minimum variance portfolio, bht+1, is optimal, and, in
this case, is the unique one-period hedging criterion. Let X

bht+1
t be its price at time t.

We now connect pricing with hedging. For every t ∈ {0,∆t, ..., T −∆t}, we recursively define an
option price process Ct(y) = X

bht+1
t +yt∆t, where yt is a risk premium associated with the one-period

hedging error Y bht+1(y) = X
bht+1
t+1 −Ct+1(y). Note that Ct(0) and Y

bh
t+1(0) are the option price and the

hedging error, respectively, if all risk premiums are zero (i.e., y = 0).

Self-financing implies that the residual risk is equal to the sum (financed to the riskless rate r) of

the one-period orthogonal hedging errors and their associated risk premiums,
PT−1

t=0 Y
bh
t+1(y)e

r(T−t)+PT−1
t=0 yt∆te

r(T−t), which can be considered separately. Although the errors Y bht+1(y) and Y
bh
t+1(0) are

not the same if y 6= 0, they are orthogonal to the trading assets, and are perfectly correlated. This
implies that the spanned option payoff does not depend on the process y.

Now, let bC0 = C0(y). Two main results follow.

1. Any arbitrage-free price, bC0, is just the price of a hedging portfolio (such as in a complete
market), C0(0), plus a premium, bC0 −C0(0). That is, C0(0) is the price of the option’s payoff

which can be spanned, and bC0−C0(0) is the premium associated with the option’s payoff which
cannot be spanned (and yields a contingent risk premium of

PT−1
t=0 er(T−t)yt∆t at maturity).

2. As we do not advocate a specific risk premium y, we do not provide a unique price bC0. We
derive (as bht is one-period optimal) an optimal frontier in the “non arbitrage option prices/risk
premiums” space (i.e., y → C0(y)), and it is the final user who provides the risk premium y.

In brief, our model reduces pricing in incomplete markets to the explicit valuation of a one-period

orthogonal diffusion risk. One can constrain C0(y) by constraining y; parametrize y(λ), λ ∈ R;
compute the elasticity 1

C0(y)
dC0(y(λ))

dλ ; define an upper (lower) bound if y ≥ 0 (y ≤ 0).
In addition, we explicitly obtain the latter price decomposition which can be applied to a complete

market or to risk-neutral pricing. Moreover, y does not need to depend on a price of risk, differing

from a complete market and risk-neutral pricing, a flexibility which can be used to fit volatility smiles.
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Our model is tractable because it is based in recursive one-period optimal portfolios, and allows us

to study other option-pricing applications such as risk management, American-style payoffs, portfolio

constraints, etc. Our model is related to other approaches as will be demonstrated.

There are important pricing approaches in incomplete markets, including the equilibrium or utility

maximization-based approach (see Rubinstein (1976)); to consider prices of risk associated with non-

traded state variables (see Heston (1993)); to compute an optimal hedging portfolio, whose price is

then the desired incomplete market price (Merton (1998)); to use a risk/reward criterion, such as the

gains-to-losses ratio (Bernardo and Olivier (2000)) or the Sharpe ratio (Cochrane and Saá-Requejo

(2000)). See also Carr et al. (2001), Cerný (2003), and references therein for other models.

Next, we describe the main results of our approach. First, recursive prices are consistent with

recursive one-period optimal self-financing hedging strategies. A related approach is that based on

fully optimal dynamic strategies.1 This literature has indeed raised the issue of partially or fully

optimal hedging, and focuses more on hedging than pricing. The main limitation of a fully optimal

criterion is tractability. In our approach, e.g., multifactor models are feasible to analyze.

Second, the residual risk is equal to the sum of the one-period errors plus the risk premiums,

and can be used for risk management (to compute moments, tails, etc.). In addition, it conveys

a contingent risk premium. If we specify that larger one-period risk premiums are associated with

more volatile or risky hedging errors, then a sample path of large (small) one-period hedging errors is

associated, in probability, with a path of large (small) risk premiums. Therefore, these risk premiums

are a risk management tool. Further, the residual risk can be used empirically to study market

incompleteness, to extract prices of risk, or to study risk/return trade-offs in derivative markets.

Third, in continuous-time, diffusion processes, the hedging strategy is unique and thus recursive

prices differ only in the one-period risk premiums. This result allows us to relate our model to

option-pricing theory. In a complete market, the risk premium of every state variable depends on a

price of risk to avoid arbitrage. Here, this constraint does not necessarily apply to the residual risk.

This pricing flexibility differentiates a complete market, and risk-neutral pricing, from an incom-

plete market, and allows us to better fit volatility smiles in option markets. (Certainly, we are pricing

securities separately. If, later, these securities are traded, these risk premiums will depend on a price

of risk.) In Merton (1998) and Cochrane and Saá-Requejo (2000), which are recursive methods also,

the risk premium yt is equal to zero and is proportional to the residual risk volatility, respectively.2

Fourth, recursive prices are easily characterized through PDE’s equations or a risk-neutral dy-

1See Duffie and Richardson (1991), Schweizer (1992), Heath et al. (2001), Bertsimas et al. (2001), among others;

e.g., Duffie and Richardson (1991) study lognormal processes. Heath et al. (2001) focus on stochastic volatility models.
2Merton (1998, 333) argues that the one-period risk premium should be zero, since the residual risk is orthogonal

with the traded assets and therefore with the equilibrium market portfolio. Equilibrium models, however, are not

empirically supported in general. I thank Robert L. McDonald for pointing out this reference.
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namic. Then, option-pricing applications are like those of continuous-time complete markets models,

studied by the literature in detail. For example, both the hedging portfolio and the volatility of the

residual risk depend linearly on the option’s Deltas, which can be used for risk management.3

Fifth, recursive prices are equal to the price of a hedging portfolio, C0(0), plus a premium, bC0 −
C0(0). We explicitly obtain this decomposition. C0(0) is given by a proper risk-neutral expectation

of the discounted option payoff. This pricing measure is the so-called Minimal Martingale measure,

Qh. This result allows us to explicitly separate the pricing of the risk which can be hedged from the

pricing of the risk which cannot be hedged in a dynamic context.

We derive further results from this decomposition. Let r be the risk-free interest rate. Then,

bC0 = EQh

0

£
e−rTCT

¤
+EQh

0

·Z T

0
e−rtytdt

¸
.

The first part is the price of the hedging portfolio. The second is the premium which depends on y.

Let y depend on λ ∈ R. The option price elasticity is given by dC0
dλ = d

dλE
Qh

0

hR T
0 e−rtyt(λ)dt

i
.

By using this decomposition, we can define an upper and a lower bound by

Ct = EQh

t

h
e−r(T−t)CT

i
+ aEQh

t

·Z T

t
e−r(s−t)ysds

¸
,

where a = +1 (a = −1) for the upper (lower) bound. Assume that ys ≥ 0, s ∈ [0, T ]. The

upper bound is larger than the lower bound. Moreover, under technical conditions, under the Qh

probability measure, the discounted upper (lower) bound is a super-martingale (sub-martingale),

and the discounted price of the hedging portfolio, EQh

t

£
e−rTCT

¤
, is the martingale component. This

result is related to Ross (1978) and Harrison and Kreps (1979), but in incomplete markets.4

We are also interested in option-pricing from a portfolio perspective. In a complete market, the

price of a portfolio of (any kind of) n securities is equal to the sum of the n individual prices, as linear

pricing. In an incomplete market, the portfolio can be less expensive if there is some diversification.

We apply the decomposition to a portfolio of n European securities, Cp
T =

³
C
(1)
T , C

(2)
T , ..., C

(n)
T

´
,

nX
i=1

C
(i)
0 =

nX
i=1

EQh

0

h
e−rTC(i)T

i
+

nX
i=1

EQh

0

"Z T (i)

0
e−rty(i)t dt

#
and

Cp
0 =

nX
i=1

EQh

0

h
e−rTC(i)T

i
+EQh

0

·Z T

0
e−rtypt dt

¸
,

where y(i)t and ypt are the risk premium of every security and of portfolio p, respectively. Both prices

differ only in the valuation of the residual risk. If the underlying securities are not (instantaneously)

perfectly correlated, there is some diversification in the (instantaneous) residual risk of portfolio p,

and consequently, ypt ≤
Pn

i=1 y
(i)
t is a sensible specification for all t. That is, Cp

0 is cheaper.

3See also Bertsimas et al. (2000) and Heath et al. (2001) for more on multiperiod residual risks.
4 In a complete market, a decomposition result, in an equivalent European option plus an early exercise premium,

also holds for American-style securities which are super-mantingales under the pricing measure (see Carr et al. (1992)).
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American-style securities and portfolio constraints are problems which have not been addressed in

incomplete markets in general. For instance, one must rely on numerical methods to price American

options even in a complete market. A recursive multiperiod model is a series of one-period models,

easily to analyze. We adapt the one-period definition to American options. The one-period portfolio

hedges the maximum of the option value and the exercise value in the next period. The same way,

the one-period risk premium compensates the remaining one-period residual risk.5

Assume short-selling constraints. We can derive a volatility smirk for in-the-money put options

in the standard Black-Scholes and Cox-Ross-Rubinstein binomial models. In-the-money put options

cannot be perfectly hedged (especially short-term options) if there are short-selling constraints. It

is an example of market incompleteness due to market frictions. Thus, it is intuitive to assume a

positive risk premium associated with the residual risk. The deeper the option in-the-money, the

larger the residual risks and consequently the larger the risk premiums and the volatility smirk.

The paper is organized as follows. Section 2 presents the one-period incomplete market model.

Section 3 studies recursive bounds in multiperiod discrete-time incomplete markets. Section 4 studies

recursive bounds in continuous-time incomplete markets for diffusion processes, and Section 5 solves a

few examples under basis risk, stochastic volatility, and short-selling constraints. Section 6 concludes.

2 The One-period Model

Assume the standard one-period model of financial economics. Let t be the initial period and t+ 1

be the final period. Let K be the number of states, Ω = {ω1, ω2, ..., ωK} the state space, and Pt

the true probability measure, with Pt(ω) > 0 for all ω ∈ Ω. There exists a risk-free asset with price
process S0t = 1 and S

0
t+1 = 1+ r > 0, and N risky assets with initial prices St = {S1t , S2t , ..., SN

t } and
final prices St+1 = {S1t+1, S2t+1, ..., SN

t+1}, which are defined on the space state Ω. Assume that there
are no arbitrage opportunities. The objective is to determine the price Ct of a contingent claim, with

a final-period payoff given by Ct+1.

Let H be the portfolio’s or trading strategy’s space. In particular, there are no constraints on

this space (i.e., H = RN+1). Let ht+1 = (h0t+1, h
1
t+1, ..., h

N
t+1), for ht+1 ∈ H and ht+1 chosen at time

t, be a (hedging) portfolio with value process Xh = {Xh
t , X

h
t+1}; i.e., Xh

t = h0t+1+
PN

n=1 h
n
t+1S

n
t and

Xh
t+1 = h0t+1(1 + r) +

PN
n=1 h

n
t+1S

n
t+1. Assume that this market is incomplete (i.e., K > N + 1) and

that the payoff Ct+1 is not replicable. Equivalently, there does not exist a portfolio ht+1 such that

Xh
t+1(ω) = Ct+1(ω) for all ω ∈ Ω. Let C−t and C+t be the two arbitrage bounds of this security, which

solve two linear programs (see Ingersoll (1987) or Pliska (1997)). Then the price Ct must satisfy that

C−t < Ct < C+t to avoid arbitrage opportunities.
6

5American options can be priced by simulation (e.g., Longstaff and Schwartz (2001)) using the risk-neutral dynamic.
6An example and source of market incompleteness are portfolio constraints and transaction costs. However, to
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2.1 A Hedging Portfolio plus a Risk Premium-Based Approach

Let Y h
t+1, the hedging error or residual risk produced by the portfolio ht+1, be defined as

Y h
t+1 = Xh

t+1 −Ct+1. (1)

Let bht+1 be an optimum portfolio associated with a hedging criterion f(Y h
t+1); i.e.,bht+1 = arg min{ht+1}

f(Y h
t+1), (2)

and X
bh
t its price. We do not specify the function f().

It is convenient to assume (we do it in the next subsection) that bht+1 satisfies C−t < X
bh
t < C+t ,

which is equivalent to that the hedging error Y bht+1 is positive for some states and negative for others
if the model is arbitrage free, as we assume. For example, a hedging portfolio with a zero expected

hedging error (i.e., EP
t

£
Y h
t+1

¤
= 0) satisfies this constraint as it has both positive and negative errors.

Let yt be a risk premium associated with Y
bh
t+1. Assume that yt does not introduce arbitrage

opportunities, i.e., C−t −X
bh
t < yt < C+t −X

bh
t . Equivalently, C

−
t < X

bh
t + yt < C+t and thus Xbh

t + yt

is an arbitrage free price. In particular, yt can be equal to zero if this risk is not priced.

Let C−t < X
bh
t + yt < C+t . This paper defines the incomplete market price of Ct as the price of

the hedging portfolio, Xbh
t , plus the risk premium, yt; i.e.,

Ct = X
bh
t + yt. (3)

Note that the price Ct in equation (3) is computed in two steps. First, X
bh
t corresponds formally with

the application of the law of one price nonarbitrage condition if we assume that the residual risk is

zero. Second, we add the risk premium yt to compensate the residual risk Y
bh
t+1.

Moreover, yt should be invested in riskless bonds to not change the properties of the optimal

portfolio bht+1. Again, we define the hedging strategy as bh0 + yt bonds and bhn risky assets for
n = 1, 2, ..., N. Therefore, the total risk assumed by the writer of this security is

X
bh
t+1 −Ct+1 + yt(1 + r) = Y

bh
t+1 + yt(1 + r). (4)

In an incomplete market, one is interested in defining two bounds, an upper (lower) bound, Cs
t

(Cl
t), obtained when hedging the short (long) position; i.e., −Ct+1 (Ct+1). Moreover, these bounds

should satisfy Cs
t ≥ Cl

t to make economic sense. Consider two optimal hedging portfolios, bht+1(s) andbht+1(l), and two risk premiums, yst and ylt, associated with the hedging errors Y bh(s)t+1 =
³
X
bh(s)
t+1 −Ct+1

´
and Y

bh(l)
t+1 = −

³
X
bh(l)
t+1 −Ct+1

´
for the short and the long position’s, respectively. Then these two

bounds can be defined as in equation (3); i.e.,

Cs
t = X

bh(s)
t + yst and Cl

t = X
bh(l)
t − ylt. (5)

formalize these cases (in H), we have to include new assumptions and definitions, and we lose the simplicity of the

actual formulation. We prefer to deal with these problems on a case-by-case basis as we show in the examples below.
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In particular, X
bh(s)
t ≥ X

bh(l)
t and yst ≥ −ylt are sufficient conditions for Cs

t ≥ Cl
t. For example,bht+1 = bht+1(s) = bht+1(l) and yt = yst = ylt ≥ 0, i.e., the same portfolio and the same nonnegative

risk premium, imply that Cs
t = X

bh
t + yt ≥ Cl

t = X
bh
t − yt.

2.2 A Risk-Neutral Pricing Formulation

In standard frictionless markets, for both complete and incomplete markets, an arbitrage free price

can be expressed as an expectation under a risk-neutral probability measure (henceforth, RNP mea-

sure). By using RNP measures also, we are going to derive a related but novel result, for which its

importance is evident in the multi-period model.

Let Qt be a RNP measure, and EQ
t [.] be the conditional expectation operator. Qt satisfies

Sn
t = EQ

t

·
Sn
t+1

1 + r

¸
, n = 1, 2, ..., N. (6)

Recall the implications of a RNP measure Qt > 0 (see, e.g., Pliska (1997)). First, the existence of

Qt is equivalent to nonarbitrage. Second, the uniqueness of Qt is equivalent to market completeness.

Third, let C = {Ct, Ct+1} be the value process of an arbitrary security. Then, if Ct = EQ
t

h
Ct+1
1+r

i
, Ct

is an arbitrage-free price. In particular, if Qt is unique, then Ct is the unique arbitrage-free price.

Therefore, Qt is a tool that allows us to compute the price Ct as a simple risk-neutral expectation.

This last point is the one that is important in the present nonarbitrage, incomplete market context.

Recall that portfolio bht+1 satisfies C−t < X
bh
t < C+t , then there is a RNP measure Q

bh
t such that

X
bh
t = EQ

bh
t

·
Ct+1

1 + r

¸
, (7)

where the notation Q
bh
t highlights the dependence on portfolio bh. That is, Qbht allows us to compute

the price of the hedging portfolio Xbh
t by the risk-neutral expectation of the discounted payoff Ct+1.

Consequently, from equation (3), the incomplete market price of Ct can also be expressed as

Ct = EQ
bh

t

·
Ct+1

1 + r

¸
+ yt. (8)

In sum, from equations (5) and (7),

Ct = X
bh
t + ayt = EQ

bh
t

·
Ct+1

1 + r

¸
+ ayt, (9)

where a = +1 (−1) for the short (long) position and upper (lower) bound.
On the other hand, if yt 6= 0, there exists a different RNP measure Qbh,yt such that

Ct = X
bh
t + yt = EQ

bh,y
t

·
Ct+1

1 + r

¸
, (10)

which can be used for pricing purposes, or to prove that Ct is arbitrage free. Note that Q
bh
t and

Q
bh,y depend on the payoff Ct+1. Therefore, different from a complete market where the unique RNP

measure prices any security, in our model Qbht and Q
bh,y may only price the security Ct+1.
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Remark 1. In addition to the definition of the price of an arbitrary security in incomplete markets

in equation (3), equation (8) is the main result of the one-period model. The measure Qbht will allow
us to derive an important result on the decomposition of the price Ct in a proper hedging portfolio

plus a multiperiod risk premium in multiperiod markets.

Remark 2. Although we have assumed a frictionless market, the definition of equation (3) is

independent of market frictions such as portfolio constraints or transaction costs. For equations

(7) (and (8)) to hold, it is necessary to find a probability measure which allows us to compute the

price Xbh
t as the discounted expectation of Ct+1. For a frictionless market, we have shown (since

C−t < X
bh
t < C+t ) that Q

bh
t is a RNP measure. For a friction market, we prefer to study this problem

on a case-by-case basis.

Remark 3. The results of the one-period model do not depend on a specific portfolio, ht+1, and

on a specific risk premium, yt. We only assume that Ct is arbitrage free. In an incomplete market

and, in practice, there can be different functions for bh and y, which depend of the problem of interest.
They can depend on the model’s statistical properties (such as jumps, skewness or kurtosis) or on

economic factors (such as default, initial wealth or regulation issues). Note that yt can also be studied

in an equilibrium or portfolio context (e.g., if the hedging error can be diversified; see Merton (1976)).

This is relevant in practice, because Ct can be just a derivative from a larger portfolio of securities.7

Examples of option pricing in incomplete markets are left for the continuous-time model.

3 The Multiperiod Model

Consider a discrete-time multiperiod model with initial time 0, final time T , and M trading dates

such that t = 0, 1, ...,M − 1, and ∆t = T
M . This multiperiod model is defined over a probability

space (Ω,F , P, {Ft}), with Ω = {ω1, ω2, ..., ωK} finite, where the stochastic processes Sn
t are adapted

and the hedging strategies hnt+1 are predictable with regard to the filtration Ft, respectively, for
t = 0, 1, ...,M and n = 0, 1, ...,N . The risk-free asset corresponds with a “bank account” with value

process S0 = {S00 , S01 , ..., S0M} = {1, er∆t, ..., erT}.8
Assume that the model is arbitrage free and incomplete. The objective is to price a contingent

claim C0, whose payoff CM occurs in the last period and is not replicable.

Let h = {h1, h2, ..., hM} be a self-financing dynamic portfolio with value process Xh = {Xh
0 ,X

h
1 ,

...,Xh
M}, where Xh

0 =
PN

n=0 h
n
1S

n
0 and Xh

t =
PN

n=0 h
n
t S

n
t for t = 1, 2, ...,M. The asterisk denotes

7See Hansen and Jaganathan (1991), Cerný and Hodges (2001), Jaschke and Kücheler (2001), and Longarela (2001)

for other models of incomplete markets. See Artzner et al. (1999) for risk measures.
8See Pliska (1997, chapter 3) for details. In particular, the same results hold if the interest rate r is a predictable

stochastic proces, i.e., the one-period short-term interest rate rt+1 is Ft−measurable.
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discounted values. It is well known that a portfolio h is self-financing if it holds that

Xh∗
M = Xh∗

0 +
M−1X
t=0

∆Xh∗
t+1, (11)

where Xh∗
t = e−rt∆tXh

t , ∆X
h∗
t+1 =

PN
n=1 h

n
t+1∆S

n∗
t+1, and ∆S

n∗
t+1 = e−r(t+1)∆t

¡
Sn
t+1 − er∆tSn

t

¢
is the

discounted gain process for every risky asset n = 1, 2, ...,N .

3.1 A Hedging Portfolio plus a Risk Premium-Based Recursive Approach

For a self-financing portfolio h, the hedging error is defined by Y h
T = a

¡
Xh
M −CM

¢
, where a = +1

(a = −1) is the short (long) position. Let us rewrite this hedging error, which is important for
deriving the optimal hedging portfolio that follows. That is, let Y h∗

T = e−rTY h
T be written as

Y h∗
T = a

³
Xh∗
M −C∗M

´
= a

³
Xh∗
0 −C∗0

´
+

M−1X
t=0

a
³
∆Xh∗

t+1 −∆C∗t+1
´
=

MX
t=0

∆Y h∗
t , (12)

where C = {C0, C1, ..., CM} is a Ft−adapted stochastic process (to be specified below, except for
the maturity payoff CM). ∆C∗t = C∗t − C∗t−1, C∗t = e−rt∆tCt, and ∆Y h∗

t+1 = e−r(t+1)∆t∆Y h
t+1 =

a
¡
∆Xh∗

t+1 −∆C∗t+1
¢
for t = 0, 1, ...,M − 1 and ∆Y h

0 = a
¡
Xh
0 −C0

¢
. Consequently, the total hedging

error, Y h∗
T , can be understood as the sum of one-period replication errors ∆Y h∗

t , t = 0, 1, ...,M.

In practice, to find an optimum dynamic portfolio bh = {bh1,bh2, ...,bhM} which minimizes a proper
hedging criterion f

¡
Y h
T

¢
could be difficult. Moreover, the risk of the hedging error and its associated

risk premium, could also be difficult to quantify. Therefore, because of tractability (see footnote 1)

we consider only recursive bounds, which allows us to study general problems in incomplete markets.

The optimal hedging criterion

min
{h1,h2,...,hM}

f
³
Y h
T

´
= min
{h1,h2,...,hM}

f
³³
∆Y h∗

0 +∆Y h∗
1 + ...+∆Y h∗

M

´
erT
´

(13)

is changed as follows. First, consider a more simple recursive series of one-period hedging problems9

min
{ht+1}

f
³
∆Y h

t+1

´
= min
{ht+1}

f
³
a
³
Xh
t+1 −Ct+1

´
− a

³
Xh
t −Ct

´
er∆t

´
for t =M − 1,M − 2, ..., 0,−1,

(14)

where we define Xh−1 = C−1 = 0. Second, for every t define that Xh
t = Ct from the application of

the law of one price (since otherwise (14) produces an additional hedging error, which can be hedged

9Note that

∆Y h
t+1 = a

³
∆Xh∗

t+1 −∆C∗t+1
´
er(t+1)∆t = a

Ã
NX
n=1

hnt+1∆Sn∗t+1 −∆C∗t+1

!
er(t+1)∆t

= a

Ã
NX
n=0

hnt+1S
n
t+1 − er∆t

NX
n=0

hnt+1S
n
t

!
− a

³
Ct+1 − er∆tCt

´
= a

³
Xh
t+1 − Ct+1

´
− a

³
Xh
t − Ct

´
er∆t.

9



with the bank account). In particular, for t = −1, Xh
0 = C0. Then, the problems to solve are

min
{ht+1}

f
³
∆Y h

t+1

´
= min
{ht+1}

f
³
a
³
Xh
t+1 −Ct+1

´´
for t =M − 1,M − 2, ..., 0, (15)

which are similar to the previous one-period problem, wherein bh is computed.
Therefore, this problem is solved recursively from t = M − 1 until t = 0. For every period

t, taking as given the previously solved Ct+1, two items are computed: the portfolio bht+1, which
solves equation (15), and the option price Ct = X

bht+1
t + ayt∆t, where yt∆t is the risk premium

per period associated with ∆Y bht+1. Note that this recursion is well-defined since CM is known at

maturity, and that Ct is Ft−adapted. Note also that these recursive prices (i.e., the value process)
C = {C0, C1, ..., CM−1} are arbitrage free if and only if each price determined in each one-period
model is arbitrage free (equivalently it does exist a RNP measure, see Pliska (1997)).

However, this recursive portfolio bh derived from equation (15) is not self-financing if the risk

premium yt+1 6= 0, or if the hedging error ∆Y bht+1 6= 0, since bht+1 and bht+2 are chosen in two in-
dependent steps. The new notation X

bht+1
t (instead of Xbh

t =
PN

n=0
bhnt Sn

t ) is to distinguish between

X
bht+1
t+1 =

PN
n=0

bhnt+1Sn
t+1 and X

bht+2
t+1 =

PN
n=0

bhnt+2Sn
t+1, and applies only to this non-self-financing

portfolio. Consequently, the non-self-financing portfolio bh must be changed to a self-financing port-
folio denoted by eh and with value process Xeh. Recall the definitions Ct = X

bht+1
t + ayt∆t and

∆Y
bht+1
t+1 = a

³
X
bht+1
t+1 −Ct+1

´
for t = 0, 1, ...,M − 1, and note that a∆Y bht+1t+1 =

³
X
bht+1
t+1 −Ct+1

´
since

a2 = 1. Recall that Xh∗
t = e−rt∆tXh

t is the discounted value.

That is, at the initial time t = 0,

X
eh∗
0 = C∗0 = X

bh1∗
0 + ay∗0∆t, andehn1 = bhn1 for n = 1, 2, ..., N and eh01 = bh01 + ay∗0∆t.

At time t = 1,

X
eh∗
1 = X

bh1∗
1 + ay∗0∆t = X

bh1∗
1 + ay∗0∆t−C∗1 +

³
X
bh2∗
1 + ay∗1∆t

´
= X

bh2∗
1 + a

³
∆Y

bh∗
1 + y∗0∆t+ y∗1∆t

´
, and

ehn2 = bhn2 for n = 1, 2, ..., N and eh02 = bh02 + a
³
∆Y

bh∗
1 + y∗0∆t+ y∗1∆t

´
.

At time t = 2,

X
eh∗
2 = X

bh2∗
2 + a

³
∆Y

bh∗
1 + y∗0∆t+ y∗1∆t

´
= X

bh2∗
2 + a

³
∆Y

bh∗
1 + y∗0∆t+ y∗1∆t

´
−C∗2 +

³
X
bh3∗
2 + ay∗2∆t

´
= X

bh3∗
2 + a

³
∆Y

bh∗
1 + y∗0∆t+∆Y

bh∗
2 + y∗1∆t+ y∗2∆t

´
, and

ehn3 = bhn3 for n = 1, 2, ..., N and eh03 = bh03 + a
³
∆Y

bh∗
1 + y∗0∆t+∆Y

bh∗
2 + y∗1∆t+ y∗2∆t

´
.

10



In general, for any time t = 0, 1, ...,M − 1,

X
eh∗
t = X

bht+1∗
t +

t−1X
i=0

a
³
∆Y

bh∗
i+1 + y∗i∆t

´
+ ay∗t∆t, and (16)

ehnt+1 = bhnt+1 for n = 1, 2, ...,N and eh0t+1 = bh0t+1 + t−1X
i=0

a
³
∆Y

bh∗
i+1 + y∗i∆t

´
+ ay∗t∆t (17)

and

X
eh∗
M = X

bhM∗
M +

M−2X
t=0

a
³
∆Y

bh∗
t+1 + y∗t∆t

´
+ay∗M−1∆t−C∗M+C∗M = C∗M+

M−1X
t=0

a
³
∆Y

bh∗
t+1 + y∗t∆t

´
. (18)

The following proposition summarizes these results and gives the multiperiod hedging error.

Proposition 1 Recursive prices based on “every recursive price is defined as the price of a one-period

hedging portfolio plus a risk premium associated with the one-period hedging error” are consistent

with “recursive one-period optimal self-financing hedging strategies,” which depend on the previously

computed recursive prices, and where the one-period hedging errors, and risk premiums, are financed

or invested at the riskless rate. Thus, the multiperiod hedging error Y ehT , is the sum of the one-period

hedging errors, plus the associated risk premiums, financed or invested at the riskless rate r,

Y
eh
T = a

³
X
eh
M −CM

´
= a

M−1X
t=0

a
³
∆Y

bh∗
t+1 + y∗t∆t

´
erT =

M−1X
t=0

³
∆Y

bh∗
t+1 + y∗t∆t

´
erT . (19)

That is, aCM = aX
eh
M −Y ehT , where aXeh

M is the risk that can be hedged and −Y ehT is the (residual) risk
that cannot be hedged. ¥

Recursive prices are defined as a generalization of equations (3) and (8) in the one-period model,

where bh is the previous non-self-financing portfolio solving (15). That is,
Ct = X

bh
t + ayt∆t, and (20)

Ct = EQ
bh

t

·
Ct+1

er∆t

¸
+ ayt∆t, (21)

t = 0, 1, ...,M − 1, and a = +1 (a = −1) defines the upper (lower) price bound. As the one-period
model, we assume that C−t < X

bh
t < C+t and that C−t < X

bh
t + ayt < C+t , t = 0, 1, ...,M − 1.

The next results show important properties of these multiperiod recursive prices.

At maturity, the price is equal to CM . One period before maturity M − 1, the price is equal to

CM−1 = EQ
bh

M−1

·
CM

er∆t

¸
+ ayM−1∆t, or equivalently,

= X
bh
M−1 + ayM−1∆t.

11



Two periods before maturity M − 2,

CM−2 = EQ
bh

M−2

·
CM−1
er∆t

¸
+ ayM−2∆t

= EQ
bh

M−2

·
CM

er2∆t

¸
+ a

µ
yM−2∆t+EQ

bh
M−2

hyM−1
er∆t

∆t
i¶

,

by using the law of the iterated expectation EQ
bh

M−2 [CM ] = EQ
bh

M−2

·
EQ

bh
M−1 [CM ]

¸
, or equivalently,

CM−2 = X
bh
M−2 + ayM−2∆t

= X
bh
M−2∆t − aEQ

bh
M−2

hyM−1
er∆t

∆t
i
+ a

µ
yM−2∆t+EQ

bh
M−2

hyM−1
er∆t

∆t
i¶

.

And, recursively, at the initial period 0, we have the following result.

Theorem 2 If multiperiod prices are derived recursively and if one-period prices are equal to the

price of a hedging portfolio plus a risk premium, as in equations (20) and (21), then C0 is as follows.

C0 = EQ
bh

0

·
CM

erT

¸
+ aEQ

bh
0

"
M−1X
t=0

yt
ert∆t

∆t

#
, or equivalently, (22)

= X
bh
0 − aEQ

bh
0

"
M−1X
t=1

yt
ert∆t

∆t

#
+ aEQ

bh
0

"
M−1X
t=0

yt
ert∆t

∆t

#
. (23)

Similar to the one-period model, C0 can be divided in two parts. First,

EQ
bh

0

·
CM

erT

¸
= X

bh
0 − aEQ

bh
0

"
M−1X
t=1

yt
ert∆t

∆t

#
, (24)

and second,

aEQ
bh

0

"
M−1X
t=0

yt
ert∆t

∆t

#
, (25)

which depends on the risk premium y. ¥

To understand the termEQ
bh

0

h
CM
erT

i
we need an additional assumption. We advance that EQ

bh
0

h
CM
erT

i
is related to the price of a hedging portfolio. We require that every Q

bh
t is independent of all the

previous risk premiums yt+1, yt+2, ..., yM−1. Note that Ct+1, and therefore bht+1, depend on all these
risk premiums because recursive pricing. Then, denote by bht+1(y = 0) the optimal portfolio when

all risk premiums are zero, i.e., yt+1 = yt+2 = ... = yM−1 = 0, and by Q
bh(y=0)
t the associated RNP

measure. The Q
bh(y=0)
t is the appropriate RNP measure and we have the desired result.

Note that EQ
bh(y=0)

0

h
CM
erT

i
= X

bh(y=0)
0 from equation (24). Therefore, the assumption Qbht = Q

bh(y=0)
t

implies that EQ
bh

0

h
CM
erT

i
= EQ

bh(y=0)
0

h
CM
erT

i
, and from equation (24), EQ

bh
0

h
CM
erT

i
= X

bh(y=0)
0 is unique

and well-defined. That is, the hedging portfolio corresponds with the initial recursive one-period

hedging portfolio computed when all risk premiums are zero, bh(y = 0). If there are multiple RNP
12



measures Qbh and Q
bh(y=0), we require that nQbho = nQbh(y=0)o, where nQbho means the set of RNP

measures which verify equation (20) and (21).

Consequently, by assuming that
n
Q
bho = nQbh(y=0)o, then

C0 = X
bh(y=0)
0 + aEQ

bh(y=0)
0

"
M−1X
t=0

yt
ert∆t

∆t

#
= EQ

bh(y=0)
0

·
CM

erT

¸
+ aEQ

bh(y=0)
0

"
M−1X
t=0

yt
ert∆t

∆t

#
, (26)

which is the multiperiod extension of equation (9) in the one-period model. The condition thatn
Q
bho = nQbh(y=0)o depends on the one-period hedging criterion and on the risk premiums specifi-

cation. We show that this condition holds in the continuous-time model for diffusion processes.10

Remark 4. Theorem 2, and equation (26), give a novel decomposition of multiperiod recursive

prices in incomplete markets. If
©
Qh
ª
=
©
Qh(y=0)

ª
, the recursive price of a non American-style

security, C0, is equal to a risk-neutral expectation of the discounted payoff at maturity (i.e., the price

of a hedging portfolio) plus a risk-neutral expectation of the discounted one-period risk premiums

(i.e., the multiperiod risk premium). In the next section, we show that the spanned option payoff does

not depend of y, and thus (26) is not only a mathematical decomposition but economic meaningful.

We can derive an alternative expression for C0. Specify the risk premium as proportional to the

price Ct, i.e., yt = αtCt. Now, instead of discounting the risk premiums, we reinvest them in the

option Ct. Then, by again using equation (21), i.e., Ct = EQ
bh

t

h
(1− aαt∆t)

−1 Ct+1
er∆t

i
, t = 0, 1, ..,M−1,

C0 = EQ
bh

0

·
(1− aα0∆t)

−1 C1
er∆t

¸

= EQ
bh

0

(1− aα0∆t)
−1E

Q
bh

1

£
(1− aα1∆t)−1 C2

er∆t

¤
er∆t

 = EQ
bh

0

·
(1− aα0∆t)

−1(1− aα1∆t)
−1 C2

er2∆t

¸

= ... = EQ
bh

0

ÃM−1Y
t=0

(1− aαt∆t)

!−1
CM

erT

 . (27)

The one-period risk premium αtCt∆t is similar to a stochastic dividend flow paid by Ct, and

from (27), Ct is equal also to the risk-neutral expectation of the discounted payoff at maturity

adjusted by these reinvested risk premiums. Note that
³QM−1

t=0 (1− aαt∆t)
´−1

can be approximated

as exp{aPM−1
t=0 αt∆t}. For example, if αt is constant (αt = α), C0 can approximated as

C0 ≈ eaαTEQ
bh

0

·
CM

erT

¸
. (28)

10Nevertheless, assume that the density ratio is finite, i.e., dQ
bh

dQ
bh(y=0) <∞ for all ω ∈ Ω,

EQ
bh

0

·
CM

erT

¸
= EQ

bh(y=0)
0

"
dQ

bh
dQbh(y=0) CM

erT

#
= EQ

bh(y=0)
0

"
dQ

bh
dQbh(y=0)

#
EQ

bh(y=0)
0

·
CM

erT

¸
+ covQ

bh(y=0) Ã dQ
bh

dQbh(y=0) , CM

erT

!

= X
bh(y=0)
0 + EQ

bh(y=0)
0

"Ã
dQ

bh
dQbh(y=0) − 1

!µ
CM

erT
−X

bh(y=0)
0

¶#
.
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As equation (10) in the one-period model, there exists a different RNP measure Qbh,y such that
Ct = X

bh
t + ayt = EQ

bh,y
t

h
Ct+1
er∆t

i
for t = 0, 1, ...,M − 1 (since C−t < X

bh
t + ayt < C+t ). Therefore, from

the law of the iterated expectation,

C0 = EQ
bh,y

0

·
CM

erT

¸
. (29)

Consequently, the multiperiod risk premium also satisfies that

aEQ
bh

0

"
M−1X
t=0

yt
ert∆t

∆t

#
= EQ

bh,y
0

·
CM

erT

¸
−EQ

bh
0

·
CM

erT

¸
, (30)

from equations (22) and (29). Note that Qh = Qh,y if y = 0; i.e., Qh = Qh,0.

Finally, if all the risk premiums are zero because, for example, the market is complete (and bh is
the replicating portfolio), then in all the equations above we obtain the very well-known result,

if y0 = y1 = ... = yM−1 = 0, then C0 = EQ
bh

0

·
CM

erT

¸
= X

bh
0 . (31)

In sum, Proposition 1 and Theorem 2 are two important results, which distinguish our paper from

the extant literature. For example, Cochrane and Saá-Requejo (2000) bounds verify equation (20)

and are recursive (see their Propositions 1 and 2, respectively), and therefore, verify these properties.

3.1.1 Recursive Prices in Continuous Time

Since er∆t = 1 + r∆t+O
¡
∆t2

¢
, equation (21) can be rewritten as

1

∆t
EQ

bh
t [Ct+1 −Ct] +O (∆t) = rCt − ayt, t = 0, 1, ...,M − 1. (32)

Assume that theN risky assets follow diffusion processes. Therefore, with the help of Itô’s Lemma and

other stochastic calculus tools, when lim∆t → 0, from (32), recursive bounds can be characterized

through PDE’s, once the stochastic processes for the state variables, the hedging strategy, and the

risk premiums are specified. This PDE is derived in two simple steps: first, the risk-neutral drift,
1
∆tE

Q
bh

t [Ct+1 −Ct], is equal to rCt, and second, the term ayt is subtracted from this riskless return.

This is formally proved in the next section. Note that equation (32) can also be extended to study

problems where the N risky assets follow stochastic processes more complex than diffusions.11

3.1.2 American-style Securities in Incomplete Markets

The valuation of American-style securities in incomplete markets is a problem that has not been

addressed in the literature in general. The joint determination of an optimal dynamic self-financing

portfolio eh and an optimal stopping-time (or exercise policy) is a complex problem. However, the
11The study of more general process is an important subject of future research given the evidence of non-normality

in returns. Beyond diffusion models, see affine jump-diffusion models in Duffie et al. (2000), or Carr and Wu (2002).
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recursive approach allows us to price American securities easily, in a manner similar to other recursive

numerical methods in a complete market. Let I (St, E) be the intrinsic payoff with CM = I (SM , E)

and E the strike price. It is enough to substitute the term Ct+1 in the recursive hedging equation

(15) and then in the recursive pricing equations (20) and (21) with max{I (St+1, E) , Ct+1}.
That is, f

¡
a
¡
Xh
t+1 −max{I (St+1, E) , Ct+1}

¢¢
, then X

bh
t = EQ

bh
t

£
e−r∆tmax{I (St+1, E) , Ct+1}

¤
and Ct = EQ

bh
t

£
e−r∆tmax{I (St+1, E) , Ct+1}

¤
+ ayt∆t, for t = 0, 1, ...,M − 1, respectively.

The total residual risk is given now by
PM−1

t=0

³
∆Y

bh∗
t+1 + y∗t∆t

´
1{t+1≤bτ}, where bτ ∈ {1, 2, ...,M}

is the optimal stopping-time defined by the first τ such that I (Sτ , E) ≥ Cτ .

3.1.3 Empirical Applications of the Hedging Errors

We can devise empirical applications of the multiperiod hedging error Y ehT in equation (19) as well.

The multiperiod hedging error produces two main empirical testable implications. Note that Y eh∗T =PM−1
t=0

³
∆Y

bh∗
t+1 + y∗t∆t

´
has two terms: the one-period hedging errors and risk premiums. Assume

that the conditional expectation EP
t

h
∆Y

bh∗
t+1

i
= 0 for t = 0, 1, ...,M − 1. First, if the model being

studied is complete then (there exists a portfolio bh such that) ∆Y bh∗t+1 = 0 and the risk premium

yt = 0 to avoid arbitrage opportunities. Consequently, a period-by-period hedged portfolio has a

zero (expected) hedging error since Y eh∗T = 0. Second, if the model is incomplete and yt 6= 0, then

a period-by-period hedged portfolio has an expected hedging error EP
0

h
Y
bh∗
T

i
=
PM−1

t=0 EP
0 [y

∗
t ]∆t,

which can be different from zero. We have the following result.

Proposition 3 Assume, first, EP
t

h
∆Y

bh∗
t+1

i
= 0 for t = 0, 1, ...,M − 1, second, yt = 0 if and only if

∆Y
bh∗
t+1 = 0, and third yt is a positive or a negative risk premium, but its sign does not change from

time 0 to M−1. Then, given N+1 hedging assets Sn
t , n = 0, 1, ...,N , the market is incomplete if and

only if EP
0

h
Y
bh∗
T

i
=
PM−1

t=0 EP
0 [y

∗
t ]∆t 6= 0, i.e., a period-by-period hedged portfolio has an expected

hedging error different from zero. ¥

This result is dependent upon the number of hedging assets Sn
t , n = 0, 1, ...,N . For instance,

assume a stochastic volatility model. If the hedging assets are only the bond and the stock, then the

residual risk is the volatility risk (i.e., ∆Y bh∗t+1 6= 0) and it can hold that yt 6= 0, which is a volatility
risk premium. On the other hand, if the hedging assets are the bond, the stock and a second option,

then the residual risk is zero (i.e., ∆Y bh∗t+1 = 0) and yt = 0 in order to avoid arbitrage opportunities.12
Finally, another interesting application is as follows. Assume that EP

t

h
∆Y

bh∗
t+1

i
= 0 for t = 0, 1, ...,

M − 1. Then every one-period hedging error ∆Y bht+1 + yt∆t can be regressed on a series of variables

to analyze if the risk premium yt is related to such variables. See the basis risk example below.

12For instance, Fan, Gupta, and Ritchken (2003) study how many factors are necessary to price swaptions from the

perspective of hedging effectiveness instead of the standard approach of pricing performance.
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4 Recursive Prices in Continuous Time

Assume a vector of K state variables, S(t) = (S1(t), S2(t), ..., SK(t)), which follows the following

diffusion process

dS(t) = µ (t, S(t))dt+Σ (t, S(t))dzt, (33)

where µ is a (K×1) vector, Σ is a (K×K) matrix, and z is a (K×1) vector of independent Wiener
processes. We assume that µ (t, S(t)) and Σ (t, S(t)) satisfy growth and regularity conditions such

that the process dS is well defined and has a unique solution (see Duffie (2001)). Let r(t) be the

instantaneous short interest rate, and r(t) = r be constant to save notation.

We assume that only the first N state variables S1(t), S2(t), ..., SN (t), with 0 ≤ N ≤ K, are trad-

able and consequently the market is incomplete ifN < K. For instance, the SN+1(t), SN+2(t), ..., SK(t)

correspond with illiquid assets, stochastic volatility, etc., (see the next section’s examples). We con-

sider the partition of the volatility matrix Σ0 = [A0 B0] , where A and B contain the first N and

the last K − N rows of Σ, respectively. We assume that the rank of the matrix A is equal to N

(almost sure), i.e., there are no redundant tradable assets. In particular, this implies that the model

is arbitrage free, and equivalently, there exist multiple risk-neutral probability measures for the N

tradable assets (under technical conditions, see Duffie (2001)).

We assume that there are no portfolio constraints, which are a real source of market incomplete-

ness. Because the recursive approach is based on one-period optimization, portfolio constraints can

be easily incorporated (e.g., we price a put option under short-selling constraints). Finally, we assume

that the rank of Σ is equal to K (almost sure), every state variable represents a different risk.

Two special cases are N = 0 where the only hedging instrument is the risk-free asset (we define

Σ = B), and N = K where the market is complete (Σ = A and A is invertible).

Although recursive prices can be derived in the limit from equation (32) when ∆t → 0, we find

easier to derive them along the lines of Black and Scholes (1973) and Merton (1973).

4.1 The Hedging Strategy

Let C(t, S(t)) and Xh(S(t)) be the price of a derivative security and the price of a hedging portfolio h,

respectively, where Xh(S(t)) =
PN

n=1 hn(t)Sn(t), h0(t) = 0, and C(T, S(T )) is the European option

payoff at maturity (with the notation slightly changed). By Ito’s lemma, dC and dXh satisfy

dC = µcdt+C0SΣdz and (34)

dXh = µhdt+ h0Adz, (35)

with

µc = Ct +
1

2

KX
i=1

KX
j=1

CSS(i,j)

Ã
KX
k=1

Σi,kΣj,k

!
+ µ0CS and µh = µ0(1:N)h, (36)
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and h(t) = (h1(t), h2(t), ..., hN (t)). Note that CS is the (K × 1) vector of first derivatives and CSS

is the (K ×K) matrix of second derivatives, and we have suppressed the dependence of all variables

on t and S(t). We assume that C(T, S(T )) depends on all state variables S. If C does not depend

on some state variables, the corresponding partial derivatives CS and CSS are equal to zero.

Define the hedging error

dY h
t = a

¡
h0A−C 0SΣ

¢
dzt = a

³
h0A−C 0S

£
A0 B0

¤0´
dzt = a

³
(h−CS(1:N))

0A−C0S(N+1:K)B
´
dzt.

(37)

Because dC and dX follow diffusion processes and because of the fact that continuous trading is

allowed, the infinitesimal one-period hedging errors are (conditionally) normally distributed and

consequently the appropriate, and unique, hedging criterion is to minimize the variance. Therefore,

the hedging criterion f(dYt) is given by minimizing

f(dY h
t ) =

1

dt
EP
t

h
dY h

t

i2
=
°°°(h−CS(1:N))

0A−C 0S(N+1:K)B
°°°2 , (38)

where k.k2 is the Euclidean norm. Let denote g = h−CS(1:N). Then, the N orthogonality conditions

(i.e., EP
t

h
dSndY

bh
t

i
= 0, n = 1, 2, ...,N) for this problem imply that

bg = ¡AA0¢−1AB0CS(N+1:K), and bh = CS(1:N) + bg (39)

is the optimal minimum variance portfolio, and the matrix AA0 is invertible since the rank of A is

equal to N . Then, dXbh = µbhdt+ bh0Adz is the dynamics of the optimal hedging portfolio, and
dY

bh
t = a

³bg0A−C 0S(N+1:K)B
´
dzt = aC 0S(N+1:K)B

³
A0
¡
AA0

¢−1
A− I

´
dzt (40)

is the remaining residual risk.

This residual risk dY bht has three components: CS(N+1:K) measures the non-traded option’s risk,

B are the volatilities of the non-traded variables, and (A0 (AA0)−1A − I) is related to the market

incompleteness. Note that B(A0 (AA0)−1A − I)dzt is the risk which is non-spanned by S(1:N), and

note htat the option’s Deltas, CS(N+1:K), can be used for risk management.

4.2 The PDE Equation: the Law of One Price and the Risk Premium

First, if we forget the residual risk dY
bh
t , the law of one price implies that, similar to the Black-

Scholes-Merton model, the return of a riskless portfolio must be equal to the riskless rate; i.e.,

a
¡
µbh − µc

¢
= a

¡
Xbh −C

¢
r, (41)

Second, if dY bht 6= 0, we add a risk premium yt to compensate the residual risk; i.e.,

a
¡
µbh − µc

¢
= a

¡
Xbh −C

¢
r + yt, (42)
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which is equation (20) but in continuous time. If dY bht = 0, yt = 0 and we have the standard

application of non arbitrage arguments with complete markets.

In other words, the risk-return trade-off of “ytdt + dY
bh
t ,” i.e., N

µ
ytdt,

qPK
k=1

¡
σYk
¢2√

dt

¶
, is

attractive for the writer (or buyer) of the option, where σYk =
¯̄̄
C 0S(N+1:K)B

³
A0 (AA0)−1A− I

´¯̄̄
(k)

,

k = 1, 2, ..,K, is the vector of volatilities of the residual risk. The investor in C obtains an extra

premium ytdt for carrying extra risk on dY
bh
t . (Note that, under technical conditions, this premium

is arbitrage-free due to the continuous support of N (0,√dt) over all the real line R).
Note further that the orthogonality conditions, EP

t

h
dSndY

bh
t

i
= 0, imply that the risk premium yt

can be specified independently of the tradable assets dSn, highlighting the importance of an optimal

hedging portfolio. From the PDE equation (42), “−a ¡µbh − rXbh¢ + yt” is the option risk premium

and yt is the risk premium when the option is hedged by portfolio bh (and recall that a = +1 (a = −1)
for a short (long) position). Moreover, “µbh − rXbh” is an endogenous risk premium related to the

traded assets, whereas yt is the exogenous risk premium associated with the residual risk.

Equivalently, since a2 = 1, the latter PDE equation can be rewritten as

µc −
¡
µbh − rXbh¢ = rC − ayt, (43)

which is similar to the risk-neutral equations (21) and (32) but in continuous time. Moreover, we are

interested in two prices Cs and Cl, with Cs ≥ Cl. Then, from the PDE equation (43), a sufficient

condition is if that−∞ < −yst ≤ ylt < +∞ (or equivalently, +∞ > yst ≥ −ylt > −∞, and in particular,
+∞ > yst = ylt ≥ 0), where yst (ylt) is the risk premium associated with Cs (Cl). Intuitively, a lower

(higher) term −ayt in the PDE equation (43) implies a higher (lower) option price. Note that it is
the same condition on equation (5) in the one-period model.

Finally, substituting µc and bh in equation (43), and noting that
µ0CS −

³
µbh − rX

bh´
= µ0CS −

³
µ0(1:N)bh− rX

bh´
= µ0CS − (µ− rS)0(1:N)

¡bg +CS(1:N)

¢
= rS0(1:N)CS(1:N) + µ0(N+1:K)CS(N+1:K) − (µ− rS)0(1:N) bg
= rS0(1:N)CS(1:N) +

³
µ0(N+1:K) − (µ− rS)0(1:N)

¡
AA0

¢−1
AB0

´
CS(N+1:K), (44)

then equation (43) is given explicitly by

Ct +
1

2

KX
i=1

KX
j=1

CSS(i,j)

Ã
KX
k=1

Σi,kΣj,k

!
+

rS0(1:N)CS(1:N) +
³
µ0(N+1:K) − (µ− rS)0(1:N)

¡
AA0

¢−1
AB0

´
CS(N+1:K) = rC − ayt. (45)
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As noted before, the recursive approach can be generalized to include portfolio constraints or

more general process than diffusions for the state variables; i.e., an equivalent equation to (43) can

be derived along the same lines. For example, for jump-diffusion models, one needs a generalized

version of Ito’s Lemma (see Duffie (2001)) to derive equation (34). Then, the one-period hedging

problem is not simply the standard minimum variance problem in equation (38).

By choosing different risk premiums yt, we can connect several option-pricing models. Merton

(1998) where yt = 0 . Recall that σY(1:K) is the vector of volatilities of the residual risk.

In the risk-neutral approach based on prices of risk, where we define yt =
PK

k=1 σ
Y
k λk. We can

distinguish several cases. First, N = 0 and there are not tradable assets. Then, we define bg = 0,

dY
bh
t = aC0S(N+1:K)Bdzt, and σYk =

¯̄̄
C 0S(N+1:K)B

¯̄̄
(k)
. In this case, the λk (t, S(t)) are naturally the

market prices of risk associated with each orthogonal factor dzk. Second, 0 < N < K. In this case,

it is possible that some of the λk correspond with tradable assets (and therefore, σYk = 0), whereas

other are exogenous (e.g., the volatility price of risk in a stochastic volatility model). Third, complete

markets, where N = K and A invertible. Then, dY bht = 0, σYk = 0 for all k, and consequently, yt = 0.
Cochrane and Saá-Requejo (2000) bounds, where yt = eAqPK

k=1

¡
σYk
¢2. Cochrane and Saá-

Requejo show that eA is a parameter related to a bound on the pricing kernel volatility, and equiva-

lently, on the maximum Sharpe ratio. Indeed, from our equation (43), eA is the Sharpe ratio of the

hedged option, i.e., the market price of risk of the residual risk.

In the local risk minimization approach (see Heath, Platen and Schweitzer (2001)), where yt = 0.

4.3 The RNP Measures Qh and Qh,y

From equations (33) and (41) we extract the RNP measure Qh. This is one of the innovations of

our paper. The literature extracts the RNP measure Qh,y from equation (33) and (43). Qh allows to

separate the recursive price in the price of a hedging portfolio plus a premium, which has a natural

interpretation in incomplete markets. Qh,y is best used for pricing purposes and to prove no arbitrage.

Note that Qh = Qh,y if y = 0; i.e., Qh = Qh,0.

Let Q be a RNP measure. Q can be characterized through the Radon-Nikodyn derivative, i.e.,

dQ

dP
= ξT ,

where ξT is the state price density,

ξ0 = 1 and
dξt
ξt
= −λ0tdzt for t ∈ [0, T ],

and λt is a vector of prices of risk (and the Novikov’s condition holds, E0
h
exp

³
1
2

R T
0 λ0tλtdt

´i
<∞).

For completeness, we recall a standard result of pricing by arbitrage in frictionless markets (see

Duffie (2001, 111-114) for technical details). Under technical conditions, the following three properties
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are equivalent, (a) a well-defined market prices of risk process λ, (b) the existence of a risk-neutral

probability measure Q, and (c) non arbitrage. It holds for both complete and incomplete markets.

Clearly, for the N tradable assets, the risk-neutral drift must be equal to the riskless rate r to

avoid arbitrage opportunities, and therefore,

µ(1:N) −Aλ = rS(1:N). (46)

For the rest of nontradable assets, the risk-neutral drift is implicit in the PDE pricing equation (45).

To extract it, we must look at the loading of the vector CS . That is, they are obtained from the term

rS0(1:N)CS(1:N) +
³
µ0(N+1:K) − (µ− rS)0(1:N)

¡
AA0

¢−1
AB0

´
CS(N+1:K) + ayt. (47)

Note that the risk-neutral drift of the N tradable assets is equal to r; i.e., the PDE equation derived

from the optimal minimum variance portfolio, bh, is consistent with equation (46).
Define the vector Dk−N = − ayt

CS(k)
αk1{CS(k) 6=0}, k = N +1, ...,K, and

PK
k=N+1 αk1{CS(k) 6=0} = 1.

Then, ayt = −D0CS(N+1:K) (in particular, D = 0 if yt = 0) and equation (47) can be rewritten as

rS0(1:N)CS(1:N) +
³
µ0(N+1:K) − (µ− rS)0(1:N)

¡
AA0

¢−1
AB0 −D0

´
CS(N+1:K). (48)

Therefore, the risk-neutral drift of the nontradable assets is given by the loadings of CS(n+1:K); i.e.,³
µ(N+1:K) −Bλ

´
1{CS(N+1:K) 6=0} =

³
µ(N+1:K) −BA0

¡
AA0

¢−1
(µ− rS)(1:N) −D

´
1{CS(N+1:K) 6=0},

(49)

with 1{CS(N+1:K) 6=0} a vector of indicator functions. Equivalently, A

B1{CS(N+1:K) 6=0}

λ =

 IN×N³
BA0 (AA0)−1

´
1{CS(N+1:K) 6=0}

 (µ− rS)(1:N)+

 0(1:N)

D1{CS(N+1:K) 6=0}

 .

(50)

Since the rank of the matrix A and Σ is equal to N and K, respectively, then AA0 and Σ0 = (A0 B0)

are invertible and the system has well defined solutions. Note that the market prices of risk, λ, do

not depend on the drift of the nontradable state variables, µ(N+1:K). Let us show a few examples.

• If there are not hedging assets, N = 0, and B1{CS(N+1:K) 6=0}λ = D1{CS(N+1:K) 6=0}.

• If the market is complete, K = N , and λ = A−1 (µ− rS).

• If K = N + 1, λ and Q do not depend on the option being studied if yt
CS(N+1)

does not (e.g., if

yt = 0). If K = N + 1, λ and Q are unique. For example, if K = N + 1 and CS(N+1) 6= 0, the
system (50) simplifies to

Aλ = (µ− rS)(1:N) and Bλ =
³
BA0

¡
AA0

¢−1´
(µ− rS)(1:N) − a

yt
CS(N+1)

. (51)
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• However, ifK > N+1, λ andQ depend on the option being studied from the term 1{CS(N+1:K) 6=0}.
Moreover, if K > N + 1, for yt = 0, λ and Q are unique if the rank of CS(N+1:K) is equal to

K −N . For yt 6= 0, λ and Q are not unique even if the rank of CS(N+1:K) is equal to K −N

since the weights α in D are arbitrary.

For instance, assume that the N tradable assets only depend on the first N state variables,

i.e., A = [A1 A2] where A1 contains the first N columns of A and A2 is a matrix of zeros (i.e.,

A2 = 0N×K−N ). Partition the matrix B = [B1 B2] where B1 contains the first N columns of

B. Then,13 the system (50) simplifies to

λ(1:N) = A−11 (µ− rS)(1:N) and B2λ(N+1:K)1{CS(N+1:K) 6=0} = D1{CS(N+1:K) 6=0}. (52)

Moreover, if 1{CS(N+1:K) 6=0} 6= 0,

λ(1:N) = A−11 (µ− rS)(1:N) and λ(N+1:K) = B−12 D, (53)

with λ(N+1:K) = 0(1:K−N) if yt = 0.

Finally, if yt = 0 then D = 0 and equation (50) is given by A

B1{CS(N+1:K) 6=0}

λ =

 IN×N³
BA0 (AA0)−1

´
1{CS(N+1:K) 6=0}

 (µ− rS)(1:N) , (54)

which is independent of the risk premiums ys, t < s ≤ T , since this equation does not depend on

C(t, S(t)). Consequently, the recursive price can be divided in the price of the initial one-period

hedging portfolio with all zero risk premiums, plus a multiperiod risk premium, which is shown next.

4.4 Risk Management

First, the total hedging error is simply the sum of the one-period hedging errors plus the one-period

risk premiums, financed or invested at the riskless rate r. The dynamic of a self-financing portfoliobh satisfies X∗bh(T ) = X∗bh(0)+ R T0 dX∗bh(t), and C∗(T, S(T )) = C∗(0, S(0))+
R T
0 dC∗(t, S(t)). We define

X∗bh(0) = C∗(0, S(0)). Therefore,

13

Bλ1{CS(N+1:K) 6=0} = BA0 ¡AA0¢−1 (µ− rS)(1:N) 1{CS(N+1:K) 6=0} +D1{CS(N+1:K) 6=0} ⇐⇒¡
B1λ(1:N) +B2λ(N+1:K)

¢
1{CS(N+1:K) 6=0} = B1A

−1
1 A1λ(1:N)1{CS(N+1:K) 6=0} +D1{CS(N+1:K) 6=0} ⇐⇒

B2λ(N+1:K)1{CS(N+1:K) 6=0} = D1{CS(N+1:K) 6=0}.
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Y
bh∗
T = a

³
X∗bh(T )−C∗(T, S(T ))

´
= a

Z T

0
dX∗bh(t)− a

Z T

0
dC∗(t, S(t))

= a

Z T

0
e−rt

³
(µbh − rX∗bh)dt+ bh0Adzt´− a

Z T

0
e−rt

¡
(µc − rC))dt+C 0SΣdzt

¢
= a

Z T

0
e−rt

³
(µbh − rX∗bh)− (µc − rC)

´
dt+ a

Z T

0
e−rtdY bht

= e−rT
Z T

0
er(T−t)ytdt− ae−rT

Z T

0
er(T−t)C0S(N+1:K)B

³
A0
¡
AA0

¢−1
A− I

´
dzt, (55)

where the third equality is from Itô’s Lemma, and the fifth is from the pricing PDE equation (43)

and from the hedging error in equation (40).

That is, aXbh(T ) = aC(T, S(T )) + Y
bh
T . The hedging portfolio replicates the option payoff except

for a residual risk Y bhT , which contains two parts. The first part depends on the risk premium y. The

second part is orthogonal to the traded assets
³
EP
t

h
dS(t)dY

bh
t

i
= 0

´
. Therefore, the spanned option

payoff does not depend on y (except for the loadings CS(N+1:K)), and it makes economic sense to

decompose the option price in the price of a hedging portfolio plus a premium.

Second, under the risk-neutral dynamics Qbh we have (dzQbht are Wiener processes under Qbh),
C(T ) = C(0) +

Z T

0
(rC − ayt)dt+

Z T

0
C0SΣdz

Q
bh

t (56)

from equation (43), and in discounted prices

C∗(T ) = C∗(0)− a

Z T

0
e−rtytdt+

Z T

0
e−rtC0SΣdz

Q
bh

t . (57)

Therefore, taking risk-neutral expectations under Qbh, and given C(0) = C∗(0), we see that

EQ
bh

0 [C∗(T )] = C(0)− aEQ
bh

0

·Z T

0
y∗t dt

¸
(58)

and consequently,

C(0) = EQ
bh

0

·
C(T )

erT

¸
+ aEQ

bh
0

·Z T

0

yt
ert

dt

¸
. (59)

Denote by bht(y = 0) (by Cbh(y=0)(0)) the optimal portfolio (the option price) when all risk pre-
miums are zero, i.e., ys = 0 for s ∈ (t, T ]. Equation (54) implies that Qh

t = Q
h(y=0)
t . The portfoliobht(y = 0) satisfies that X∗bh(y=0)(0) = C∗bh(y=0)(0), and from equation (59), X∗bh(y=0)(0) = EQ

bh
0

h
C(T )
erT

i
.

Consequently,

C(0) = Xbh(y=0)(0) + aEQ
bh

0

·Z T

0

yt
ert

dt

¸
, (60)

and again, the option price is equal to the price of a hedging portfolio plus a multiperiod risk pre-
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mium.14 Note that equations (55), (59) and (60) are just equations (19), (22) and (26), respectively,

but in continuous time.

Assume that yt ≥ 0 (almost sure), for all t. Then, assuming technical conditions, under the Qbh
probability measure, the discounted upper (lower) bound is a super-martingale (sub-martingale), and

the price of the hedging portfolio, e−rtXbh(y=0)(t) = EQ
bh

t

£
e−rTCT

¤
, is the martingale component.

Finally, since

C(0) = EQ
bh,y

0

·
C(T )

erT

¸
, (61)

then the multiperiod risk premium is also given by

aEQ
bh

0

·Z T

0
e−rtytdt

¸
= EQ

bh,y
0

·
C(T )

erT

¸
−EQ

bh
0

·
C(T )

erT

¸
(62)

For example, if C(T ) is an European call option, the premium is equal to the price difference of two

call options, and if the two call options have a close form solution, the premium does too.

In the continuous-time framework for diffusion processes, Proposition 4 summarizes the results

of the present section and distinguishes our paper from the extant literature. Moreover, that jump-

diffusion processes, that American-style payoffs, and that portfolio constraints can be easily studied

in incomplete markets through the recursive approach (i.e., in a series of one-period recursive and

independent optimization problems) is also another contribution of our paper.

Proposition 4 Assume a frictionless market and that dSt satisfies equation (33). Then, the recur-

sive optimal hedging portfolio bh = CS(1:N) + bg is given by equation (39), the recursive prices C are

characterized by the PDE equation (45), or equations (59) or (61), subject to a boundary condition

C(T, S(T )), the market prices of risk are given by equation (50), the total hedging error is given by

equation (55), and the multiperiod risk premium is given by equation (62). ¥

5 Multiperiod Examples

We give three examples where we apply this methodology. We work in continuous time since it is

easier to derive close-form solutions or characterize prices through partial differential equations, which

14The standard Black and Scholes (1973) formula can be analyzed from two angles, complete markets or (say) risk-

neutral pricing. Let µ and σ be drift and volatility of St, respectively. With complete markets, the one-period residual

risks and associated risk premiums are equal to zero and C0 = EQ
0

£
e−rTCT

¤
, where Q is the unique risk-neutral

probability measure. Then (in risk-neutral pricing), C0 can be rewritten as

C0 = EP
0

h
e−rTCT

i
− EP

0

·Z T

0

e−rt
µ− r

σ
σSt

∂Ct

∂St
dt

¸
,

where the first part is the value of the hedging portfolio that invests only in the bond, which has a zero expected mean

hedging error, and P is the actual probability measure. A trivial result follows for call (the opposite for put) payoffs,

C0 < EP
0

£
e−rTCT

¤
if and only if µ > r since ∂Ct

∂St
> 0.
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can be solved numerically. In particular, we assume that all the state variables follow a diffusion

process, which is standard in the literature, and we can compare this with other results. First, we

study the pricing of basis risk for lognormal processes, then the Heston (1993) stochastic volatility

model, and finally, a put option under short-selling constraints in the standard Black-Scholes model.

5.1 Basis Risk

We price a real option, or an option subject to basis risk. We have an European call option C,

which depends on an underlying asset V which is not traded or is illiquid. There are many examples

of nontraded assets such as weather, electricity, or of illiquid assets such as options on real estate

purchases, etc. However, there exists a second traded asset S that is correlated with the non-tradable

one. For example, the option could be defined on an illiquid commodity (e.g., Mexican oil), but one

could use a correlated and more liquid asset (e.g., the Texas oil future contract) as the hedging asset.

Then, it is possible to hedge the option partially and to derive pricing implications.15

This problem is also studied by Cochrane and Saá-Requejo (2000), and here we use the same

notation and continuous-time dynamics. The dynamics of both assets under the true (lognormal)

probability measure P are given by

dS = µsSdt+ σsSdz1,t and (63)

dV = µvV dt+ σvV (ρdz1,t +
p
1− ρ2dz2,t), (64)

where dz1,t and dz2,t are two standard orthogonal Brownian motions, the parameter ρ measures the

correlation between the returns of V and S, and there exists a risk-free asset with return equal to r.

Note that dz2 is the residual risk and is orthogonal to dS, i.e., EP
t [dStdz2,t] = 0.

Let T be the option maturity and E the strike price, i.e., C(V (T )) = max{V (T )−E, 0}. Because
S is a tradable asset, from Merton (1973) we know that the no-arbitrage bounds of a call option

C(S) are max
©
S −Ee−r(T−t), 0

ª
< C(S) < S. However, because V is nontradable and if |ρ| < 1, one

can show that the no-arbitrage bounds of C(V ) are much more unconstrained, i.e., 0 < C(V ) <∞.
Consequently, any non-negative price is feasible as it does not allow arbitrage opportunities, and the

arbitrage bounds are unpractical.

The Hedging Strategy. By applying Itô’s Lemma we can decompose the return of dC into

dC = (Ct + µvV CV +
1

2
σ2vV

2CV V )dt+ σvV CV (ρdz1,t +
p
1− ρ2dz2,t). (65)

15There are many other applications of this basis risk model. V is a small stock, S is a correlated, but more liquid,

stock. V is a basket of assets, S is an index. V is the short-term interest rate, S are the prices of liquid bonds. In

emerging markets one finds at most one or two liquid bonds. V is inflation, S is a long-term bond. Executive stock

options in the company V , where the executive can trade in any stock S except V . Option pricing with basis risk is

studied in Davis (1998), Detemple and Sundaresan (1999), and Luenberger (2002), among others. Another incomplet

market problem is that of hedging of long-term exposures by rolling over short-term futures contracts (see Ross (1997)).
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Consider the following minimum variance hedging strategy, since dz2 is orthogonal to dS,

bh1 = σvV CV

σsS
ρ. (66)

Then, the return of the hedging portfolio, a
³bh1S −C

´
, is equal to

a
³bh1dS − dC

´
= −a

µ
Ct +

µ
µv − µs

ρσv
σs

¶
V CV +

1

2
σ2vV

2CV V

¶
dt− aσvV CV

p
1− ρ2dz2,t. (67)

The PDE equation. If we forget for a moment the residual risk, dz2,t, then the return of this

portfolio, a
³bh1S −C

´
, is risk free. The law of one price no-arbitrage condition implies that

−a
µ
Ct +

µ
µv − µs

ρσv
σs

¶
V CV +

1

2
σ2vV

2CV V

¶
= −a

µ
C − ρσvV CV

σs

¶
r. (68)

Note that if ρ = 1, this is a standard complete markets problem, and therefore, we obtain the same

no-arbitrage condition on the drift process.

However, we still have the residual risk, dY bht = σvV CV

p
1− ρ2dz2,t, which cannot be hedged

at all. Let ytdt (where yt = 0 if |ρ| = 1) be this risk premium. The risk-return trade-off of

N (ytdt, σvV CV

p
1− ρ2

√
dt) is attractive for the writer (or buyer) of the option. If yt is finite,

under technical conditions, this premium is arbitrage-free. Then we have

−a
µ
Ct +

µ
µv − µs

ρσv
σs

¶
V CV +

1

2
σ2vV

2CV V

¶
= −a

µ
C − ρσvV CV

σs

¶
r + yt. (69)

The investor in C obtains an extra premium ytdt for carrying extra risk on dz2,t. Note that since

a2 = 1, the latter equation can be rewritten as

Ct + µvV CV +
1

2
σ2vV

2CV V − µs − r

σs
ρσvV CV = rC − ayt. (70)

Examples. If the risk premium is proportional to the option price, i.e., yt = ασv
p
1− ρ2C, similar

to equation (28), then

Ct + µvV CV +
1

2
σ2vV

2CV V − µs − r

σs
ρσvV CV = (r − aασv

p
1− ρ2)C, (71)

i.e., the risk-neutral return of the option is equal to r − aασv
p
1− ρ2.

Another interesting example is to assume that the risk premium is proportional to the option

Gamma, i.e., yt = 1
2α
p
1− ρ2σ2vV

2CV V , and α > 0. We have

Ct +

µ
µv −

µs − r

σs
ρσv

¶
V CV +

1

2
σ2v

³
1 + aα

p
1− ρ2

´
V 2CV V = rC. (72)

Interestingly, the risk-neutral volatility is equal to σv
q
1 + aα

p
1− ρ2,16 which is different from σv,

the volatility under the actual probability measure, if |ρ| 6= 1. Whereas both volatilities must be

16Let α ≥ 0. We assume that 1+aα
p
1− ρ2 ≥ 0, and equivalently, −aα ≤

³p
1− ρ2

´−1
. Thus, for the upper bound

(a = +1), this inequality holds for α ≥ 0. For the lower bound (a = −1), α is constrained, 0 ≤ α ≤
³p

1− ρ2
´−1

,

which makes sense to avoid negative option prices as the lower arbitrage bound is zero.
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equal in a complete market model, this constraint does not necessarily hold in incomplete markets.

If markets are incomplete, it is an empirical issue whether this risk premium specification is valid.

Assume now that yt = eAσvV CV

p
1− ρ2, i.e., yt is proportional to the hedging error standard

deviation, and note that yt > 0 if and only if eA > 0, since CV > 0 for call payoffs.17 Then we can

recover another Black-Scholes PDE type,

Ct + µvV CV +
1

2
σ2vV

2CV V = rC +

µ
µs − r

σs
ρ− a eAp1− ρ2

¶
σvV CV . (73)

For this problem, equation (73) seems to be a very reasonable way of pricing this basis risk problem.

Let us remark that in continuous time and diffusion processes, the linearity of returns implies

that the hedging criteria is unique and only the valuation of the residual risk makes the difference.

The Associated RNPMeasure. Let us extract the RNP measureQbh,y and call ³Sµbh,ys , Sσ
bh,y
s

´
and

³
V µ

bh,y
v , V σ

bh,y
v

´
the risk neutral parameters under Qbh,y for dS and dV , respectively. Clearly,³

µ
bh,y
s , σ

bh,y
s

´
=
³
µs − µs−r

σs
σs, σs

´
= (r, σs) , and

³
µ
bh,y
v , σ

bh,y
v

´
=
³
µv − µs−r

σs
ρσv + a yt

V CV
, σv
´
from

equation (70). In other words, λ1 =
µs−r
σs

and λ2 = −a yt

σvV CV
√
1−ρ2 are the market prices of risk

associated with dz1 and dz2, respectively. Note that the market prices of risk and therefore Q
bh,y are

unique. For example, if yt = 0, λ2 = 0; if yt = ασv
p
1− ρ2C, λ2 = −a αC

V CV
(which is related to

the inverse of the option price elasticity since λ2 = −aα
¡
∂C
∂V

V
C

¢−1
); and if yt = eAσvV CV

p
1− ρ2,

λ2 = −a eA. On the other hand, if yt = 1
2α
p
1− ρ2σ2vV

2CV V , the risk-neutral drift and volatility

parameters can be interpreted differently, and λ2 = −a12ασv V CV VCV
, which is related to the curvature

of the option price.

To check that these prices of risk λ2 are well defined, one can simply check that lower option

price bound is non-negative. Also, the risk premium yt can be empirically estimated from the one-

period errors. That is, the one-period hedging errors ytdt + dY
bh
t = ytdt + σvV CV

p
1− ρ2dz2,t can

be regressed on C, V CV , and V 2CV V (or other variables) and test if they are statistically significant.

This is related to the next point.

Risk Management. Assume that yt = eAσvV CV

p
1− ρ2. First, the total hedging error is

simply the sum of the one-period hedging errors plus the one-period risk premiums, financed or

invested at the riskless rate r, i.e.,

Y
bh
T = a

¡
Xbh(T )−C(T, S(T ))

¢
= σv

p
1− ρ2

Z T

0
er(T−t)V CV

³ eAdt− adz2,t
´
. (74)

That is, C(T, S(T )) = Xbh(T ) − aY
bh
T , where Xbh(T ) = σvρ

R T
0 er(T−t)V CV dz1,t is the risk that can

be hedged and −aY bhT = σv
p
1− ρ2

R T
0 er(T−t)V CV dz2,t, besides the risk premium, is the risk that

17That CV > 0 (CV < 0) for call (put) payoffs can be proved following Bergman et al. (1996).
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cannot be hedged. Second, the associated risk premium is given by

aEQ
bh

0

·
σv
p
1− ρ2 eAZ T

0
e−rtV CV dt

¸
. (75)

The PDE equation (73) has a close form solution of the Black-Scholes type, this is the reason

why we do not show this solution. The risk premium in equation (75) also has a close form solution

given by the difference of two call options, which both satisfy equation (73); the first with eA > 0 and

the second with eA = 0, which implies a positive (negative) premium if a = 1 (a = −1).

5.2 Stochastic Volatility

Let us assume a stochastic volatility model. Assume that the option market is illiquid and it is not

possible to trade in a second option. Therefore, we face an incomplete market problem where the

residual risk is going to be the volatility risk since we cannot Vega hedge. In other words, there is

not a unique market price of risk associated with the volatility risk, since this risk cannot be hedged.

This assumption is realistic since it could be very expensive to trade in illiquid options.

We consider the general mean-reverting model of Heston (1993),

dS = µSdt+
√
vSdz1,t, and (76)

dv = κ(θ − v)dt+ σ
√
v
³
ρdz1,t +

p
1− ρ2dz2,t

´
(77)

where v is the stochastic variance, which is mean-reverting with parameters of mean reversion rate

κ, long term level θ, and volatility σ, and dz1,t and dz2,t are two independent Wiener processes where

ρ measures the correlation between dS and dv. Let C be the option price.

By Ito’s Lemma,

dC =

µ
Ct + µSCS +

1

2
vS2CSS + κ(θ − v)Cv +

1

2
σ2vCvv + ρσvSCvS

¶
dt (78)

+
√
vSCSdz1,t + σ

√
vCv

³
ρdz1,t +

p
1− ρ2dz2,t

´
.

Consider the hedging strategy bh1 = µCS + ρ
σCv

S

¶
, (79)

where we also hedge the correlated stochastic volatility, which depends on ρ. This strategy minimizes

the hedging error variance. Then, by Ito’s lemma the return of this hedging portfolio is given by

dC −
µ
CS + ρ

σCv

S

¶
dS (80)

=

µ
Ct − µSρ

σCv

S
+
1

2
vS2CSS + κ(θ − v)Cv +

1

2
σ2vCvv + ρσvSCvS

¶
dt+ σ

√
vCv

p
1− ρ2dz2,t,

where σ
√
vCv

p
1− ρ2dz2,t is the residual risk.
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Then, again, by applying the law of one price,

Ct − µSρ
σCv

S
+
1

2
vS2CSS + κ(θ − v)Cv +

1

2
σ2vCvv + ρσvSCvS = r

µ
C −

µ
CS + ρ

σCv

S

¶
S

¶
. (81)

Let me further specify the model and assume that the risk premium is proportional to the residual

risk volatility times volatility, i.e., yt = eAσp1− ρ2
√
vCv
√
v = eAσp1− ρ2vCv. Note that eA > 0 if

we want to compute the two bounds of call (or put) option as Cv > 0. Then

Ct − µSρ
σCv

S
+
1

2
vS2CSS + κ(θ − v)Cv +

1

2
σ2vCvv + ρσvSCvS

= r

µ
C −

µ
CS + ρ

σCv

S

¶
S

¶
− a eAσvCv

p
1− ρ2, (82)

which can be rewritten as

Ct + µSCS +
1

2
vS2CSS + κ(θ − v)Cv +

1

2
σ2vCvv + ρσvSCvS

= rC +
µ− r√

v

√
vSCS +

µ
µ− r√

v
ρ− a eA√vp1− ρ2

¶
σ
√
vCv. (83)

This implies that λ1 =
µ−r√
v
and λ2 = −a eA√v (with λ2 = 0 if eA = 0) are the unique market prices of

risk associated with dz1 and dz2, respectively.

Equation (83) is related to the one derived in Heston (1993, 329, equation (6)). We refer to Heston

for the economic assumptions behind this equation in complete markets or risk-neutral pricing and

for the appropriate way to solve the equation by Fourier-transformed methods. Note that consistent

with no-arbitrage option pricing theory, λ1 =
µ−r√
v
is the endogenous market price of the risk that

can be hedged, dz1, and λ2 = −a eA√v is the exogenous price of the risk that cannot be hedged, dz2.
On the other hand, from Proposition 4, the hedging error is given by

Y
eh
T = a

³
X
eh
T −CT

´
= σ

p
1− ρ2

Z T

0
er(T−t)Cv

³ eAvdt− a
√
vdz2,t

´
, (84)

and the associated risk premium is given by

aEQ
bh

0

·
σ
p
1− ρ2 eAZ T

0
e−rtvCvdt

¸
. (85)

The recursive approach coincides also with local risk minimization in the literature that computes

optimal hedging portfolios, and where the risk premium is chosen to be equal to zero. See Heath,

Platen, and Schweizer (2001) for a theoretical and a numerical analysis of local risk minimization

versus other fully optimal hedging strategies for a stochastic volatility model.18

18For instance, in Heath, Platen, and Schweizer (2001, 394-395), under the local risk minimization approach, equations

(3.1) and (3.6), (3.3) and (3.4) give the PDE that satisfies the option price, the hedging strategy, and the residual

risk, respectively. Note that these correspond to equations (81), (79), and to
R T
0

σ
√
vCv

p
1− ρ2dz2,t in this paper,

respectively, if we specialize Heath, Platen, and Schweizer to the Heston (1993) model and we call vQ = C, X = S,

Y =
√
v, and b = σ

√
v, and if r = 0 and yt = 0. Moreover, the recursive RNP measure Q

bh in this paper is equal to the
so-called Minimal Martingale Measure in this literature.
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5.3 Portfolio Constraints

We assume the standard Black-Scholes-Merton model. The stock S follows the lognormal process

dS = µSdt+ σSdzt. (86)

We are interested in pricing a put option with maturity T and strike price E, i.e., C(T, S(T )) =

{E − S(T )}+. We have to sell the stock S to hedge the option risk. In practice, in many markets

there are short-sales constraints.19 Assume that h1 ≥ δm, where −1 ≤ δm < 0. We can study a

discrete-time Cox-Ross-Rubinstein binomial model in the same way.

By applying Ito’s Lemma, we can decompose the risk-return of dC into

dC =

µ
Ct + µSCS +

1

2
σ2S2CSS

¶
dt+ σSCSdzt. (87)

Define the hedging strategy h1 as related to the well-known delta hedge, CS =
∂Ct(S)
∂S . That is,

h1 = CS1{CS≥δm} + δm1{CS<δm}, (88)

and clearly h1 is the minimum variance portfolio for this problem with short-selling constrains, with

1{.} the indicator function. Then, the return of the hedging portfolio, h1S −C, is given by

h1dS − dC = −
µ
Ct + µS (CS − h1) +

1

2
σ2S2CSS

¶
dt− σS(CS − δm)1{CS<δm}dzt. (89)

As in the previous examples, if we forget the residual risk, σS(CS − δm)1{CS<δm}dzt, then the

return of this portfolio is risk free. Therefore, the law of one price implies that

−
µ
Ct + µS (CS − h1) +

1

2
σ2S2CSS

¶
= −r (C − h1S) . (90)

Note that if δm = −1, the market is complete. Then, h1 = CS and we obtain the no-arbitrage

condition on the drift process. This equation can be rewritten as

Ct + µSCS +
1

2
σ2S2CSS = rC +

µ− r

σ

µ
1{CS≥δm} +

δm
CS
1{CS<δm}

¶
σCSS, (91)

from where the market price of risk associated with dz is given by λ = µ−r
σ

³
1{CS≥δm} +

δm
CS
1{CS<δm}

´
,

which is nonlinear and stochastic. Note that if CS ≥ δm then λ = µ−r
σ , and if CS < δm then

|λ| = ¯̄µ−rσ ¯̄
δm
CS

<
¯̄
µ−r
σ

¯̄
.

However, we still have the residual risk, σS(δm − CS)1{CS<δm}dzt, which cannot be hedged at

all. Let yt1{CS<δm}dt (i.e., yt1{CS<δm} = 0, if CS ≥ δm) be this risk premium. Again, the risk-return

trade-off of N (ytdt, σS(δm −CS)
√
dt)1{CS<δm} is attractive for the writer of the option. Then,

Ct + µSCS +
1

2
σ2S2CSS = rC +

µ− r

σ

µ
1{CS≥δm} +

δm
CS
1{CS<δm}

¶
σCSS − yt1{CS<δm}. (92)

19Short-sale constraints appear to avoid insider trading, default issues, etc., or in executive stock options, where

executives are legally subject to portfolio constraints.
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Specialize the model further and assume that yt is proportional to the hedging error standard

deviation, i.e., yt = eAσS(δm − CS)1{CS<δm}, and note that yt > 0 if and only if eA > 0, since

(δm −CS)1{CS<δm} > 0. Then we have

Ct + µSCS +
1

2
σ2S2CSS = rC +

µ
µ− r

σ
+

µ
µ− r

σ
− eA¶ δm −CS

CS
1{CS<δm}

¶
σCSS. (93)

From this equation, λ = µ−r
σ +

³
µ−r
σ − eA´ δm−CS

CS
1{CS<δm} is the market price of risk. Therefore, the

upper bound Cs verifies this equation following our methodology. Note that it is a nonlinear PDE,

but can be solved through classic finite difference or binomial trees methods.

Because the short-selling constraint does not affect the hedging of the long position, then the

lower bound Cl is equal to the Black-Scholes-Merton price, which solves

Ct + µSCS +
1

2
σ2S2CSS = rC +

µ− r

σ
σSCS . (94)

The condition Cs ≥ Cl implies that
³
µ−r
σ − eA´ δm−CS

CS
1{CS<δm}σCSS ≤ 0 from equations (93) and

(94). Equivalently, eA ≥ µ−r
σ . The empirical implication of this result is that bid (ask) prices should

be greater than (closer to) the standard no-arbitrage price.

A regular empirical anomaly of option markets is a volatility smile or smirk inconsistent with the

Black-Scholes formula. The Black-Scholes model is based on the normality of returns, and the main

way to explain this abnormal pattern is to consider a more general process for the underlying as with

jumps or stochastic volatility. However, the assumption of frictionless markets has not been removed

in spite of the fact that it is not completely realistic. If eA > µ−r
σ , the short-selling constraint studied

in this paper implies a positive risk premium, which increases with the option’s moneyness.

Therefore, this model produces a volatility smirk for put options, which is empirically plausible

especially for short-term options. Given the evidence of transaction costs in short-selling positions

in equity markets (see Ofek et al. (2003)), and the interest in put options, as a way of providing

portfolio insurance in downward markets, this pricing formula is relevant.

6 Summary and Extensions

Markets can be incomplete from jumps and stochastic volatility in stock and bond returns of well-

developed and liquid financial option markets to more illiquid real options and other projects which

have different embedded options. Market frictions (e.g., non-continuous trading, transaction costs,

portfolio constraints, illiquidity, etc.), nontradable assets (e.g., stochastic volatility or basis risk), real

options, or emerging markets imply that markets can be incomplete.20

In a model of incomplete markets, which assumes recursive one-period optimal portfolios, a simple

but tractable criterion, and that hedging errors and their risk premiums are financed to the riskless
20Figlewski and Green (1999) show that even the most liquid and developed option markets bear many residual risks.
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rate, we have derived two main results. First, that the residual risk does not depend on the risk

premium process (for continuous-time and diffusion processes). Therefore, any arbitrage-free price

is just the price of a hedging portfolio (such as in a complete market) plus a premium associated

to the residual risk (which produces a contingent risk premium at maturity). Second, we derive an

optimal frontier in the non-arbitrage option prices/risk premiums space, and thus, we reduce pricing

in incomplete markets to the explicit valuation of a one-period orthogonal diffusion risk.

First, further research could apply the present technology to other problems such as real options

or other investment or corporate projects (see, e.g., Merton (1998)). Second, the study of different

hedging strategies and risk premiums in discrete-time models, which can depend on the model’s

statistical properties (such as skewness or kurtosis) or on economic factors (such as default issues,

initial wealth, etc.), deserves future research. Third, research could investigate the comparison of one-

period recursive strategies with fully optimal hedging strategies, which produce a less risky residual

risk. Fourth, it is worth studying an extension of the recursive formulation to general jump-diffusion

and other stochastic processes in continuous time. Fifth, note that the risk premium associated

with the hedging errors is not constrained to depend on a price of risk. Therefore, a more flexible

estimation of this premium in empirical work is consistent with non arbitrage. Sixth, in an incomplete

market the risk premium of each security can be determined with the view of total portfolio risk.

A natural and relevant example, in which illiquidity and other frictions are observed daily is that

of emerging markets. Many other examples appear on the very near horizon, as well.
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7 Numerical results

Here we solve the “pde” equations associated with two of the three problems studied in Section 5.

The objective is to develop further intuition for these problems. We show below that our incomplete

markets pricing model yields sensible and intuitive results.

For Basis Risk, asset prices are lognormally distributed and the pde can be solved in close form

solution. We present several Figures where the different parameters are analyzed in detail. For Short-

Sale Constraints, we do not have a close form solution, so we use binomial trees or finite-different

methods. This problem is similar to the free-boundary problem seen in American-style securities. As

the option put payoff is known at maturity, both methods can easily manage the free-boundary with

one-state variable by backward recursion. We explain both methods, and note that the binomial

method does not work well. And for Stochastic Volatility, we do not provide results since option

prices can be solved following Heston (1993).

7.0.1 Basis Risk

In the examples that follow the risk premium associated with the residual risk is proportional to the

residual risk volatility, which is equivalent to defining a market price of risk associated with the resid-

ual risk, eA = λV . Let λS be the price of risk associated with the traded asset, S. Therefore (see equa-

tion (73)), the risk premium associated with the call option is given by
³
λSρ− aλV

p
1− ρ2

´
σV V CV .

For example, even if λV = λS , this risk premium does not simplify to ±σV V CV λS , but is

given by λS
³
ρ− a

p
1− ρ2

´
σV V CV (except for market completeness, i.e., |ρ| = 1). As base case

parameters, we take E = 100 and T = 0.5, and r = 0.0488, µS = r + 0.05, σS = 0.20, and therefore,

λS =
µS−r
σS

= 0.25. For simplicity, we take λV = λS > 0 for the upper bound, λV = −λS < 0 for the

lower bound, and also give the zero-premium case where λV = 0. The correlation is ρ = 0.9, and the

drift and the volatility of V and S are the same, µV = µS and σV = σS , respectively.

As “lnSt” is normally distributed, a close-form solution for the pde is given by

C(0, V0) = V0e
(µ∗V −r)TN (d1)−Ee−rTN (d2), (95)

µ∗V = µV −
³
λSρ− aλV

p
1− ρ2

´
σV , d1 =

ln V0
E +

¡
µ∗V +

1
2σ
2
V

¢
T

σV
√
T

, and d2 = d1 − σV
√
T, (96)

where a = +1 (a = −1) for the upper (lower) bound, and λV = 0 if the residual risk is not priced.

Figure 1 contains option prices for different values of the non-traded underlying asset V . The

intuition is clear. First, the three bounds are increasing and convex functions of V , similar to the

Black-Scholes-Merton formula. Second, for far out-the-money payoffs, the probability for which the

option can end in-the-money is very low. This implies that the residual risk is also very low, and

therefore, the three bounds are very close. Third, the spread between the upper and the lower bound,
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like the option risk, go up with the option moneyness. Fourth, in the same Figure 1, at-the-money

options are approximately 10% more expensive (cheaper) for the upper (lower) bound than those if

the residual risk is not priced, though this difference lowers with the option moneyness.

Figure 2 reports the volatility smile associated with the option prices of Figure 1 (we use the

same axes in both Figures). This implicit volatility is computed assuming that µ∗V = r under the

risk-neutral Q−measure (as if V is a traded security). One can argue that a more reasonable drift

under Q is given by µ∗V = µV − ρλSσV if λV = 0. However, in this second case, option prices are not

always increasing functions of the volatility σV , and thus, we do not have a one-to-one relationship.

The spread between the upper and the lower bound implicit volatilities goes up with the option

moneyness. The zero implicit volatility for the lower bound is simply because this price is less than

V0 − Ee−rT (i.e., a lower arbitrage bound, which does not apply here). And the implicit volatility

for the upper bound increases unboundedly.

Figure 3 shows option prices as a function of volatility, σV , and proves that option prices are

not necessarily increasing functions of volatility in an incomplete markets framework. This result

is due to the fact that the risk-neutral drift, which is not simply equal to r, depends on σV (i.e.,

µ∗V = µV − λS
³
ρ− a

p
1− ρ2

´
σV ). This can be clearly shown for the lower bound (a = −1). If

volatility raises, there is an unambiguous option price depression from the negative residual-risk

premium, which can dominate any other effect (e.g., from σV = 0.02 to σV = 0.03).

Figure 4 shows one of the innovations of this paper, an optimal frontier between option prices and

the risk premium (i.e., the price of risk, λV ) of the residual risk. The frontier is optimal in the sense

that the residual risk is one-period minimized, and hence, its associated risk premium is also the

minimum (for a given valuation of this residual risk). The upper (lower) curve are associated with

the upper (lower) bound. Figure 4 also shows the option price as a convex function of the variable

λV , similar results for an at-the-money call option.

Because options are securities in zero-net supply, our model tells us that the option writer and

the option buyer will agree in a price which belongs to this frontier, but does not produce a unique

point. This parallels the Markowitz mean-variance framework, where investors demand portfolios of

the “mean-variance efficient frontier,” but the chosen portfolio depends on the investor risk-aversion.

Certainly, one can derive the CAPM if markets clearing and equilibrium is imposed, which is not

considered here.

Figure 5 shows the effect of the correlation, ρ. For |ρ| = 1, the three prices are the same as the
market is complete. The result of ρ is non-lineal and non-monotonic for the upper and the lower

bound where λV 6= 0. As the market risk premium is positive (λS > 0), increasing ρ depress call

option prices (except for a small part) and raises the expected return of option holders. For ρ = 0,

the residual risk is the largest, but as λV and λS are equal, option prices are not necessarily larger.
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7.0.2 Short-Sale Constraints

Now consider the problem of short-selling constraints, a clear example of market incompleteness. In

what follows, we price a put with T = 0.25 and E = 100, and study how the put price depends on

the price of risk of the residual risk, eA = λr, and depends on the short-selling constraint, δm. The

other parameters are r = 0.0488, σ = 0.20, µ = r + 0.08, and λS = 0.40.

Let δm = −0.5. Figure 6 shows the put price as a function of the stock price and for eA =

{0.0, 1.0, 2.0, 4.0} × λS. The put price goes up with eA, and implies an inverted volatility smirk in
Figure 7 (if eA > λS), which has been empirically documented for very short-term options. The

volatility smirk raises with the moneyness of the put option (if eA > λS), being almost negligible for

out-the-money options. If eA = λS, one obtains the Black-Scholes-Merton price.

Let eA = 2λS . Figure 8 shows the put price as a function of the stock price and for δm =

{0.0,−0.4,−0.7,−1.0}. For δm = −1.0, the market is complete, and for δm = 0.0, short-selling is

forbidden. The put price raises with δm since eA > λS, and implies an inverted volatility smirk in

Figure 9, which goes up with the option moneyness since now the put is more difficult to hedge.

In Figure 10, we show the implicit volatility for different maturities. For in-the-money (at- and

out-the-money) options, the implicit volatility decreases (raises) with the maturity.

We solve equation (93) by a finite-different method, which requires to discretize this PDE. At

each node of the S×T grid, we simply check if the constraint CS < δm holds and then, appropriately,

solve equation (93). Finite-difference seems to produce convergent results in the limit. We check that

the results converge to the complete markets, or Black-Scholes-Merton, price either if δm = −1.0 or
if eA = λS .

On the other hand, we solve equation (93) by a binomial method as well. However, it does not

converge as we can check either if δm → −1.0 or if eA→ λS . Fix a node (t, St) of the binomial tree.

We price the put option as C (t, St) = H0
t e
−r∆t+max{CS, δm}St, where CS =

C(t+∆t)up−C(t+∆t)down

Supt+∆t−Sdownt+∆t

and where H0
t is such that the expected hedging error at time t+∆t is zero. Next, if CS < δm, we

add a risk premium proportional to the residual risk volatility times
√
∆t, which is order ∆t. The

model, however, underprices the option when we check the two previous cases if ∆t → 0. A more

detailed analysis of this issue is left for future research.
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Figure 1: Option call prices under Basis Risk, where E = 100 and T = 0.5, and r = 0.0488,

µS = r + 0.05, σS = 0.20, and λS =
µS−r
σS

= 0.25. We take λV = λS > 0 for the upper bound,

λV = −λS < 0 for the lower bound, and λV = 0 for the zero premium. The correlation is ρ = 0.9,

and drift and volatility of V and S are the same, µV = µS and σV = σS , respectively.
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Figure 2: Volatility smile derived from Figure 1. The parameters are E = 100 and T = 0.5, and

r = 0.0488, µS = r + 0.05, σS = 0.20, and λS =
µS−r
σS

= 0.25. Then, λV = λS > 0 for the upper

bound, λV = −λS < 0 for the lower bound, and λV = 0 for the zero premium. The correlation is

ρ = 0.9, and µV = µS and σV = σS. The true price is derived assuming that µ∗V = r.
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Figure 3: Option call prices under Basis Risk, where S0 = 100, E = 100 and T = 0.5, and r = 0.0488,

µS = r + 0.05, σS = 0.20, and λS =
µS−r
σS

= 0.25. We take λV = λS > 0 for the upper bound,

λV = −λS < 0 for the lower bound, and λV = 0 for the zero premium. The correlation is ρ = 0.9,

and the drift of V and S are the same, µV = µS .
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Figure 4: Optimal Frontier, option call prices and price of risk of the residual risk. E = 100 and

T = 0.5, and r = 0.0488, µS = r + 0.05, σS = 0.20, and λS =
µS−r
σS

= 0.25. We take λV > 0 for the

upper bound and λV < 0 for the lower bound. The correlation is ρ = 0.9, and drift and volatility of

V and S are the same, µV = µS and σV = σS , respectively.
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Figure 5: Option call prices under Basis Risk, where E = 100 and T = 0.5, and r = 0.0488,

µS = r + 0.05, σS = 0.20, and λS =
µS−r
σS

= 0.25. We take λV = λS > 0 for the upper bound,

λV = −λS < 0 for the lower bound, and λV = 0 for the zero premium. The drift and volatility of V

and S are the same, µV = µS and σV = σS , respectively.
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Figure 6: Put option price under short-selling constraints. The parameters are T = 0.25 and E = 100,

and r = 0.0488, σ = 0.20, µ = r + 0.08, and λS = 0.40. The short-selling constraint is δm = −0.5.
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Figure 7: Volatility smile derived from Figure 6. The parameters are T = 0.25 and E = 100, and

r = 0.0488, σ = 0.20, µ = r + 0.08, and λS = 0.40. The short-selling constraint is δm = −0.5.
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Figure 8: Put option price under short-selling constraints. The parameters are T = 0.25 and E = 100,

and r = 0.0488, σ = 0.20, µ = r + 0.08, and λS = 0.40. The price of risk of the residual risk is

λr = 0.80.
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Figure 9: Volatility smile derived from Figure 7. The parameters are T = 0.25 and E = 100, and

r = 0.0488, σ = 0.20, µ = r+0.08, and λS = 0.40. The price of risk of the residual risk is λr = 0.80.
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Figure 10: Put option price under short-selling constraints. The parameters are E = 100, and

r = 0.0488, σ = 0.20, µ = r + 0.08, and λS = 0.40. The price of risk of the residual risk is eA = 0.80
with δm0− 0.50.
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