29 research outputs found

    Design Optimization of Highly Uncertain Processes: Applications to Papermaking System

    Get PDF
    In process design, the goal is to find a process structure that satisfies the desired targets and constraints. A typical task involves decision making related to the process flow-sheet and equipment. This dissertation examines design optimization of papermaking process. The main emphasis is on the development of an optimal design procedure for highly uncertain processes with non-Gaussian uncertainties. The design problem is studied as a multiobjective task in which the most effective process structure is sought by maximizing the process long-term performance and minimizing the investment cost. As the assessment of the long-term performance requires that the process be operated optimally, the optimization of the process operation is studied as a subtask of the design problem. Paper manufacturing is a complex process in which paper is produced from wood, water, and chemicals. The task is to manufacture uniform quality paper while minimizing the costs. If the paper web breaks, all the production is discarded. The unpredictable web breaks strongly disturb the paper production. As a result, the process has two separate operating points: normal operation and operation during web breaks. That poses challenges to the process operation as the transition between the operating points is somewhat random and the future evolution of the process is not completely predictable. In model-based process optimization, the uncertainty related to the models affects the reliability of the results. The modelling uncertainty is associated with both the incom-plete understanding of the process and the approximation due to computational reasons. In papermaking, the unpredictable web breaks are the largest source of uncertainty, but incomplete understanding is also related to e.g. the quality models of the paper. Besides modelling uncertainty, also the uncertainty about the available information, i.e. the measurement accuracy, affects the reliability of the optimization. In this thesis, schedul-ing of the measurement resources is studied as a part of the process optimization. This dissertation proposes a procedure to systematically optimize the design and operation of a papermaking process. The procedure is presented at six stages, including problem formulation, modelling, operational optimization, design optimization, robustness analysis, and validation. The main focus is at the operational and design optimization stages, but the purpose of all stages is discussed. The proposed procedure is demonstrated with case studies. The studied cases deal with two types of problems: discrete state systems with uncertain state information and continuous state systems with two operating points. In both groups, non-Gaussian uncertainty plays an important role

    Simulation assisted performance optimization of large-scale multiparameter technical systems

    Get PDF
    During the past two decades the role of dynamic process simulation within the research and development work of process and control solutions has grown tremendously. As the simulation assisted working practices have become more and more popular, also the accuracy requirements concerning the simulation results have tightened. The accuracy improvement of complex, plant-wide models via parameter tuning necessitates implementing practical, scalable methods and tools operating on the correct level of abstraction. In modern integrated process plants, it is not only the performance of individual controllers but also their interactions that determine the overall performance of the large-scale control systems. However, in practice it has become customary to split large-scale problems into smaller pieces and to use traditional analytical control engineering approaches, which inevitably end in suboptimal solutions. The performance optimization problems related to large control systems and to plant-wide process models are essentially connected in the context of new simulation assisted process and control design practices. The accuracy of the model that is obtained with data-based parameter tuning determines the quality of the simulation assisted controller tuning results. In this doctoral thesis both problems are formulated in the same framework depicted in the title of the thesis. To solve the optimization problem, a novel method called Iterative Regression Tuning (IRT) applying numerical optimization and multivariate regression is presented. IRT method has been designed especially for large-scale systems and it allows the incorporation of domain area expertise into the optimization goals. The thesis introduces different variations on the IRT method, technical details related to their application and various use cases of the algorithm. The simulation assisted use case is presented through a number of application examples of control performance and model accuracy optimization

    Systems Analysis in Forestry and Forest Industries

    Get PDF
    The purpose of this book is to present a variety of articles revealing the state of the art of applications of systems analysis techniques to problems of the forest sector. Such applications cover a vast range of issues in forestry and the forest industry. They include the dynamics of the forest ecosystem, optimal forest management, the roundwood market, forest industrial strategy, regional and national forest sector policy as well as international trade in forest products. Forest industrial applications at mill level, such as optimal paper trimming, cutting, and production scheduling, are however, excluded

    Model-based optimization of a CompactCooking G2 digesting process stage

    Get PDF
    A CompactCooking™ G2 (Valmet) digesting system represents a challenging process stage to be optimized in the context of a kraft pulp mill. Its highly non-linear behavior due to liquor recycling and heat integration poses a barrier to traditional trial-and-error optimization conducted by physical lab-scale simulation. Hence, this thesis aims to design a solution based on numerical simulation and mathematical optimization, whose results can be directly applied on industrial-scale as computed optimal set-points for the supervisory control. Based on published, first-principles, pulp digester models, a customized dynamic model was developed in Matlab/Simulink to simulate a complete CompactCooking™ G2 stage. The process model is founded on Purdue wood reaction kinetics and Härkönen chips bed compaction models, and it seamlessly takes into account process characteristics mentioned above. The non-linear model was validated by comparison against historical data of an industrial unit (200 h), and then employed in the design of a steady-state optimizer for this process stage by means of linear programming. Simulation results showed very good agreement in terms of liquors residual alkali, weak black liquor solids, and blowline kappa, despite high uncertainty on disturbances data and model simplifications. However, simulated kappa showed higher sensitivity to temperature fluctuations than the plant signal, likely indicating the need for more detail when modelling heat transfer phenomena. As to the optimization goal, a base case scenario (plant steady-state) was identified from industrial data to attempt process economics optimization. The results showed a potential for increasing profit or reducing variable costs in at least 2 USD/ADt, which for a modern pulp mill represents annual benefits between 1 – 2 million USD depending on production rate and mill availability. Further, the simulation model showed remarkable results when used in a novel process analysis technique, called here simulated contribution, letting to explain the variability of blowline kappa in terms of multiple-time-scale process dynamics. In conclusion, a model-based optimization method has been successfully designed for the CompactCooking™ G2 system, and potential economic benefits should encourage industrial testing and further work to develop a real-time optimizer software technology

    APPLICATION OF PROCESS SYSTEMS ENGINEERING TOOLS AND METHODS TO FERMENTATION-BASED BIOREFINERIES

    Get PDF
    Biofuels produced from lignocellulosic biomass via the fermentation platform are sustainable energy alternatives to fossil fuels. Process Systems Engineering (PSE) uses computer-based tools and methods to design, simulate and optimize processes. Application of PSE tools to the design of economic biorefinery processes requires the development of simulation approaches that can be integrated with existing, mature PSE tools used to optimize traditional refineries, such as Aspen Plus. Current unit operation models lack the ability to describe unsteady state fermentation processes, link unsteady state fermentation with in situ separations, and optimize these processes for competing factors (e.g., yield and productivity). This work applies a novel architecture of commercial PSE tools, Aspen Plus and MATLAB, to develop techniques to simulate time-dependent fermentation without and with in situ separations for process design, analyses and optimization of the operating conditions. Traditional batch fermentation simulations with in situ separations decouple these interdependent steps in a separate “steady state” reactor followed by an equilibrium separation of the final fermentation broth. A typical mechanistic system of ordinary differential equations (ODEs) describing a batch fermentation does not fit the standard built-in power law reaction kinetics model in Aspen Plus. To circumvent this challenge, a novel platform that links the batch reactor to a FORTRAN user kinetics subroutine (incorporates the ODEs) combined with component substitution (to simulate non-databank components) is utilized to simulate an unsteady state batch and in situ gas stripping process. The resulting model system predicts the product profile to be sensitive to the gas flow rate unlike previous “steady state” simulations. This demonstrates the importance of linking a time-dependent fermentation model to the fermentation environment for the design and analyses of fermentation processes. A novel platform linking the genetic algorithm multi-objective and single-objective optimizations in MATLAB to the unsteady state batch fermentation simulation in Aspen Plus through a component object module communication platform is utilized to optimize the operating conditions of a typical batch fermentation process. Two major contributions are: prior concentration of sugars from a typical lignocellulosic hydrolysate may be needed and with a higher initial sugar concentration, the fermentation process must be integrated with an in situ separation process to optimize the performance of fermentation processes. With this framework, fermentation experimentalists can use the full suite of PSE tools and methods to integrate biorefineries and refineries and as a decision-support tool to guide the design, analyses and optimization of fermentation-based biorefineries

    Annual Report, 2017-2018

    Get PDF

    Book of abstracts of the 10th International Chemical and Biological Engineering Conference: CHEMPOR 2008

    Get PDF
    This book contains the extended abstracts presented at the 10th International Chemical and Biological Engineering Conference - CHEMPOR 2008, held in Braga, Portugal, over 3 days, from the 4th to the 6th of September, 2008. Previous editions took place in Lisboa (1975, 1889, 1998), Braga (1978), Póvoa de Varzim (1981), Coimbra (1985, 2005), Porto (1993), and Aveiro (2001). The conference was jointly organized by the University of Minho, “Ordem dos Engenheiros”, and the IBB - Institute for Biotechnology and Bioengineering with the usual support of the “Sociedade Portuguesa de Química” and, by the first time, of the “Sociedade Portuguesa de Biotecnologia”. Thirty years elapsed since CHEMPOR was held at the University of Minho, organized by T.R. Bott, D. Allen, A. Bridgwater, J.J.B. Romero, L.J.S. Soares and J.D.R.S. Pinheiro. We are fortunate to have Profs. Bott, Soares and Pinheiro in the Honor Committee of this 10th edition, under the high Patronage of his Excellency the President of the Portuguese Republic, Prof. Aníbal Cavaco Silva. The opening ceremony will confer Prof. Bott with a “Long Term Achievement” award acknowledging the important contribution Prof. Bott brought along more than 30 years to the development of the Chemical Engineering science, to the launch of CHEMPOR series and specially to the University of Minho. Prof. Bott’s inaugural lecture will address the importance of effective energy management in processing operations, particularly in the effectiveness of heat recovery and the associated reduction in greenhouse gas emission from combustion processes. The CHEMPOR series traditionally brings together both young and established researchers and end users to discuss recent developments in different areas of Chemical Engineering. The scope of this edition is broadening out by including the Biological Engineering research. One of the major core areas of the conference program is life quality, due to the importance that Chemical and Biological Engineering plays in this area. “Integration of Life Sciences & Engineering” and “Sustainable Process-Product Development through Green Chemistry” are two of the leading themes with papers addressing such important issues. This is complemented with additional leading themes including “Advancing the Chemical and Biological Engineering Fundamentals”, “Multi-Scale and/or Multi-Disciplinary Approach to Process-Product Innovation”, “Systematic Methods and Tools for Managing the Complexity”, and “Educating Chemical and Biological Engineers for Coming Challenges” which define the extended abstracts arrangements along this book. A total of 516 extended abstracts are included in the book, consisting of 7 invited lecturers, 15 keynote, 105 short oral presentations given in 5 parallel sessions, along with 6 slots for viewing 389 poster presentations. Full papers are jointly included in the companion Proceedings in CD-ROM. All papers have been reviewed and we are grateful to the members of scientific and organizing committees for their evaluations. It was an intensive task since 610 submitted abstracts from 45 countries were received. It has been an honor for us to contribute to setting up CHEMPOR 2008 during almost two years. We wish to thank the authors who have contributed to yield a high scientific standard to the program. We are thankful to the sponsors who have contributed decisively to this event. We also extend our gratefulness to all those who, through their dedicated efforts, have assisted us in this task. On behalf of the Scientific and Organizing Committees we wish you that together with an interesting reading, the scientific program and the social moments organized will be memorable for all.Fundação para a Ciência e a Tecnologia (FCT

    Teknillinen korkeakoulu toimintakertomus 1980-1981

    Get PDF
    Sisältää tietoja mm. opettajista, opiskelijoista, opiskelijoiden määristä, suoritetuista tutkinnoista, harjoitteluista, myönnetyistä stipendeistä ja apurahoista sekä lahjoituksista
    corecore