34 research outputs found

    Probability-based Distance Estimation Model for 3D DV-Hop Localization in WSNs

    Full text link
    Localization is one of the pivotal issues in wireless sensor network applications. In 3D localization studies, most algorithms focus on enhancing the location prediction process, lacking theoretical derivation of the detection distance of an anchor node at the varying hops, engenders a localization performance bottleneck. To address this issue, we propose a probability-based average distance estimation (PADE) model that utilizes the probability distribution of node distances detected by an anchor node. The aim is to mathematically derive the average distances of nodes detected by an anchor node at different hops. First, we develop a probability-based maximum distance estimation (PMDE) model to calculate the upper bound of the distance detected by an anchor node. Then, we present the PADE model, which relies on the upper bound obtained of the distance by the PMDE model. Finally, the obtained average distance is used to construct a distance loss function, and it is embedded with the traditional distance loss function into a multi-objective genetic algorithm to predict the locations of unknown nodes. The experimental results demonstrate that the proposed method achieves state-of-the-art performance in random and multimodal distributed sensor networks. The average localization accuracy is improved by 3.49\%-12.66\% and 3.99%-22.34%, respectively

    Accuracy improvement of connectivity-based sensor network localization

    Get PDF
    The early results from connectivity-based sensor network localization suffer from disappointing accuracy. The reason is partly due to the limited information of the problem, and also the deficiencies of the algorithms. This paper proposes a two-level range/indication of connectivity between each pair of nodes, which would indicate three levels of connectivity: strong, weak or nil. Theoretically, the two-level connectivity localization problem can be modeled as a non-convex optimization problem in mathematics, which contains the convex constraints and non-convex constraints. Besides using two-level range to enrich the given information, a two-objective evolutionary algorithm is also used for searching a solution. The simulation is carried out using five different topology networks all containing 100 nodes. Simulation results have shown that better solution can be obtained by using two-level range connectivity when compared with the usual one-level range connectivity-based localization.published_or_final_versionThe 25th IEEE Canadian Conference on Electrical & Computer Engineering (CCECE 2012), Montreal, QC., 29 April-2 May 2012. In IEEE Canadian Conference on Electrical and Computer Engineering Proceedings, 2012, p. 1-

    Evolutionary approach on connectivity-based sensor network localization

    Get PDF
    The sensor network localization based on connectivity can be modeled as a non-convex optimization problem. It can be argued that the actual problem should be represented as an optimization problem with both convex and non-convex constraints. A two-objective evolutionary algorithm is proposed which utilizes the result of all convex constraints to provide a starting point on the location of the unknown nodes and then searches for a solution to satisfy all the convex and non-convex constraints of the problem. The final solution can reach the most suitable configuration of the unknown nodes because all the information on the constraints (convex and non-convex) related to connectivity have been used. Compared with current models that only consider the nodes that have connections, this method considers not only the connection constraints, but also the disconnection constraints. As a MOEA (Multi-Objective Evolution Algorithm), PAES (Pareto Archived Evolution Strategy) is used to solve the problem. Simulation results have shown that better solution can be obtained through the use of this method when compared with those produced by other methods. © 2014 Elsevier B.V.postprin

    SENSOR MANAGEMENT FOR LOCALIZATION AND TRACKING IN WIRELESS SENSOR NETWORKS

    Get PDF
    Wireless sensor networks (WSNs) are very useful in many application areas including battlefield surveillance, environment monitoring and target tracking, industrial processes and health monitoring and control. The classical WSNs are composed of large number of densely deployed sensors, where sensors are battery-powered devices with limited signal processing capabilities. In the crowdsourcing based WSNs, users who carry devices with built-in sensors are recruited as sensors. In both WSNs, the sensors send their observations regarding the target to a central node called the fusion center for final inference. With limited resources, such as limited communication bandwidth among the WSNs and limited sensor battery power, it is important to investigate algorithms which consider the trade-off between system performance and energy cost in the WSNs. The goal of this thesis is to study the sensor management problems in resource limited WSNs while performing target localization or tracking tasks. Most research on sensor management problems in classical WSNs assumes that the number of sensors to be selected is given a priori, which is often not true in practice. Moreover, sensor network design usually involves consideration of multiple conflicting objectives, such as maximization of the lifetime of the network or the inference performance, while minimizing the cost of resources such as energy, communication or deployment costs. Thus, in this thesis, we formulate the sensor management problem in a classical resource limited WSN as a multi-objective optimization problem (MOP), whose goal is to find a set of sensor selection strategies which re- veal the trade-off between the target tracking performance and the number of selected sensors to perform the task. In this part of the thesis, we propose a novel mutual information upper bound (MIUB) based sensor selection scheme, which has low computational complexity, same as the Fisher information (FI) based sensor selection scheme, and gives estimation performance similar to the mutual information (MI) based sensor selection scheme. Without knowing the number of sensors to be selected a priori, the MOP gives a set of sensor selection strategies that reveal different trade-offs between two conflicting objectives: minimization of the number of selected sensors and minimization of the gap between the performance metric (MIUB and FI) when all the sensors transmit measurements and when only the selected sensors transmit their measurements based on the sensor selection strategy. Crowdsourcing has been applied to sensing applications recently where users carrying devices with built-in sensors are allowed or even encouraged to contribute toward the inference tasks. Crowdsourcing based WSNs provide cost effectiveness since a dedicated sensing infrastructure is no longer needed for different inference tasks, also, such architectures allow ubiquitous coverage. Most sensing applications and systems assume voluntary participation of users. However, users consume their resources while participating in a sensing task, and they may also have concerns regarding their privacy. At the same time, the limitation on communication bandwidth requires proper management of the participating users. Thus, there is a need to design optimal mechanisms which perform selection of the sensors in an efficient manner as well as providing appropriate incentives to the users to motivate their participation. In this thesis, optimal mechanisms are designed for sensor management problems in crowdsourcing based WSNs where the fusion center (FC) con- ducts auctions by soliciting bids from the selfish sensors, which reflect how much they value their energy cost. Furthermore, the rationality and truthfulness of the sensors are guaranteed in our model. Moreover, different considerations are included in the mechanism design approaches: 1) the sensors send analog bids to the FC, 2) the sensors are only allowed to send quantized bids to the FC because of communication limitations or some privacy issues, 3) the state of charge (SOC) of the sensors affects the energy consumption of the sensors in the mechanism, and, 4) the FC and the sensors communicate in a two-sided market

    Development an accurate and stable range-free localization scheme for anisotropic wireless sensor networks

    Get PDF
    With the high-speed development of wireless radio technology, numerous sensor nodes are integrated into wireless sensor networks, which has promoted plentiful location-based applications that are successfully applied in various fields, such as monitoring natural disasters and post-disaster rescue. Location information is an integral part of wireless sensor networks, without location information, all received data will lose meaning. However, the current localization scheme is based on equipped GPS on every node, which is not cost-efficient and not suitable for large-scale wireless sensor networks and outdoor environments. To address this problem, research scholars have proposed a rangefree localization scheme which only depends on network connectivity. Nevertheless, as the representative range-free localization scheme, Distance Vector-Hop (DV-Hop) localization algorithm demonstrates extremely poor localization accuracy under anisotropic wireless sensor networks. The previous works assumed that the network environment is evenly and uniformly distributed, ignored anisotropic factors in a real setting. Besides, most research academics improved the localization accuracy to a certain degree, but at expense of high communication overhead and computational complexity, which cannot meet the requirements of high-precision applications for anisotropic wireless sensor networks. Hence, finding a fast, accurate, and strong solution to solve the range-free localization problem is still a big challenge. Accordingly, this study aspires to bridge the research gap by exploring a new DV-Hop algorithm to build a fast, costefficient, strong range-free localization scheme. This study developed an optimized variation of the DV-Hop localization algorithm for anisotropic wireless sensor networks. To address the poor localization accuracy problem in irregular C-shaped network topology, it adopts an efficient Grew Wolf Optimizer instead of the least-squares method. The dynamic communication range is introduced to refine hop between anchor nodes, and new parameters are recommended to optimize network protocol to balance energy cost in the initial step. Besides, the weighted coefficient and centroid algorithm is employed to reduce cumulative error by hop count and cut down computational complexity. The developed localization framework is separately validated and evaluated each optimized step under various evaluation criteria, in terms of accuracy, stability, and cost, etc. The results of EGWO-DV-Hop demonstrated superior localization accuracy under both topologies, the average localization error dropped up to 87.79% comparing with basic DV-Hop under C-shaped topology. The developed enhanced DWGWO-DVHop localization algorithm illustrated a favorable result with high accuracy and strong stability. The overall localization error is around 1.5m under C-shaped topology, while the traditional DV-Hop algorithm is large than 20m. Generally, the average localization error went down up to 93.35%, compared with DV-Hop. The localization accuracy and robustness of comparison indicated that the developed DWGWO-DV-Hop algorithm super outperforms the other classical range-free methods. It has the potential significance to be guided and applied in practical location-based applications for anisotropic wireless sensor networks

    Simulation d'un réseau sans fil d'intérieur et des algorithmes NSGA-II et NSGA-III modifiés pour la résolution de la problématique de couverture et de localisation 3D

    Get PDF
    Par rapport au déploiement bidimensionnel, le déploiement tridimensionnel des réseaux de capteurs est plus complexe en raison de sa capacité à satisfaire plus de contraintes imposées par les problèmes de déploiement réels. Dans cet article, nous étudions la problématique de positionnement 3D des noeuds, tout en minimisant le nombre de noeuds, maximisant la zone de couverture et le taux de localisation hybride basée sur le protocole 3D DV-HOP et le RSSI. Nous cherchons à résoudre notre problématique en choisissant les emplacements 3D idéaux pour ajouter des noeuds nomades en optimisant les objectifs cités. Une approche basée sur des algorithmes génétiques est proposée pour résoudre notre problématique. Des variantes d'algorithmes génétiques basés sur l'algorithme NSGA-II [1] et le récent algorithme NSGA-III [2] sont proposées. En outre, un ensemble d'opérateurs de mutation est appliqué sur ces algorithmes génétiques soit aléatoirement, soit de façon adaptative. Les simulations se basent sur deux scénarios (à petit et à grand échelle) selon le nombre de noeuds déployés. Le modèle de simulation prend en considération l'implémentation d'une couche physique à 433 Mhz, une couche liaison de données de type CSMA/CA non coordonné inspiré de celui présent dans la norme IEEE 802.15.4 , et une couche routage basée sur le protocole AODV réactif. Les résultats numériques obtenus à partir des simulations avec Omnetpp [3] à petit et à grand échelle, sont présentés pour se comparer par rapport à nos expérimentations [4] et pour prouver l'efficacité de l'approche proposée et des algorithmes proposés

    The 3D Deployment Multi-objective Problem in Mobile WSN: Optimizing Coverage and Localization

    Get PDF
    International audienceThe deployment of sensor nodes is a critical phase that significantly affects the functioning and performance of the sensor network. Coverage is an important metric reflecting how well the region of interest is monitored. Random deployment is the sim-plest way to deploy sensor nodes but may cause unbalanced deployment and therefore, we need a more intelligent way for sensor deployment. In this paper, we study the positioning of sensor nodes in a WSN in order to maximize the coverage problem and to optimize the localization. First, the problem of deployment is introduced, then we present the latest research works about the different proposed methods. Also, we propose a mathematical formulation and a genetic based approach to solve this problem. Finally, the numerical results of experimentations are presented and discussed. Indeed, this paper presents a genetic algorithm which aims at searching for an optimal or near optimal solution to the coverage holes problem. Our algorithm defines the minimum number and the best locations of the mobile nodes to add after the initial random deployment of the stationary nodes. Compared with random deployment, our genetic algorithm shows significant performance improvement in terms of quality of coverage while optimizing the localization in the sensor network

    Optimized range-free localization scheme using autonomous groups particles swarm optimization for anisotropic wireless sensor networks

    Get PDF
    Location information is a required concern for localization-based service application in the field of wireless sensor networks (WSNs). Distance Vector-Hop (DV-Hop) algorithm as the most typical range-free localization scheme is more suitable for large-scaled WSNs. Its localization performance is good in even distributed networks. However, it demonstrated extremely poor accuracy under anisotropic networks, which is an urgent problem that need to be addressed. Accordingly, an optimized DV-Hop localization algorithm is put forward in this study with considering several anisotropic factors. Accumulated hop size error and collinearity are two main reasons that led to low accuracy and poor stability. Hence, hop size error of anchors is reduced by introducing distance gap based on anchors. Besides, weighted least square method is adopted to replace the least square method to against anisotropic factors caused by irregular radio patterns. Moreover, an Autonomous Groups Particles Swarm Optimization (AGPSO) is employed to further optimize the obtained coordinate in the first round. It developed a novel method to determine localization coverage. The localization coverage is also added to be one evaluation metric in our study, which makes up for the lack of this evaluation indicator in most of the studies. Simulation results display good localization accuracy and strong stability under anisotropic networks. In addition, it also concluded that metaheuristic optimization algorithm and weighted least square method are more suitable to conquer anisotropic factor. It briefly points out a new direction for the future research work in the localization area under anisotropic networks

    Design and Evaluation of a Traffic Safety System based on Vehicular Networks for the Next Generation of Intelligent Vehicles

    Get PDF
    La integración de las tecnologías de las telecomunicaciones en el sector del automóvil permitirá a los vehículos intercambiar información mediante Redes Vehiculares, ofreciendo numerosas posibilidades. Esta tesis se centra en la mejora de la seguridad vial y la reducción de la siniestralidad mediante Sistemas Inteligentes de Transporte (ITS). El primer paso consiste en obtener una difusión eficiente de los mensajes de advertencia sobre situaciones potencialmente peligrosas. Hemos desarrollado un marco para simular el intercambio de mensajes entre vehículos, utilizado para proponer esquemas eficientes de difusión. También demostramos que la disposición de las calles tiene gran influencia sobre la eficiencia del proceso. Nuestros algoritmos de difusión son parte de una arquitectura más amplia (e-NOTIFY) capaz de detectar accidentes de tráfico e informar a los servicios de emergencia. El desarrollo y evaluación de un prototipo demostró la viabilidad del sistema y cómo podría ayudar a reducir el número de víctimas en carretera
    corecore