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1 INTRODUCTION 

 

Mathematical process modeling has always played an essential role in different phases of 
process and control engineering including research and development, design as well as 
operation of the plant and its control systems. The development of control theory has 
increased the call for dynamical process modeling and, vice versa, the results of rigorous 
dynamical analyses have contributed to the development of the control theory.  

Before the 1940s most industrial process plants were operated almost completely 
manually without any automatic process control devices [56]. It was only in the 1940s 
and early 1950s that the first feedback controllers were introduced to the process industry 
due to an increasing economical pressure. At this stage controller design and controller 
tuning methodologies were still in their infancy and rough rules of thumb, based on the 
experience of plant personnel, were used for setting up automatic control strategies. 

The development of industrial automation and control systems has been driven by the 
pursuit of economic efficiency, better end product quality, and growing environmental 
awareness in society. In the 1960s more sophisticated dynamical process analysis, 
advanced control theory and its applications were adopted to chemical engineering. The 
oil crisis in the 1970s forced the chemical engineers to increase the process integration of 
the plant design in order to save energy, which, for its part, made the process modeling 
and controller design even more complicated due to interacting process variables. At the 
same time interest in systems engineering that was trying to answer the question how to 
deal with or examine the complex industrial systems as single intertwined and interacting 
units started to gain ground. Later on, for example, artificial intelligence and expert 
systems became the successors to advanced control theory in the pursuit of mastering the 
complexity in highly developed industrial systems.  

The introduction of modern control theory into the process industry required more 
careful dynamical analysis of the processes. At first the modeling concentrated on 
relatively simple systems that could be handled analytically since the computers existed 
only on the conceptual level in the early 1940s. However, elementary process models 
based on, for example, differential equations, were usually accurate enough for designing 
simple but still practical SISO controllers. Use of larger and more accurate dynamic 
plant-wide process models was adopted only when the development of advanced 
multivariable control structures began. The time needed for implementation and 
commissioning of such controllers could be reduced notably with simulator testing. 
Simulation also provided the possibility to detect the possible faults in the controller 
without a threat of damaging the process or causing a hazardous situation for the plant 
personnel. Nowadays dynamic simulation is widely used in controller design. 



20 

The rigorous computer aided modeling and simulation of large-scale complex systems 
could not kick off until computers had reached a sufficient level of sophistication in the 
1980s. Since then computational science or computationalism has become the third 
corner stone of modern engineering along with scientific theory and experimental results. 
In practice this means that computer simulations are used for finding numerical solutions 
to problems instead of trying to find rigorous analytical solutions. In addition to various 
engineering applications modeling and simulation have been applied extensively also to 
many different areas, for example, natural sciences, economical research, etc. Nowadays 
weather forecasts, the design of mechanical constructions, business strategies, studies of 
biological systems, among others, all rest greatly on mathematical models and computed 
forecasts. Typically, models fit rather badly for other purposes than for the original target 
of application since the accuracy requirements in different applications can vary 
considerably. Consequently, modeling and simulation methods and software have been 
developed quite independently for different application domains.  

Professional dynamic modeling and simulation software designated for the process 
industry started to be readily available only in the 1980s [41]. Nowadays there exists a 
large variety of simulation tools for a wide variety of purposes, from very general 
products to extremely specific professional tools. Within the process industry, simulation 
is often used as a substitute for or as a supplement to the experiments conducted on the 
real system. In some cases it is simply too expensive, time-consuming, laborious or 
dangerous to run experiments on the existing system. Typical applications are, for 
example, process and control system analysis and design, training and operator 
assistance, safety analysis, and production management. At present the number of 
simulation software suppliers is huge, for instance, there are more than a dozen software 
listed in [41] solely for the professional simulation of combustion or nuclear power 
plants.  

The recent progression of software development, computer and computational science 
has naturally had an effect on the methods and tools of everyday engineering work. Also 
new challenges are emerging. For example, constructing impressive plant-wide process 
models is relatively straightforward for an experienced process engineer since typically 
the professional modeling software provide the user with extensive model libraries of 
different process components. The modeling environments, however, do not always 
support the data based model parameter identification that is a crucial operation if the 
accuracy of simulation results is important. The improvements of information technology 
leave questions open also what it comes to the design of plant-wide control systems. 
Even though it is beneficial to demonstrate the performance of a large complex control 
concept with a simulator before its implementation, the result of controller tuning will 
not be improved if the elementary design techniques from the 1940s are still applied. The 
increased computational power should be harnessed for addressing the controller design 
and tuning problems as well. Both model parameter optimization and control parameter 
tuning are example problems of managing modern large-scale complex technical systems 
for which new solutions can be found by adopting the computational approach. 

1.1 Managing complexity in large scale industrial systems 

Large biological, economical and social systems, such as the metabolism of bio 
organisms, the global stock market and cultural anthropology, are all examples of 
complex systems. The concept of complex system was initially associated with systems 
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whose performance in future is impossible to predict, in other words, to mathematically 
perfectly determined nonlinear systems that tend to express unpredictable and complex 
behavior starting from a well defined initial condition. These systems are nowadays more 
commonly called chaotic systems and the concept of emergence has become the 
distinguishing quality of complex systems. Self-organization is a form of emergence in 
which apparently intelligent global behavior emerges from a population of individual 
agents interacting only locally. For example, the collaboration of individuals in an ant 
colony looks organized, even though centralized control is not involved. Analyzing and 
modeling these emergent level phenomena is usually in the scope of complexity research. 
The dimensional complexity (e.g. the number of interacting individual agents) makes the 
analysis of these systems challenging. The scalability of analyzing methods is essential 
since, in general, the emergence and self-organization in complex systems takes place 
only when large enough entities are examined.  

Traditionally, engineering has relied on reductionism whenever a big and challenging 
problem has been faced. Splitting a large problem into a number of easier tasks usually 
facilitates finding the solution. In this case the emergent phenomena are, however, 
completely neglected and one inevitably results in a non-optimal solution. Another 
stumbling block of engineers has been the attempt to model and analyze large systems in 
a rigorous bottom-up manner, i.e., incorporating each technical detail into the model and 
resulting in a complex replica of the original system that prevents any analytical 
examination. As proposed by Hyötyniemi [35] it is perhaps best to switch from a 
deterministic to a stochastic viewpoint when the size of the system grows enough. The 
essence (and the emergence) in large complex systems is best captured with a plant-wide 
statistical approach and it seems to be beneficial to examine the degrees of freedom in 
the system instead of the cohesive constraints. 

Modern plant-wide control systems and detailed dynamic simulation models of industrial 
processes are good examples of complexity in technical systems. Although direct 
comparison of these systems to agent populations may feel artificial there exists certain 
resemblance. The inherent feedback couplings of the process models and the feedback 
loops of the control structures increase the interconnectedness of the systems and keep 
them in dynamical balance, but at the same time they make it hard to predict the 
performance of the system accurately. Furthermore, the quality of performance in both of 
the systems can be seen as an emergent phenomenon which cannot be analyzed or 
predicted in a piecewise manner.  

In reality the industry and engineering offices often follow years behind the cutting edge 
of the research. Although hundreds of controller tuning methods have been published 
during the past decades solely for PI and PID controllers [62], the status at the factory 
floor level still remains relatively bad – many implemented controllers have been 
switched either to manual mode (roughly 30 %) or the original factory settings are still in 
use (25%). And a great deal of the controllers in automatic operation (30%) actually 
increases the undesirable variability of the controlled variables. Many surveys have been 
published and different figures are presented by different authors but the message is clear 
– the great majority of control structures applied in the process industry should be tuned 
or redesigned completely [28, 62]. In some cases, the practicing control engineer might 
be responsible for several hundred control loops [2] and this naturally shows up as a lack 
of maintenance. In some cases, the reason can be lack of knowledge (“Tuning of the 
controllers would have barely any effect on the performance!”) or old conventions (“That 
controller has always been on manual!”).  
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Today, systems engineering deals with larger and larger models. For example, in system 
dynamics the analyses of business strategies, logistics or production processes typically 
result in complex nonlinear dynamic models [64]. Within the process industry the plant 
model oriented design practices are the hype of the day but many years are still needed 
until they will reach the status of a standard working practice in reality. Despite the 
number of reported success stories in the past [7, 81], simulation is still sometimes 
considered to be a laborious side-track alongside the ordinary assignments, causing only 
extra effort instead of being an everyday engineering instrument facilitating the design 
work.  Perhaps one reason for the opposition is the lack of practical tools to assist the 
parameter optimization that is generally considered a tedious and laborious task. 
Engineers simply hesitate to apply working practices they feel insecure about.  

1.2 Scope of the thesis 

This thesis concentrates on the restricted complexity controller design problem, i.e., 
controller tuning, along with model parameter optimization for large-scale systems. It 
means that problems related to selecting the controller structure using, for example, 
optimal or robust control theory, are not considered. Respectively, the accuracy 
improvement of simulation models is pursued only by parameter optimization without 
considering alternatives for the given structures of the models. Both control and model 
parameter optimization problems can be seen in a similar framework. A new practical, 
intuitively appealing, general-purpose working practice both relying on and promoting 
the use of simulation can be developed in order to solve them.  

The optimization of performance via parameter tuning can be seen as a multivariable 
multiobjective data-based stochastic nonlinear optimization problem. First of all, the 
number of decision variables is always high in systems with industrial relevance. 
Secondly, the problem is numerical since it does not involve a set of equations that could 
be solved analytically, but rather a black box type of cost function that needs to be 
sampled somehow in order to gain insight of its behavior. The problem is stochastic 
since the observations of the cost function contain stochastic variation. Anything general 
on the global cost function form cannot be argued and it is, therefore, only assumed that 
the cost function is globally a nonlinear smooth function.  

1.3 Contribution of the author  

This thesis presents theoretical development and practical applications of ideas originally 
suggested by Prof. Hyötyniemi concerning neocybernetic systems. The loose link 
between neocybernetic and complex technical systems is exploited to draw ideas and 
analogies which facilitate solving the underlying research problem – performance 
optimization of large-scale multiparameter technical systems. Algorithmic development 
and work concerning the presented case studies has been accomplished by the author 
under the supervision of Prof. Hyötyniemi with the exception of the RIRT algorithm 
which was developed by M. Lehtomäki under the tutelage of the author. The modeling of 
the Apros models applied in the three case studies presented in Sections 5.2, 5.3 and 5.4 
was performed by external professionals. 

Theoretical and practical problems related to control parameter tuning and model 
parameter optimization have been studied in this thesis. The most significant and widely 
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applied methods along with the promising new research results of recent years have been 
summarized to give a background for the research problem of the thesis. Both problems 
are formulated into the same mathematical problem framework for which applicable 
methods are studied and combined into a coherent solution. 

A method called Iterative Regression Tuning (IRT) is proposed for the research problem 
and its applicability is demonstrated in several different case studies. The IRT method 
represents a new way of handling large complex systems concentrating on statistical 
examination of the emergent properties of the system. The ideas presented can be applied 
for developing new working practices and tools for everyday engineering work in the 
near future. 

The software tool called Tuning Tool that uses the IRT algorithm was designed and for 
the most part implemented by the VTT research personnel. The author has been 
responsible for the Matlab code of the IRT algorithm, for testing of the Tuning Tool and 
for some improvements and corrections of the Tuning Tool code. 

1.4 Structure of the thesis 

In Chapter 2 methods for accuracy evaluation of simulation results and different model 
parameter optimization techniques are surveyed. Correspondingly, a short overview of 
control performance assessment and controller tuning methods proposed in the literature 
and their application in practice is given. 

Chapter 3 introduces first the fundamental idea of the Iterative Regression Tuning (IRT) 
method and secondly clarifies the different components of the algorithm in more detail. 
At the end of the chapter two justifications for the chosen methodology are given. The 
first one is an intuitive justification grounding in neocybernetics and the second one is 
based on characterization of the underlying optimization problem. 

Chapter 4 outlines the use of the IRT method for control and model parameter tuning in 
different configurations. 

Chapter 5 presents the application of IRT method with several case studies. First, small 
examples using simple Matlab models are given to demonstrate the research problem 
after which more realistic examples using professional Apros models are presented both 
related to control and model parameter tuning problems. 

In Chapter 6 the final conclusions concerning the thesis and the presented research results 
are given. 
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2 MODELING AND CONTROL OF  
LARGE-SCALE INDUSTRIAL SYSTEMS 

 

This chapter introduces past and present approaches to model accuracy evaluation and 
parameter optimization, control performance assessment and controller tuning. Also 
application of the proposed techniques in practice is discussed. 

2.1 Modeling of industrial processes 

It is not far from the truth to claim that all engineering work includes modeling in one 
way or another. Mathematical models form the basis for the analysis and design of 
technical systems. Solely in the area of the process industry, modeling has numerous 
applications including process and controller design, production management and 
optimization, fault diagnosis, soft sensors, model predictive control, training and operator 
support systems. The models designed for these different purposes concentrate on 
different aspects of the modeled system and, therefore, using a model for an application 
other than the original one rarely works out well. 

2.1.1 Terminology 

The term model can be used arbitrarily in many different contexts. Within this thesis, 
however, model refers to a mathematical representation of a system that captures the 
essential parts of the system. The end use of the model determines what is meant by the 
essence, in other words, is it the internal structure and functionality of the system or its 
observed overall behavior. In practice, model is always a simplified version of the 
existing system. The simplifications can be intentional, accidental or forced by 
insufficient knowledge of the system. And once again, it is the intended end use that 
determines the sufficient level of accuracy. And vice verse, the representativeness of a 
model dictates its applicability to different uses. 

Systems interact with their environment and so does their mathematical counterparts. 
Systems react to the stimulus or excitation of certain environmental variables and 
similarly the state of a model is affected by changes of the input variables or input 
signals, denoted by u. Respectively, the state of a system or model is reflected to the 
environment through the set of output variables or output signals, y. The mathematical 
model is a function describing this input-output relationship. The model can be either 
static (instantaneous) or dynamic (including delays and dependencies from the past input 
variable values). 
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Model always consists of a fixed structure and a set of parameters θ. By changing the 
parameter values (i.e., the parameterization of a model) different input-output mapping is 
obtained. Some parameter values can be fixed with an adequate precision, for example, 
based on physical laws (e.g., acceleration of gravity) while other parameters without any 
clear meaning need to be identified or estimated based on data (e.g., the coefficients of a 
time series model). Most of the parameters fall between these two extremes. Typically, 
domain area specialists can specify a probable range for the values but data based 
inference is needed to find the exact values. 

The model itself can be analyzed in order to study the system it describes or it can be 
used for prediction and simulation. Usually the term predict is reserved for forecasting 
future output values, futureŷ , of a (dynamic) system from a known initial state, y0, (being a 
function of the past inputs and states, upast and ypast) using the given future inputs, ufuture, 

 ( )( )future future 0 past pastˆ , ,y g u y u y= , (2.1) 

where the circumflex is used for separating the calculated output estimates from the 
actual observations. The term estimate is commonly used as a synonym for all model 
outcomes to emphasize the uncertainty of results which is especially true for stochastic 
systems. The correct determination of the initial state or initial conditions is as crucial as 
the correctness of the input signals what it comes to the accuracy of the output estimates. 
The term simulation is used in a much wider sense quite often referring to any 
calculations using a model and a set of input values. Typically, simulation is associated 
with commercial modeling and simulation software that offer also visualization tools and 
other functionality in addition to mere numerical output estimates. In this thesis, the term 
simulation is used for the calculation of dynamical system responses to the given stimuli 
from a given initial state. 

In practice, the terminology concerning models and initial conditions is rather 
inconsistent. In everyday use, model typically refers to a combination of structure, 
parameterization and initial condition of variables of the modeled system. 

2.1.2 Model accuracy evaluation and improvement 

The inconvenient truth is that models are always wrong (including the environmental 
models proposing the climate change). However, all models are not completely useless 
and forecasting future climate conditions is possible. However, the predictions are true 
only with a certain probability.  

The structure of the model, the parameterization and the applied inputs affect the 
reliability of the output estimates. Construction of realistic simulation scenery with 
respect to the initial condition and all input signals is challenging especially for models 
of large-scale systems. 

The reliability of output estimates can be characterized (before obtaining the actual 
output measurements) using confidence intervals or error tolerances if the model 
structure is simple enough. Realistic models of industrial processes are, however, without 
exception too complex to be given any analytically calculated guarantee for the accuracy 
of output estimates. Using sensitivity analysis it is possible to characterize how much the 
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output estimates vary if the set of input signals, parameterization or the initial condition 
is slightly altered. 

If the actual output measurements are available it is easier to evaluate the accuracy of the 
model outputs by calculating different error measures such as Root Mean Squared Error 
(RMSE), 

 ( )22
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where yi is the model output, ri the corresponding reference signal and T length of the 
signals. If the square root is omitted from (2.2) the error measure is called Mean Squared 
Error, MSE. Usually, the main interest is on the mean value of the error signal and, 
therefore, the random variations are filtered out by approximating the expectation value 
of the error signal with the arithmetic mean. In some cases, also the error variance can be 
an important figure. The weighting of certain important periods of the error signal is 
possible but requires lots of handwork in practice. In some cases, the accuracy of the 
frequency-response is of greater interest than the time-response. Then the error measure 
can be computed over the frequencies instead of the time instants. 

Based on the accuracy evaluation of the model, its structure or parameterization can be 
improved. Changing the structure of the model requires gathering of more detailed 
knowledge of the modeled system, whereas the model parameter values can be improved 
more easily using data-based techniques. If measurement data from the system is 
available, it is possible to find the optimal model parameterization analytically, if the 
system is simple enough (methods of system identification are presented, e.g., in [53]). 
Usually one has to rely on the more general optimization methods presented in Section 
2.3 in order to improve the accuracy of the model. 

2.1.3 Industrial practice of modeling and simulation 

In the following, the use of modeling and simulation in process industry and some 
examples of applied software are presented. Also the prevailing practices of model 
parameter optimization are discussed. 

Modeling and simulation of industrial processes 

DuPont is one of the world’s largest chemical engineering companies. The use of 
dynamical process modeling and simulation as an everyday engineering tool in the 
company has been described by Cox et al. in [7]. The authors conclude that there are 
several challenges to be solved before a paradigm shift to model-based, simulation 
assisted engineering can take place. One of their major concerns is how to increase the 
number of potential users of dynamical modeling (and especially the already existing 
models) in an engineering organization. If the models are built to be used only once the 
modeling costs become intolerable. Cox et al. list several future challenges to simulator 
suppliers and end-users, one of them being implementation of a modeling environment or 
framework that permits easy parameter identification, sensitivity analysis and other 
studies. Also Dochain et al. conclude that improvements reducing the modeling effort are 
required since the cost of modeling is the current bottleneck of industrial applications [9]. 
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One approach to attack the above mentioned challenges is presented by Karhela [42] and 
Kondelin et al. in [48]. They propose a specification for a web service oriented 
framework integrating the process plant life cycle information management, modeling, 
simulation and other value-added services such as parameter optimization tools. Another 
example of such a service oriented framework and a case study of parameter estimation 
in complex environmental models is presented in [30].  

Matlab and Simulink are nowadays the standard tools for scientific modeling and 
simulation which are also widely used in industry. Together with the wide selection of 
specific toolboxes that are available, they offer powerful tools for the mathematical 
analysis of different systems. Their professional usage for modeling large scale industrial 
processes is, however, rare since the software does not provide detailed process 
component libraries. Application specific libraries become necessary when accurate plant 
wide models are considered. 

Modelica is an object-oriented modeling language for a large variety of systems. It offers 
public domain model component libraries supporting the modeling task and can be 
applied, for example, to mechanical, electrical, electronic, hydraulic, thermal, control or 
process system modeling.  

Apros (Advanced Process Simulator) is an example of advanced professional modelling 
and simulation software for large-scale systems of the process industry. Apros was 
developed by the Technical Research Centre of Finland (VTT) and Fortum Plc (former 
Imatran Voima) in the 1980s for modeling nuclear and combustion power plants. Since 
then it has been extended to cover also the processes of the pulp and paper industry. It 
provides large libraries of different process and automation components, which can be 
combined into rigorous plant-wide models of industrial processes. Apros has been used 
successfully, for instance, in training simulator, automation testing, control design, 
process optimization and safety analysis projects [81]. In most of the case studies 
presented in Chapter 5 Apros models have been applied. For this reason, Apros has been 
introduced in more detail in Appendix A.  

Aspen Plus Dynamics, gProms and Flowmaster are examples of other commercial 
software for process modeling and dynamical simulation. 

Model parameter optimization in practice 

In practice, model parameters are fitted to data using different tools ranging from large 
commercial software like Matlab to small parameter tuning toolboxes that are mainly 
used within a relatively small domain, for example, PEST and UCODE are used for 
model parameter estimation mainly within environmental modeling [52, 67]. MOSCITO 
is another example of data based optimization tools designed for modest-sized Micro-
Electro-Mechanical systems (MEMS) using either nonlinear LO or heuristic GO methods 
[46, 72]. One reason for the scatteredness of this area is that different optimization 
problems rise from the models applied in different fields of science and, therefore, it is 
often practical to use tailor-made parameter optimization tools.  

Regardless of the software that is used for parameter tuning, the number of estimated 
parameters is typically kept in minimum to the last and as many parameters as possibly 
are fixed using domain area expertise or less educated guesses. Only the parameters 
lacking any interpretability are estimated from data and usually in several batches (one 
model or process component, or one parameter, at a time). The reluctance to use 
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numerical parameter optimization as a standard approach seems to originate largely from 
the practical inconveniences related to the task, such as interfacing the model with 
optimization packages.  

There exist also several general purpose optimization packages that are not restricted to 
any specific application domain. SNOPT is one of the most renowned commercial 
linear/nonlinear constrained optimization tools [10]. It is applied, for example, within 
Comsol Multiphysics simulation software. SNOPT is an implementation of a particular 
Sequential Quadratic Programming (SQP) algorithm. In SQP the original nonlinearly 
constrained problem is transformed into a sequence of linearly constrained subproblems 
in which the Lagrangian function is replaced with quadratic approximations. It is 
assumed that the first derivatives are available which restricts the application of SNOPT 
to some extent. 

NIMBUS (Nondifferentiable interactive multiobjective bundle-based optimization 
system) is another general purpose optimization tool which has been designed for both 
differentiable and nondifferentiable multiobjective and single objective optimization 
problems subject to nonlinear and linear constraints for the variables [60]. It is primarily 
designed for analytical equation based optimization but also applicable to problems 
without analytic target function formulations. NIMBUS emphasizes the importance of 
usability in decision making offering user several possibilities for scalarization of 
multiple targets. 

The above mentioned examples are only excerpts from the abundance of the available 
software packages for the purpose. Still, it is hard to point out a widely applied specific 
tool for parameter optimization of dynamic process models. Matlab provides powerful 
algorithms for parameter optimization but the customary way to handle individual model 
blocks at a time does not exploit its full potential. The IRT method presented in Chapter 
3 tries to fill this gap. 

2.2 Control systems in process industry 

One of the current key challenges of the process industry, pointed out by Dochain et al. 
[9], is the increasing global competition. Modern plants located in the developing 
countries are producing comparable high quality products into market at competitive 
prices. To maintain the competitiveness of older process plants in, for example, Northern 
Europe, that are suffering from the increasing energy, raw material and labor costs, the 
profitability and the efficiency of the production need to be increased in every possible 
way. Completely new process technologies and innovative solutions, like biodiesel 
production from woody biomass, are one resort for the mature process industry. In order 
to maintain the traditional operation of industry, profitability needs to be enhanced by 
improving the performance of the existing process facilities.  

It is a well-known fact that only the most crucial parts of the control systems in process 
industry are maintained and tuned regularly. Typically, the less important controllers are 
never tuned unless they are causing notable harm and in many cases the factory settings 
of parameter values are used even years after installation. However, these controllers of 
minor importance still have an effect on the overall process performance and their tuning 
should not be neglected completely. The control performance assessment (CPA) and 
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different controller tuning methods have been intensive research topics during the past 
decades and a variety of methods and techniques have been developed and published.  

CPA is usually considered as a subtask within process monitoring together with 
diagnosis and clearing of the faults. When a badly behaving controller has been detected, 
the reason for the problem needs to be determined before the correcting operation can 
take place. The poor performance can be caused by, for example, faulty actuator, 
measurement or other process device, bad process design, inappropriate controller tuning 
or structure. Typically, controller tuning is easily fixed compared to the other faults 
mentioned above (if the badly behaving controller is only detected among the hundreds 
of control loops in the first place). Process monitoring, fault detection and diagnosis fall 
beyond the scope of this thesis and are not discussed further although they are closely 
related to CPA and controller tuning in practice. In the following, first, the means of 
control performance assessment are reviewed, and second, the latest controller tuning 
methods presented in literature along with the traditional tuning guidelines are 
introduced.  

2.2.1 Control performance assessment (CPA) 

The fundamental meaning of control performance indices (or measures) is to express the 
quality of control actions of a controller as a quantitative figure that can be compared 
with the targets set to the controller in question. Thus the somewhat abstract concept of 
overall system performance can be reduced into a finite set of index values. By 
comparing the index values to the targets, the performance of countless individual control 
loops on an industrial plant can be monitored significantly easier than, for instance, by 
examining manually the numerous measurement signals. The monitoring separates out 
the control loops in need of retuning from the well behaving ones and thus saves the time 
of plant personnel for other purposes. In the following, only a small proportion of the 
available CPA methods are introduced. Several thorough reviews of CPA methods have 
been published over the past 15 years, one of the most recent being presented by Jelali 
[39].  

Many of the control performance indices are developed for SISO controllers, which is 
understandable since the more sophisticated MIMO control structures are typically so 
few in number that the control engineers manage to take care of them without any 
monitoring tools. They are also usually responsible for the most crucial parts of the 
process and hence their operation is optimized in an appropriate manner anyway. The 
CPA methods can be divided (roughly) into deterministic and stochastic, depending on 
the goals of the controller (tracking vs. regulation problems). In the following section, 
some traditional textbook characterizations and some more recent CPA methods are 
presented both for deterministic and stochastic purposes. 

Deterministic performance assessment 

Traditional time-domain characterizations of control performance in a transient situation 
are overshoot, rise time, settling time and decay ratio. These measures are calculated 
based on a step response of the system (or after an abrupt load disturbance). Slightly 
different definitions for these terms can be found from different basic control engineering 
textbooks, for instance, from [11, 51, 56]. 
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One typical form of bad process performance caused by improper controller tuning is 
continuous oscillation of the controlled variable. Oscillations cause increased energy and 
raw material consumption, non-uniform end product quality and unnecessary wear of 
process components. In [15] Hägglund proposes an oscillation index for automatic 
detection of oscillating control loops. Bad controller tuning is only one possible reason 
for oscillations, the most typical reason being friction in the control valve and the stick-
slip motion it creates. Another reason might be an oscillating load disturbance that may 
result from another oscillating control loop. In [77] Thornhill and Hägglund propose 
some methods for the characterization of the detected oscillations. 

Hägglund has also proposed an Idle index for detecting sluggish control loops [16]. It is 
rather customary in the process industry to tune controllers conservatively (i.e, 
excessively slow) in order to avoid instability and oscillations in varying operating 
points. Consequently, the controllers respond unnecessarily sluggishly to load 
disturbances and the process needs more time after grade changes and other transient 
situations to reach the new operation point. This causes long deviations from the setpoint 
values and, in the worst case, it increases the time of off-spec production.  

Stochastic performance assessment 

Any statistical figure that is estimated from measurement signals of a plant can be seen as 
a performance assessment index, for example, variance of controlled variable or mean 
value of the control error. These measures can be calculated usually also recursively and, 
therefore, they are easily applied for online diagnostic purposes.  

Error signal integrals are general-purpose error measures and they can be used both for 
deterministic and stochastic characterization of control performance, 
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Above, e(t) = r(t) − y(t) is the error signal (difference between setpoint and controlled 
variable), t is the time variable, t0 and tT are the bounds of integration, and the notation |·| 
stands for taking the absolute value of signal elements. The values of parameters α and β 
can be chosen rather freely if only α ≥ 0 and β  > 1. In general, the values of error signal 
integrals alone do not tell much about the performance unless the values are compared 
with the history. For example, the integral of absolute value of error (IAE index) is 
obtained from equation (2.3) with α = 0 and β = 1 whereas the integral of time-weighted 
squared error (ITSE index) with α = 1 and β = 2. The selection of t0 and tT has a bigger 
influence instead. For example, the settling time can be characterized with the ISE index 
(α = 0 and β = 2) practically if t0 is set to the instant of maximum overshoot of a step 
response. The use of different error signal integrals as target functions within controller 
tuning is elaborated more in [45]. The formulation of the ISE index coincides with the 
MSE criteria (2.2) only with the exception that MSE is scaled by the length of the error 
signal. 

In regulatory control the variance of the controlled variable measures how well the 
stochastic disturbances are compensated by the controller. The values of the variance are, 
however, unbounded and incommensurable, just as the error signal integrals discussed 
above. The idea of using the variance achieved with the so-called minimum variance 
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controller as a benchmark was first proposed by Harris in [26] where the Minimum 
variance index, aka the Harris index, was introduced. Since then many improvements to 
the Harris index and different ways to calculate the index value have been reported, see 
for instance [32]. The Harris index is perhaps the most widely used (or, at least, the most 
published about) CPA method even though it has its own weaknesses. For example, the 
index values lose their meaning if the required estimate of the dead time is substantially 
wrong. Furthermore, it was developed for assessing regulative control tasks and, 
therefore, it does not fit well for tracking controllers.  

Plant-wide CPA in practice 

Traditionally, the control performance assessment and optimization of large industrial 
processes have been handled hierarchically and individual control loops one after 
another. Due to this laborious procedure only simple diagnostics have been applied and 
advanced model based benchmarking techniques have not been implemented largely by 
the industry [39]. According to Harris et al. [28], in 1999 only a minority of the industrial 
plants utilized any system for reviewing the performance of the controllers relative to 
their design objectives. In [74] Stanfelj et al., for example, present a typical hierarchical 
performance assessment procedure for SISO controllers using autocorrelation and cross-
correlation functions. In [29] an expert system is used to assess the SISO control loops of 
a large plant using the Harris index. In [14] Generalized Minimum Variance (GMV) 
benchmarking is applied and the goal is to connect the lower level technical control 
performance objectives with the higher level plant-wide economic targets, but the 
analysis (still) begins by breaking down the large-scale problem into manageable 
proportions. Some CPA methods for multivariable control systems have also been 
developed. For example, in [11] Harris et al. present an extension of the minimum 
variance index for a multivariable case. 

It has only been since the early years of the 21st century that the number of the 
implemented applications in process industry has been increasing. Some of the reported 
applications are more or less tailored to the processes under examination, for example, in 
[47] the CPA approach has been developed particularly for the target petrochemical 
process. In practice, it is practical to incorporate a good selection of CPA indexes into the 
assessment task [37]. The CPA software presented in [63] includes also some expert 
system features that assist novel users to interpret the assessment reports. Other industrial 
application examples are presented, for instance, in [33, 37]. In [39] Jelali presents the 
most recent review of CPA methodology, industrial applications and available 
commercial software tools. In practice nowadays every respectable automation supplier 
offers some tools for CPA and controller tuning. Despite the growing interest towards 
CPA, there is still a lot of work to be done on the factory floor level. For example, in [4] 
Bars et al. forecast that, among other things, the design of restricted complexity 
controllers, particularly in cases of complex systems, will still remain as one large 
worksite for control engineers in the future. 

Actually, the term process performance assessment should be used instead of CPA to 
emphasize the fact that it is the performance of the entire process plant (quantified with, 
e.g., high-level economical and ecological quality measures) that one is interested in 
assessing and optimizing, not only some odd technical details related to individual low-
level control loops. In fact, the strict mathematical optimum with respect to some control 
performance indices rarely describes particularly well the true desirable process 
performance. For example, under minimum variance control the manipulated variable (or 
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the control signal) is assumed to work very aggressively in a large range which in 
practice may not be possible or is at least harmful to the actuator. Moreover, even though 
individual control performance indices are usually more or less parallel to the overall 
plant level targets they can be sometimes conflicting with each other. In such cases 
domain area expertise is needed to determine the most desirable compromise. The human 
expertise and decision making capability, as well as the different control performance 
indices, should be somehow combined. 

2.2.2 Classical controller tuning 

Different figures have been proposed by different authors, but about 90 - 98 per cent of 
the controllers are PI or PID controllers in different fields of the process industry [28, 
62]. For example, many higher level multivariable controllers actually provide set point 
values for the lower level controllers that are typically PID controllers. This makes the 
basic PID controller an essential part of the modern control systems and their proper 
tuning is a necessity for the satisfactory performance of the overall system.  

Ziegler and Nichols presented their famous tuning principles for PID controllers already 
in 1942. Soon it became clear than these rules of thumb did not always result in a 
satisfactory performance. Since then numerous adjustments to the original work has been 
presented and many totally new tuning principles from different starting points have been 
proposed. Altogether, a huge number of tuning methods with detailed instructions for 
selecting the three parameters of PID in different situations have been proposed.  

The popularity of the PID algorithm results from its simplicity and intuitiveness. No 
deeper understanding of dynamic systems is needed to be able to still capture the 
fundamentals of its functioning and the roles of the three tuning parameters. When 
alternatives to a PID controller are considered, the same problem rises always: Advanced 
control algorithms, for example, the general linear controllers, are much more 
troublesome to design and tune. In practice these advanced controllers always result from 
a model based design practice in which the process model is tried to invert (as accurately 
as possible). One simple design paradigm is the Internal model control (IMC) design 
principle (see, e.g., [11]). Also these controllers leave us with a couple of tuning 
parameters (e.g., the closed-loop time constant in IMC design is chosen “manually”, i.e., 
lambda tuning) that need to be “tuned” somehow in the implementation phase at the 
latest. 

Clearly, lack of tuning methods does not explain the amount of badly tuned controllers in 
the process industry. Quite the contrary, the abundance of methods scattered among 
journals, conference papers and books published over several decades could actually be 
the reason, why the knowledge about the latest research results finds its way into 
practical applications only at a relatively slow pace [62].  

In [62] alone, over 200 PID tuning rules from the past decades for different process 
models have been listed, and each of them fulfills an optimality criteria! Clearly, 
different tuning methods fit best for different applications (i.e. for different processes 
with different control objectives) which makes it laborious to find the correct approach. 
Furthermore, different manufacturers implement different versions of the controllers 
which for its part makes the application of the tuning rules less straightforward. So a 
single general-purpose tuning rule that fits for every circumstance just does not exist. 
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In the following section, first, a short introduction is given to the techniques that are 
applied in order to avoid the manual tuning of controllers, namely auto-tuning and 
adaptive controllers. Secondly, a few more general controller tuning and performance 
optimization methods are presented. These methods share the same “less rigorous” 
approach that does not rely on rigorous analysis of system model but uses iterative, 
numerical, data-based methods instead. 

Automatic tuning techniques 

Automatic tuning techniques, the so-called auto-tuners, raised the interest of academic 
and industrial people during the 1970s and 1980s. Automatic tuning refers to methods for 
automatic control parameter tuning on the operator’s initiative. One state-of-art review 
of relay feedback auto-tuning is presented in [24]. 

One of the first commercialized relay feedback auto-tuning methods was proposed by 
Åström and Hägglund in 1984. The tuning of SISO controllers is based on estimation of 
the process frequency response at the critical frequency and applying (originally) the 
Ziegler-Nichols tuning principles. Even though auto-tuners ease the tuning of numerous 
controllers in a process plant, they still do not work well autonomously. The tuning 
method, i.e., the target for performance, need to be set manually for each controller. Also 
the process model, for example, first order plus time delay, needs to be chosen before the 
relay identification. And furthermore, the method also causes the extra perturbation to the 
process as the controller is temporarily overridden with the relay for the identification 
purposes.  

Several other auto-tuning techniques have been proposed in the literature [25]. For 
example, Hang and Sin developed a cross-correlation based auto-tuner, and Bristol 
proposed a pattern recognition of error signal based auto-tuner. In order to invoke the 
dynamics of the processes, all these methods require certain excitation of the input 
signals, which naturally disturbs the production. 

Adaptive control 

Adaptive control has been developed largely for nonlinear systems, such as aircraft 
control systems, which cannot be controlled satisfactorily over a wide range of operating 
points with constant control parameters.  Later on, adaptive control has been adopted also 
by the process industry in order to get rid of the constant need for tuning the controllers. 
The concept of adaptive control differs from the auto-tuners such that the control 
parameters are tuned automatically online without any operator intervention. An adaptive 
controller modifies its behavior in response to changes in the process dynamics and 
disturbance characteristics, i.e., it adapts to the environment. In principle, the adaptation 
is based on the identification of process model (parameters of a certain process model) 
and solving the best (restricted complexity) controller to optimize the chosen design 
criteria.  

Gain scheduling is the most primitive form of adaptive control in which the control 
parameters are changed as a function of the operating point. This simple system can be 
implemented, for example, by using a lookup table into which suitable parameter values 
corresponding to different operating points are stored beforehand. 

In Model-Reference Adaptive Control (MRAC) the desirable system response to any 
input signal is calculated using a reference model that specifies the performance 
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requirements. The difference from the target performance is then minimized via 
parameter adaptation using, for instance, the MIT rule. Another type of adaptive 
controller is the Self-Tuning Regulator (STR). In the STR the process parameters are first 
estimated online after which the controller design problem is solved, i.e., STR is an 
indirect adaptive controller. 

The adaptive control suffers from a serious drawback, namely from the problem of 
closed-loop identification. Under feedback control the inputs of a controlled system 
depend on the previous outputs of the system. This means that the parameters of the 
process model cannot be determined uniquely if the stimulus in input signal does not 
remain sufficiently large [3]. As a result, the adaptive controller may become unstable.  

2.2.3 Numerical controller tuning 

After the enthusiasm for CPA methods during the past decades, many different restricted 
complexity controller design techniques, i.e., controller tuning methods, have been 
proposed in the literature covering the subject. Many of these approaches rely on 
numerical or data-based analysis instead of rigorous classical model-based controller 
design. Some of the most promising ideas are briefly reviewed in the following section. 

Iterative Feedback Tuning (IFT) 

In the IFT method, originally proposed by Hjalmarsson et al. in [31], a set of control 
parameters, θ*, are sought that minimizes the Linear Quadratic Gaussian (LQG) type of 
design criterion, 

 ( ) ( )( ){ } ( )( ){ }2 2
F, F,E Ee uJ G e G uθ θ α θ= + , (2.4) 

where e is the control error signal, u is the control signal, α is a scalar coefficient and GF,e 
and GF,u are appropriate weighting filters for e and u. The optimization problem cannot 
be solved analytically and an iterative gradient descend approach needs to be applied. 
The method disturbs the process with special gradient experiments which, however, do 
not require large setpoint changes or open-loop tests. The IFT results in good step 
response and disturbance attenuation as compared to traditional Ziegler-Nichols, IMC or 
ISE tuning principles [50].  

The main problem with IFT is the applicability to MIMO systems. It neglects the 
interactions between individual control loops (even inside a MIMO controller) since each 
input-output pair in a MIMO controller needs to be tuned separately which results in a 
huge amount of gradient experiments for a large system. One needs n × m process 
experiments in one iteration step if a MIMO controller with n control signals and m 
measured outputs is considered. Clearly, the curse of dimensionality steps in and 
evidently impedes the use of IFT in plant-wide cases. 

Virtual Reference Feedback Tuning (VRFT) 

Campi et al. [6] proposed another interesting data-based controller tuning technique in 
which any representative set of input-output data {u(t),y(t)} from the controlled process 
can be used in tuning after appropriate filtering, i.e., no process experiments or open-loop 
tests are required. Instead, a transfer function representation of the desirable closed-loop 
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system, GCL(q-1), (i.e., process controlled with an optimal controller) needs to be 
specified. The explicit model of the controlled process is not required though. First, the 
virtual reference signal r(t) that would result in the observed response y(t), if applied in 
the desirable closed-loop system GCL(q-1), is computed. Under these circumstances the 
control signal computed by the optimal controller necessarily coincides with u(t). Hence, 
the optimal control parameters can be solved by minimizing the design criterion, 

 ( ) ( ) ( ) ( )( )
1

21
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t t

J u t G q e t
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θ −

=

= −∑ , (2.5) 

where e(t) = r(t) – y(t), GC(q-1) is the discrete time controller transfer function and T is 
the length of the time series data. 

VRFT is also easily applicable only to SISO systems. Determination of GCL(q-1) is not a 
completely effortless task and designing an appropriate filter for the input-output signals 
can be laborious, too. Hence, even though theoretically clever VRFT is a slightly 
impractical procedure to be applied on large industrial systems with dozens of control 
loops. 

Iterative Learning Control (ILC) 

Iterative Learning Control (or simply Iterative Learning, IL) was initially developed to 
improve the transient tracking performance of robots and other mechanical systems 
performing repetitive operations. Since then it has been applied, for instance, to improve 
the performance of different batch processes in the chemical, pharmaceutical and 
biochemical industry. The basic idea is that one tries to find an input signal (or profile) 
u(t) that minimizes the difference between the reference signal and controlled variable. 
The method is iterative and the applied input signal is updated between the trials using a 
learning filter GF(q-1) such that, 

 ( ) ( ) ( ) ( )1
1 F 1K K Ku t u t G q e t−

− −= + . (2.6) 

(Notice that the subscript refers here to the Kth iteration instead of the Kth element of a 
vector.) An extensive survey of ILC algorithms and applications is given in [5] where, 
e.g., the filter design is discussed. 

Experiments to improve the tracking performance of continuous processes using ILC 
have been reported too. For example, in [78] ILC has been applied for PID tuning using 
time domain characteristics, such as peak overshoot, settling time and rise time of a step 
response, as design criteria. Actually, the term Repetitive Control (RC) should be used 
for situations in which the initial condition of the system varies on different trials. For 
example, repeated (identical) control actions on a continuous process start in practice 
from different dynamical states of the process. Convergence of the iterative learning to 
an optimum in such cases cannot be guaranteed with the theory related to ILC [5]. ILC 
and RC have been compared, for example, in [54]. 

Unfalsified control 

In robust controller design the main target is to determine an upper bound for the plant 
model uncertainty. Quantification of the biggest possible model uncertainty enables the 
control engineers to design robust controllers that are guaranteed to work reliably (and 



37 

consequently, sometimes overly conservatively). This attempt is, however, doomed to 
fail since theoretically it is impossible to deduce such an upper bound based on a limited 
set of observations [70]. What the observations can offer at best is a lower bound on the 
model uncertainty. This is the underlying idea that is elaborated in unfalsified controller 
design. 

In unfalsified controller design the behavior of a system portrayed by input-output data is 
examined instead of its exact internal structure. One tries to find a controller that fulfills 
the chosen design specifications using the past input-output data in validation, in other 
words, a controller that is not falsified by the observed data. 

In practice the learning procedure means that the controller is re-parameterized whenever 
the current tuning becomes falsified, i.e., the obtained performance does not fulfill the 
design criterion. At the same time the remaining set of possible, unfalsified control 
parameter combinations is decreased. The determination of set-theoric performance 
specifications and feasible region in decision space is not necessarily straightforward. 
Some examples of unfalsified control applied to controller tuning are presented in 
[40, 69]. 

Extremum seeking (ES) 

Extremum seeking was a widely used tool in control applications in the 1950s that 
experienced a renaissance in 1990s. It is another model-free iterative optimization 
approach that can be applied to closed-loop controllers. In ES the gradient estimate of 
cost function is calculated by using appropriate filtering and sinusoidal perturbation of 
decision variables. A simulated PID tuning example with results comparable to those 
obtained using the IFT method is presented [45]. The gradient estimate is deduced based 
on one function evaluation that involves a step response experiment with the system. 
This may restrict the application of ES in some cases and makes it unreliable in the 
presence of noise and numerous decision variables. Moreover, ES can be applied only to 
one controller at a time which does not advocate its usage on large scale industrial 
systems. 

2.3 Model and control parameter optimization 

Thorough analysis on optimization is beyond the scope of this thesis where the objective 
is solely model and control parameter optimization. In the following, a general overview 
of different optimization methods and classification principles of optimization problems 
are briefly introduced. 

The term optimization refers to a mathematical problem, in which an extremum value, 
( )J J θ∗ ∗= , i.e., either the minimum or the maximum value, of a target or objective 

function, 

 ( ) : nJ θ →\ \ , (2.7) 

is searched for over a feasible region, ℜ, which is a subset of the n dimensional decision 
space ℝn, ℜ ⊆ ℝn. ℜ contains all possible value combinations of decision variables, θi, 
i = 1…n, θ = (θ1 … θn)T. Optimization problems are formulated (without any loss of 
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generality) in this thesis such that J(θ) is called the cost function and its values are always 
minimized, i.e., 

 ( )min ,  s.t. nJ
θ

θ θ ∈ℜ ⊆ \ , (2.8) 

the optimal value combination of decision variables being, 

 ( )arg min J
θ

θ θ∗ = . (2.9) 

ℜ is composed of constraints on θ. These constraints can be taken into account explicitly 
in J(θ) if a constrained optimization technique is chosen or they can be handled merely as 
passive statements reducing the size of the search space. Different ways to incorporate 
constraints in optimization are presented, for example, in [61]. 

In practice there are often several target functions, Ji’, i = 1…m, J’ = (J’1 … Jm’)T, that 
need to be optimized simultaneously. In multiobjective optimization human decision 
making, i.e., preference information, between the multiple objectives is required [58] 
which can be implemented utilizing the appropriate scalarization. After applying the 
scalarizing function, g, the problem is transformed back to a single objective 
optimization problem and the large body of theory related to that is available. 
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Optimization problems and algorithms can be classified in many ways. The structure and 
scale of the system essentially determine the characteristics of the problem and the choice 
of optimization methods that can be applied successfully. Only for the very simplest 
model structures are analytical solution methods applicable, whereas in standard 
engineering problems, target systems are more like “black box” functions. The term 
numerical optimization refers to a nonlinear optimization procedure that is solved 
numerically using a computer. 

Quite often in the literature optimization methods are divided into linear and nonlinear. 
If the system is linear in parameters, for example, an AR (autoregressive) model 
structure, the unknown parameters can be obtained directly using the Least Squares (LS) 
approach. For linear optimization problems, hold in general that there exists a unique 
optimum that can be solved analytically without iteration. In practice, dynamic process 
models and control systems are much more complex in structure and nonlinear 
optimization is required. In general, no analytical solutions exist for nonlinear 
optimization problems and iterative algorithms are required. The efficiency of iterative 
algorithms is measured by the number (and the cost) of iterations and function 
evaluations needed for convergence. In model parameter optimization one function 
evaluation J(θ) includes a simulation run using the parameters θ and hence the model has 
a major influence on the overall time needed for the optimization task. Respectively, the 
dynamics of the controlled system determine the length of the observation period that is 
required to perceive the total effect of changing the control parameters, no matter 
whether the response is recorded from the actual system or from a simulator. The 
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nonlinear target function may possess several local optima that usually can be 
approximated with a hyperbolic or parabolic function in the neighborhood of the 
optimum with a reasonable accuracy [61]. The initial values of decision variables affect 
largely the number of iterations required for convergence to an optimum and more 
importantly, they determine to which local optimum the algorithm converges. 

Further, nonlinear optimization problems can be divided into convex and non-convex 
optimization problems based on the convexity of J(θ) and ℜ. J(θ) is said to be a convex 
function on ℜ if for any two points θ(i) and θ(j), {θ(i), θ(j)} ∈ ℜ, and for any α, 
0 < α < 1, 

 ( ) ( ) ( )( ) ( )( ) ( ) ( )( )1 1J i j J i J jαθ α θ α θ α θ+ − ≤ + − . (2.11) 

Similarly, ℜ is a convex set if for any two points, θ(i) and θ(j), {θ(i), θ(j)} ∈ ℜ, and for 
any α, 0 < α < 1, 

 ( ) ( ) ( )1i jαθ α θ+ − ∈ℜ . (2.12) 

Loosely speaking, and without going into details, it can be stated that convex problems 
are in general much easier to solve. For example, convex problems have a unique global 
optimum which means that local optimization (LO) algorithms (that are typically much 
more efficient) can be applied instead of global optimization (GO). The consequences of 
convexity are discussed in detail, for example, in [57, 66, 78]. While convexity is a 
property of an optimization problem, the optimization methods can be classified as LO 
and GO methods referring to the search domain they encompass in the decision space. 
Occasionally these terms can be misleading since methods, that are local in principle, 
converge to the global optimum if the problem is convex. And at the same time, 
convergence of GO methods to the global optimum in finite time especially for large 
problems cannot always be guaranteed [61]. In the domain area literature it is customary 
to recommend combining GO approaches with a LO method. Global methods, even 
though not highly efficient, are able to escape from local minima regardless of the initial 
values. And LO methods are more efficient in finding the optimum if only a suitable 
starting point is given. These approaches are called two-stage or two-phase methods. 
Multi-start is an approach in which LO is started from several initial values that can be 
obtained with an appropriate GO method. 

If randomness is present in the optimization problem either in the values of J(θ), in the 
search procedure or in both one speaks about stochastic optimization (or stochastic 
search) as distinct from the deterministic optimization. In many real world problems J(θ) 
cannot be declared explicitly as a mathematical expression but the system that is under 
optimization needs to be sampled in order to get any information on its state. The term 
data-based optimization is used in this thesis for such black-box optimization tasks. In 
practice, data-based optimization usually means stochastic optimization as well since 
measurements necessarily contain some uncertainties.  

In general, the parameter optimization problems related to large-scale industrial 
simulation models and control systems could be classified into the category of 
multivariable multiobjective data-based stochastic nonlinear optimization. Convexity of 
the problem is rather impossible to analyse or guarantee due to the black box nature of 
the cost function (even though ℜ is typically convex). However, if the target functions of 
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the optimization are selected carefully and good initial values can be assumed the 
problem is unlikely far from being convex. These issues are discussed in more detail in 
Section 3.2. Furthermore, the large number of decision variables (being dozens or 
hundreds) and extremely costly function evaluations (requiring a simulation run with the 
model) are characteristic to the problem.  

In the following a brief introduction on different LO and GO techniques is given. First, 
the deterministic LO methods are introduced followed by their stochastic counterparts. 
Thereafter, the presentation of the GO methods is divided into exact and heuristic 
methods. The main emphasis is on methods designed for real valued decision variables 
since combinatorial and integer optimization problems do not play any essential role in 
this thesis. In general, it is impossible to argue whether some of the methods are superior 
to the others since their performance is highly dependent on the application. The purpose 
here is to highlight certain features of the algorithms that are relevant to the choices made 
later on this thesis. For more detailed discussion the reader is referred to the domain area 
literature, for example, [57, 61, 73, 78, 83]. For the sake of brevity, the obvious 
dependency on decision variables is not shown in the following formulas, i.e., J(θ) = J. 

2.3.1 Local optimization 

The most primitive (and inefficient) methods in this category are the so-called direct 
search methods, for example, simplex search and Hooke-Jeeves methods. Their slow 
convergence and the high number of function evaluations make their application in large-
scale problems unreasonable.  

Instead, the gradient-based algorithms are the most important group of nonlinear local 
optimization techniques. Here, only the very basic ideas behind these methods are 
presented although several modifications and improvements on each of them have been 
proposed. The common target is to solve (2.9) iteratively by updating the values of θ in 
the search direction, d, such that, 

 ( ) ( ) ( ) ( )1K K K d Kθ θ γ+ = + ⋅ , (2.13) 

where K is the iteration step index and γ is a scalar coefficient (the length of the update 
step if ||d|| = 1). The search direction in each method is calculated based on the negative 
gradient direction, −∇J(K), rotated and scaled by a matrix M, 

 ( ) ( ) ( )( )d K M K J K= ⋅ −∇ . (2.14) 

For a positive definite matrix M, each iteration step is guaranteed to decrease the cost 
function value if only γ is chosen appropriately and a deterministic J is assumed. The 
selection of M separates the different gradient-based algorithms from each other. The 
value of γ is usually chosen using a line search method. Line search algorithms are one 
dimensional optimization problems that attempt to find the optimal step length in the 
search direction that maximizes the effect of the update step minimizing J. The search 
consists of two stages. First, the interval containing the optimal γ is located and after that 
the interval is reduced so that the required accuracy for the solution is reached. The best 
known interval reduction methods are the Fibonacci search and Golden Section search 
methods. The optimal length of the update step can be solved analytically if the shape of 
J can be approximated, for example, with a hyperparabola. Such approximation is often 
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valid in the vicinity of the optimum. How to detect the vicinity of an optimum, however, 
is another question. 

The steepest descent (or gradient descent) algorithm is the simplest of the gradient-based 
optimization methods in which d = −∇J, i.e., M = I, 
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Steepest descent method involves no information from the previous steps nor higher 
order derivatives. Although attractive because of its simplicity, the steepest descent 
method suffers from the so-called zigzag effect which means that the solution starts to 
fluctuate heavily around the “correct” update direction if the eigenvalue spread of the 
cost function Hessian is large (meaning that slopes differ largely in different directions). 
This effect is emphasized in case of a rigorous line search since then the consecutive 
update steps become close to orthogonal which eventually shortens the update step and 
dramatically slows down the speed of the optimization. The backpropagation algorithm 
invented in the neural networks community is essentially a steepest descent algorithm. 

In the Newton’s method second order derivative information is applied to modify the 
search direction. Matrix M(K) in (2.14) is chosen as the inverse of the Hessian, M(K) = 
H-1(K), i.e., 
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In practice, this is applicable only if the Hessian, or at least the gradient information, is 
available in analytical form. In some versions of the algorithm H(K) is replaced by a 
matrix that is close to Hessian but guaranteed to be positive definite. The so-called 
Quasi-Newton method, also known as the variable metric method, avoids the numerically 
demanding inversion of H by substituting an approximation for H-1. 

In the conjugate gradient methods second order derivatives are not needed but 
information from the previous step is utilized such that the consecutive update steps 
{d(0), d(1), …, d(K)} are said to be conjugate with respect to a symmetric positive 
definite matrix A, i.e., 

 ( ) ( 1) 0Td K Ad K − = , (2.17) 

which means that for a quadratic cost function J = θ TAθ convergence to the optimum is 
guaranteed in at most n steps. The update principle becomes, 
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Determination of γ differs between different conjugate gradient methods. In data-based 
optimization A is, however, unknown and the shape of J is only approximately quadratic. 
In general, conjugate gradient methods are much faster than, for example, the steepest 
descent method and they usually work well even with large n. However, they require a 
rigorous line search in order to work well and the algorithms need to be restarted every 
nth iteration. 

The Gauss-Newton and Levenberg-Marquardt methods are famous algorithms extending 
the ideas presented above to more general cost function forms. The underlying 
assumption is, however, that at least gradient information is available in analytical form 
and therefore these methods are badly suited for data-based optimization. 

2.3.2 Stochastic local optimization 

Local optimization methods presented in Section 2.3.1 assume that the cost function and 
its derivatives are available in analytical form without any uncertainty. However, in 
many cases the target function is unknown and data-based optimization using noisy 
observations is applied.  

The stochastic counterpart of the deterministic gradient descent algorithm is the 
stochastic gradient method [68] which is the special case of stochastic approximation. 
The purpose of the method is to find the optimal solution, θ = θ*, of a (scalar valued) 
target function, J(θ), which is not directly observable. Also, the exact value of ∇J(K) is 
assumed unknown. The algorithm searches for the optimum with a similar iteration as the 
gradient descent method in equation (2.15) with the exception that now the gradient 
information contains uncertainty, 

 ( ) ( ) ( ) ( )ˆ1K K K J Kθ θ γ+ = − ∇ . (2.19) 

Above, γ(1), …, γ(K) is a gain sequence of positive scalar coefficients and ∇Ĵ(K), 
dim{∇Ĵ(K)} = n×1, is the unbiased gradient estimate for J(K), i.e., E{∇Ĵ} = ∇J. Despite 
the noisy gradient estimates the iteration (2.19) converges to the optimum if the gain 
sequence is chosen properly (see [73]), for example, 
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0
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K

K α
γγ =
+

, (2.20) 

where γ0 and α are strictly positive. However, using (2.20) slows down the iteration 
(2.19) too much in practice and constant value for γ is often used (even though 
convergence cannot be guaranteed in that case).  

The assumption of unbiased gradient estimates is, however, often too optimistic. Finite 
Difference Stochastic Approximation (FDSA) and Simultaneous Perturbation Stochastic 
Approximation (SPSA) methods can be used to compute the gradient estimates based on 
noisy cost function observations [73]. In FDSA the gradient estimate is computed either 
as a one-sided or two-sided approximation. For example, the two-sided gradient estimate 
is, 
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where the ith element of δi is 1 and rest of the elements are 0, dim{δi} = n×1. Two-sided 
approximation requires 2n and the one-sided approximation n + 1 samples. In SPSA the 
gradient estimate is computed based on two cost function observations only, 
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where a(K) is a random perturbation vector, dim{a(K)} = n×1. The elements of a are 
distributed symmetrically around zero and they are mutually independent. For example, 
the Bernoulli distribution can be used for ai. Because of the larger sample size, the FDSA 
estimate for the gradient is often more accurate. However, if the efficiency of the 
algorithms during the whole optimization procedure is compared (using the number of 
function evaluations as a measure of efficiency) SPSA surpasses FDSA, especially if n is 
large. 

In practice the presented gradient estimation techniques can be combined also with the 
more advanced local optimization methods, like Gauss-Newton and Levenberg-
Marquardt methods. However, using higher order derivative information in data-based 
optimization is slightly questionable since the estimation of second order derivatives 
would be based on estimates of first order derivatives [61]. At least, these estimates 
should be based on abundant sample sizes. 

2.3.3 Exact global optimization 

The following methods are considered exact since they are guaranteed to convergence to 
the global optimum (however, only under certain circumstances and perhaps only as the 
iteration index approaches infinity, and so on). The stochastic search methods constitute 
one important group of these algorithms.  

The most primitive GO methods are called exhaustive search methods (or naïve 
approaches). The disparaging names come from the fact that these methods are only 
applicable to small problems with relatively few decision variables and a well defined 
feasible region since they suffer severely from the curse of dimensionality (see below). 
According to Pintér [66] solving problems with n ≥ 5 using these approaches is hopeless 
in practice. The most straightforward exhaustive search method is to evaluate J in every 
point of ℜ. This is naturally possible only if ℜ is finite, and θi, 1 < i < n, are discrete 
valued variables.  
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The corresponding approach for problems with real valued θi is the Grid search where ℜ 
is discretized using an equally spaced grid and J is evaluated at each intersection point of 
the grid. If J satisfies the so-called Lipshitz condition, 

 ( )( ) ( )( ) ( ) ( )J i J j L i jθ θ θ θ− ≤ − , (2.23) 

where L is the Lipshitz constant and θ(ι) ∈ ℜ, ι = i, j, J is said to be a Lipshitz continuous 
function. The expression (2.23) is a smoothness condition stronger than the regular 
continuity determining the upper bound for the derivative of J in ℜ. For a Lipshitz 
continuous function, it can be shown that for an n-dimensional hyperrectangular feasible 
region with maximum edge length D the number of grid points, k, is approximately, 
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where e = ||J*−J || is the desired accuracy for the solution. Thus, the number of function 
evaluations to obtain a solution with the accuracy e grows exponentially with the 
dimension n. This is called the curse of dimensionality. 

In pure random search (PRS) the search of optimum is solely based on function 
evaluations. Actually PRS is a sampling method with a sampling domain ℜS covering the 
whole feasible region, ℜS = ℜ. Samples are drawn from a probability distribution that is 
typically a uniform distribution. The best observation of cost function, J ̃, and the 
corresponding θ̃ are recorded and every new sample is compared to them until a good 
enough solution is found. Convergence of PRS to the global optimum with accuracy e 
cannot be guaranteed with any finite number of function evaluations, but it can be shown 
that the method still converges to the global optimum with probability one if the number 
of samples grows to infinity. Similar to the grid search, the required calculation time 
grows exponentially with n.  

Pure adaptive search (PAS) is another stochastic search method in which the sampling 
domain is adapted according to the obtained values of J(K) that are assumed to be 
deterministic. It begins similarly as PRS with ℜS = ℜ. After each new set of observations 
ℜS is truncated to cover only the improvement region, i.e., the level set, 

 ( ) ( ) ( ){ }1 :S SK K J Jθ θ θℜ + = ∈ℜ ∧ ≤ � . (2.25) 

The implementation of the PAS algorithm is extremely difficult since the shape of the set 
(2.25) possesses an arbitrarily evolving shape. In 2003 Zabinsky stated that there actually 
exist no direct implementations of the algorithm. Some approximation methods exist 
however, see [83]. The attractive point in PAS is that the expected number of iterations is 
linear in dimension, not exponential. PRS and PAS are the two extremes of stochastic 
search methods and the practical algorithms lie somewhere between these two special 
cases. 

Sequential stochastic search methods consist of the following general framework: An 
initial point, θ(0) ∈ ℜ, is chosen and the algorithm parameters are initialized. A (set of) 
candidate point(s) from ℜ is generated, J is evaluated and the current point θ(K) is 
updated to θ(K+1) based on the candidate point(s) and the corresponding cost function 
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value(s). New candidate points are generated until a stopping criterion is met. The two 
main components of a sequential algorithm are the generation principle of the candidate 
points and the update procedure. Several stochastic search methods of this type have 
been reported in literature, some of them belonging more to the categories of stochastic 
LO methods or heuristic GO methods (see Sections 2.3.2 and 2.3.4). 

2.3.4 Heuristic global optimization 

The title collects together a vast collection of optimization methods, many of them being 
inspired by different phenomena familiar from physics or biological systems. Quite often 
the term heuristic is used in a negative sense arguing, for example, that there is actually 
no evidence that evolution is an optimal procedure. For example, there is no proof that 
the development from anthropoid to human happened somehow optimally with respect to 
speed or end result. Even though heuristic GO methods do include features that prevent 
them from getting stuck on the nearest local optimum the convergence to global optimum 
cannot be guaranteed. However, they have been reported to work well, for example, on 
certain combinatorial problems [66]. In many applications the user will be satisfied if 
only a practical solution meeting the design specifications can be found. The 
mathematical optimality of the solution is often of secondary importance. 

One heuristic method to escape from local optima is to add noise on the parameter 
updates and hope for the best. Another intuitively more appealing method is the classical 
sequential stochastic search method simulated annealing (SA) that mimics the annealing 
process of metals (and hence uses somewhat exceptional terminology for the parameters 
of the algorithm, e.g., cooling schedule). In principle, the algorithm proceeds similarly as 
the general framework above with the exception that non-improving update steps are 
accepted as well (with a slowly decreasing probability during the search procedure). The 
motivation for this is that the algorithm thus could escape from the local optima. 

The development of evolutionary algorithms consisted of two parallel lines of 
development, one in Europe (mainly in Germany) studying evolution strategies and the 
other in USA considering genetic algorithms. In both areas, the underlying idea is about 
the same – to imitate the evolution process of nature on an algorithmic level. Differences 
lie mainly in terminology and on how the variables are encoded in the algorithm. Without 
questioning evolution itself it is still reasonable to ask whether it is doing its job 
optimally. It is hard to analyze the performance of these algorithms since they involve 
several parameters by themselves and determining their values affects the convergence 
speed. There is always a trade off between fast convergence and ensuring a globally 
optimal solution. However, successful applications are presented, for example, in [30] 
genetic algorithms have been applied to parameter optimization of large environmental 
models. 

Tabu search is another stochastic search method having some heuristic traits. It is a 
memory based method that keeps track of the search history trying to avoid visiting the 
same areas of ℜ many times. The most obvious implementation is obtained by using a 
Tabu list that contains the recently visited points of the decision space. It is best suited to 
combinatorial problems with integer decision variables, such as the travelling salesman 
problem, but can be used also for problems with real decision variables. Due to its 
heuristic nature, many references classify it as heuristic local search method. 
Nevertheless, in recent years Tabu search has been quite popular approach in large scale 
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combinatorial problems. Branch and bound is another search technique for combinatorial 
optimization. 
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3 ITERATIVE REGRESSION TUNING (IRT) 

 

Despite the large number of model parameter optimization and controller tuning 
techniques presented in the previous chapter, another method, Iterative Regression 
Tuning (IRT), for solving both problems is proposed. The same ideas as applied by 
Hyötyniemi within the study of cybernetic systems (see [35, 36]) are used here to 
overcome the complexity of large-scale technical systems. It seems that replacing the 
conventional reductionist bottom-up analysis methodology with a top-down data based 
approach makes it possible to grasp the problem of dimensional complexity in systems. 
The change of viewpoint lifts also the design and optimization tasks onto a higher 
abstraction level opening up new possibilities for everyday engineering.  

This method concentrates on the restricted complexity controller design problem which 
means that the structure of the controller is assumed fixed and it is only the control 
parameters that are optimized. Similarly, the model performance improvements are 
pursued only via parameter optimization, not by improving the chosen model structure. 

The name Iterative Regression Tuning stems from the iterative nature of the optimization 
procedure in which the local linear approximation of the cost function is iteratively 
repeated at different points of the decision space. The word tuning refers to the practical 
controller tuning that is carried out in process plants.  

In the following, a brief introduction to IRT (in its simplest form) is given in Section 3.1 
and the elaboration of the algorithm is deepened in Section 3.2. The theoretical and 
intuitive foundations of IRT and comparisons to other methods are presented finally in 
Sections 3.3 and 3.4. 

3.1 Overview of IRT 

Both model and control parameter tuning problems can be expressed in a similar 
optimization framework,  
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The goal is to find the optimal values of decision variables, θ*, belonging to the feasible 
region, ℜ, which minimize the cost function, J(θ), that is a scalarization over multiple 
quality measures, J = g(q), q = (q1 … qm)T. In Section 2.3 the problem was already 
classified as a multivariable multiobjective data-based stochastic nonlinear optimization 
problem. The practical restrictions and necessary assumptions characterizing the situation 
even more precisely are presented next and discussed in more detail in the following 
sections. 

Any dynamic (or static) system with multiple input and output variables, x = (x1 x2 …)T 
and y = (y1 y2 …)T, respectively, can be described simplistically as, 

 ( ) ( )( ) ( ),y t G x t e tθ= + , (3.2) 

where θ are the parameters of the system and e stands for the stochastic variations in y. 
The function G determines the structure of the system (in this context it is either the 
dynamic simulation model or the control system) and θ corresponds to model or control 
parameters, respectively. The performance of the system can be evaluated by examining 
the values of the output signals with respect to the applied inputs (see Figure 1). 
Evaluating the performance of a simulation model is straightforward when measurement 
data from the existing system can be used as a reference for the simulation results. The 
quality measures can be formulated as presented in Section 3.2.1. For control systems, 
domain area expertise is utilized to determine the evaluation criteria – what is a good 
manifestation for the overall control performance? Usually, concepts like robustness and 
accuracy are pursued and the CPA methods presented in Section 2.2.1 can be used as 
quality measures q for giving the final mathematical formulation for the goals (see 
Section 3.2.1 for more on quality measures). 

System

Evaluation

x y

θ

q

System
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x y
System

Evaluation

x y

θ

q  

Figure 1. The statistical dependency between parameters, θ, and quality measures, q, 
describes the relevant properties of the underlying dynamic MIMO system with inputs 
x and outputs y [35]. 

The values of m quality measures, q = (q1 q2 … qm)T, corresponding to a certain value 
combination of n parameters, θ = (θ1 θ2 … θn)T, and other variables determining the 
operating regime, are calculated from a set of input and output signals, x and y. If the 
system is a simulation model, the evaluation of performance is based on simulated output 
signals, y, that are obtained when measured input signals, x, from the existing system are 
used as inputs. In the case of a control system, x and y correspond to control signals and 
controlled variables, respectively. Since y are affected by random variations, q are also 
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random variables. However, it typically turns out that there exists a statistical 
dependency between θ and q, which can be modeled if enough data is available. 
Evaluation of quality measures based on time series signals is discussed more in Section 
3.2.1. 

The underlying target functions, qi, are assumed smooth functions of θ with continuous 
derivatives which ensures the applicability of gradient based LO approaches. Since qi are 
user-defined, the avoidance of non-convexity can be sought by selecting appropriate 
mathematical formulations for qi, although strict convexity cannot be guaranteed. While 
J and dJ/dθ are not analytically available and the observations of q are corrupted by 
noise, the optimization can still be based on their local model-based approximations.  

Due to the data-based optimization approach, a sampling method for θ needs to be 
specified (compare this to experiment design). Sampling of θ is restricted to a local 
sampling domain, ℜS, since the feasible region, ℜ, (i.e., the set of all realistic 
combinations of decision variable values resulting in a stable solution) in the decision 
space is generally unknown and cannot be determined exactly beforehand. Furthermore, 
in case of a process simulator the numerical stability depends not only on the absolute 
value of θ but also on the size of change in their values. Large abrupt changes may cause 
the divergence of the solver algorithm. To be able to proceed it needs to be assumed that 
ℜS and ℜ can be determined such that ℜS ⊆ ℜ ⊆ ℝn. Additionally, ℜS and ℜ (being user-
defined) can be assumed convex. Sampling is discussed more in Section 3.2.2.  

In spite of the underlying details, sampling produces k parameter value combinations, 

 ( ) ( ) ( )( )1 2
T

k n
kθ θ θ

×
Θ = " . (3.3) 

After that, the performance of the system with different values θ(i) is recorded, i.e., either 
the control performance or the accuracy of the simulation model is evaluated based on 
the corresponding time series signals resulting in a set of quality measure value 
combinations, 

 ( ) ( ) ( )( )1 2
T
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Based on observed data the statistical dependency between q and θ can be modeled. Any 
smooth function can be approximated with a linear model up to an arbitrary accuracy if 
the analysis is only concentrated on a small enough domain. Thus, considering small 
deviations, θ θ θ∆ = − and q q q∆ = − , around the current nominal point, ,θ and the 
mean value, ,q  of observations, Q, a linear model can be applied to describe the 
statistical dependency between ∆θ and ∆q, 
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where q̂  is an estimate of q and F is a linear mapping F: ℝn → ℝm. It holds that linear 
models are an optimal representation of the data in the maximum likelihood sense if the 
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stochastic variations in the observed values of q (i.e. the error terms not explained by the 
linear model) are normally distributed and θ are deterministic [65]. If qi are determined 
according to (2.3) or (2.2) and sufficiently long time series signals are used, it is justified 
to claim that the above Gaussianity assumption holds according to the central limit 
theorem. 

In principle, there is simple way to determine F using the LS estimator (called Multiple 
Linear Regression (MLR) when m > 1) which can be computed based on the deviation 
variables using the pseudoinverse, 

 ( ) 1T TF Q
−

= ∆Θ ∆Θ ∆Θ ∆ , (3.6) 

that involves the calculation of the inverse (∆ΘT∆Θ)-1, which is numerically problematic 
if the dimension of ∆θ is high or its components are strongly collinear. The condition 
number (the ratio of largest and smallest singular values of a matrix) of ∆ΘT∆Θ becomes 
high suggesting numerically inaccurate results, or in the worst case, the inverse cannot be 
calculated at all. However, multivariable regression methods (MVRs) like Partial Least 
Squares (PLS) offer a solution which might be suboptimal in the maximum likelihood 
sense but turns out to be superior to MLR in practice and, best of all, makes the approach 
scalable to multivariable systems. See Section 3.2.3 for more on the local cost function 
approximation and MVR methods. 

The local model F can be applied within LO approaches to determine the search direction 
in the parameter space that yields better performance of the system. Relatively good 
initial values for θ can be assumed since the reductionist methods presented in Chapter 2 
provide a good starting point.  

In order to attain a unique solution, the multiple targets of the parameter tuning task need 
to be scalarized into a single cost function J. For example, using a weight vector w 
results in, 

 ( ) TJ g q w q= = . (3.7) 

Decision making between several target functions is discussed more in Section 3.2.4. 
Despite the seemingly simple optimization target, the problem cannot be solved 
analytically. Even though the form of (3.7) is linear, the cost function is fundamentally 
quadratic if only quadratic quality measures are applied. Equation (3.7) can be 
approximated locally using (3.5) resulting in, 
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The gradient of the cost function, ∇J, is obtained by differentiating (3.8) with respect to 
∆θ. ∇J points to the direction of maximal growth and thus, in the basic gradient descent 
update principle, the values of θ are updated iteratively in the direction of negative ∇J,  
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where K is the update step index, d is the update step and γ is a scalar coefficient for 
adjustment of the step length. The convergence speed of the gradient optimization can be 
improved in many ways and in Section 3.2.4 the particular LO problem is elaborated in 
more detail. The IRT procedure contains iteration on two different levels. In the 
following, the term local iteration is used for the successive function evaluations around 
the nominal point, and the local iteration therefore consists of k local iteration steps. 
Global iteration refers to the iterative update procedure of the nominal point consisting 
of Kmax iteration steps. 

3.2 Practical and theoretical details 

IRT can be seen as a combination of LO, MVR and stochastic search methods and there 
exists plenty of freedom in selecting the appropriate components. Application of the 
algorithm also involves some important technical issues. In the following sections these 
possibilities and challenges are presented in more details.  

3.2.1 Function evaluations 

Evaluation of the cost function J(θ) means that the performance of a system 
characterized by a collection of time series signals is first compressed into m quality 
measure values after which computing (3.7) is straightforward. Since IRT can be applied 
in several configurations, the source of signals and interpretation of quality measures 
varies. For example, control parameter tuning can be conducted either on an existing 
process plant or in a simulation environment. Different application possibilities are 
portrayed in more detail in Chapter 4. To retain the brevity, the discussion concerning 
control parameter tuning is here restricted to the simulation assisted configuration. In the 
following, first the selection of appropriate quality measure functions is considered. 
Second, what is required from the time series signals is discussed. 

Quality measures 

Quality measures are scalar valued functions expressing how well performance targets 
are fulfilled. In practice, the target performance is declared by a reference signal and the 
performance by an output signal obtained from the system, and it is the difference or 
error between these two signals that is characterized with q(θ). In control parameter 
tuning the user specified reference signal is deterministic, whereas the system output is 
corrupted by noise (assuming that some random disturbances are added to ensure realistic 
simulation results). In model parameter tuning the situation is the opposite. The measured 
reference signal is a random signal realization corrupted by measurement noise. 
Nevertheless, the source of stochastic variations in signals becomes irrelevant since their 
difference involves always stochastic variation. Therefore, quality measure definitions 
should be statistical by nature. 

In Sections 2.1.2 and 2.2.1 measures for the accuracy of the simulation results and the 
control performance were presented. In theory, any of the presented CPA measures could 
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be used as a quality measure. However, in practice it is beneficial to select such 
formulations as (2.2) and (2.3) that are statistical characterizations of the lower signal 
level phenomena. Both equations involve summation over instants of random error 
signals suggesting that the outputs are approximately normally distributed random 
variables based on the central limit theorem (which goes nicely together with the local 
linearity assumption). Using MSE criteria as quality measures is recommended since in 
that case the cost function becomes a weighted sum of squared errors meaning that its 
values are necessarily positive, zero being the theoretical minimum value. A good thing 
about these quality measures is that their application is not tied to any specific situation, 
for example, to step responses only. The values of qi should be scaled by the length of the 
signals so that it has no effect on their expectation values. The commensurability of qi 
and qj is considered in Section 3.2.4. 

In practice, it has also turned out that quality measures based on error signal integration 
are continuous functions of θ, whereas some of the classical CPA characterizations may 
express severe discontinuities in parameter space and should therefore be avoided in this 
context. For example, settling time becomes discontinuous in parameter space if it is 
defined using crisp tolerances around the set point value [17]. Also, overshoot behaves 
badly as a function of parameters of a discrete time PD controller [78]. Although 
convexity of a quality measure definition on a local domain around the global optimum 
(that is hopefully close to the applied initial values) cannot be guaranteed with any 
quality measure definition, it is important to avoid any nonlinearities in definition of q 
that could cause discontinuities.  

On time series signals and simulated events 

The time series signals, based on which q are calculated, should reflect the performance 
of the system as widely as possible. This means that, for example, in simulation assisted 
controller tuning the simulated sequence of events (or simulation sequence) should 
contain all the relevant events to evaluate system performance. In practice, it is 
impossible to cover the whole spectrum of possible events from all initial conditions. 
Therefore, it is usually practical to restrict the evaluation, for instance, only to a certain 
operation point, production rate or error situation (or to a combination of them), whatever 
is the main focus of the study. In model parameter tuning the simulation sequence cannot 
be constructed freely, but a suitable period of data is selected from the available data set. 
However, the selected period should still be representative of the target system operation 
and for the future usage of the model. If measurement signals are badly corrupted by 
noise, filtering of the intended input signals is recommended. 

When the IRT algorithm is applied in practice, it should be noticed that after each 
modification of parameter values, the system is deviated from its dynamical equilibrium. 
Therefore, periods of time series, that are recorded directly after parameter changes, 
should not be used for quality measure calculation. The length of the settling time after 
parameter change strongly depends on the dynamic character of the process. 

Finally, the considered time series signals should be sufficiently long, taking into account 
the noise characteristics and the sampling interval, to ensure reliable performance 
evaluation with small enough variance of q. Also, the number and nature of simulated 
events naturally affect the length of the assessment period.  
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3.2.2 Sampling method 

Selection of decision variables in control parameter tuning cases is straightforward since 
the most reasonable approach is to appoint all control parameters of the target process as 
decision variables. In model parameter tuning the role and origin of the parameters needs 
to be considered first. Model parameters can be divided roughly into two categories. 
Some model parameters, such as characteristic curves of pumps and valves, can be 
obtained directly from the component manufacturer. These reliable parameters can be 
excluded from the parameter optimization. Other parameters without as clear 
interpretation need to be estimated numerically. The division between these two classes 
is not sharp and lacks any deeper meaning. For some parameters, an experienced 
professional can assign a range of probable values, for example, flow resistance through 
process equipment, but the values cannot be determined exactly. It is usually wise to 
include the parameters from the “grey area” in the set of decision variables as well. 

Feasible region ℜ and local sampling domain ℜS 

The IRT method itself does not require an exactly bounded feasible region ℜ to be 
specified, but in practice, it is the easiest way to incorporate the known constraints for θ. 
In some cases, minimum or maximum values for θi are trivial to specify. For control 
parameters, for example, at least the sign of a controller gain is usually known, even 
though the upper (or lower) bound is unknown. Similarly, integration time is always 
positive, and so on. Similar natural constraints for model parameters are easily found, for 
instance, valve opening is always between 0 and 1. Specifying a minimum and maximum 
value for each θi results in a hyperrectangular ℜ. It is hard to come up with any situation 
that would benefit from any more exceptional form of ℜ. One convenient consequence is 
that ℜ becomes convex which supports (but does not fully justify, however) the use of 
LO methods. 

Data-based LO methods are based on local sampling of the cost function. Therefore, the 
local sampling domain ℜS needs to be determined. The borders of ℜS can be determined 
similarly as for ℜ by specifying positive and negative tolerances, ρi, for each θi around 
the current value θ , 

 { }:S i i i i i iθ θ ρ θ θ ρℜ = − ≤ ≤ + ∀ . (3.10) 

On one hand, local perturbation of θ should be as large as possible, since the variance of 
(3.6) decreases as the variation of θ grows (see the discussion below about sample size). 
This naturally speeds up the optimization process. On the other hand, the limits of ℜS 
should be small enough to ensure the local linearity assumption and that numerical 
problems caused by too large parameter changes during simulations can be avoided. If 
IRT is applied adaptively (see Section 4.2.3) in the target system, keeping ℜS small 
enough is even more important since the production process should be disturbed as little 
as possible. Violations of the local linearity assumption can be detected, for example, 
with normality testing of residuals (see [76]). In practice, the initial values for limits of 
ℜS can be improved during optimization either manually or by using heuristic adaptation 
rules. 
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Sampling distributions 

IRT uses stochastic sampling methods to avoid laborious deterministic multidimensional 
experiment design and to ensure good statistical coverage of ℜS. In the sampling 
procedure, the values of θ are drawn from a sampling distribution defined in ℜS. Any 
probability distribution can be used as long as it is easily parameterized. For example, 
Gaussian distribution is defined by the mean value E{θ} and covariance, 
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which determines on its diagonal the variances, var{θi} = 2
iθσ , of θi, i ∈ [1, n] and the 

covariances between θi and θj are given by the non-diagonal terms (
iθσ being the standard 

deviation of θi). In practice, it is initially enough to specify the variances and assume that 
the non-diagonal terms are zeros. Gaussian distribution is determined between ]−∞, ∞[ 
making its usage on a restricted domain slightly complicated. On one hand, if ℜS is not 
explicitly specified there is always a small possibility that a sample far from the mean 
value is obtained, no matter how small values of var{θi} are chosen. On the other hand, if 
ℜS is given Gaussian distribution approximates uniform distribution with large variances 
(relative to ℜS). Another drawback is that it concentrates the samples around the mean 
value even though it is more beneficial to draw samples closer to the edges of ℜS. 
Hypercubical (or hyperspherical) uniform distribution has no other parameters in 
addition to the minimum and maximum values of θi. Therefore, the use of uniform 
sampling distribution is recommended.  

Tabu search modified for real valued θ could also be used to improve the sampling 
process since it avoids the already visited areas of ℜS. An easy implementation is a 
memory based tabu list approach that contains the already obtained samples. New 
candidate samples are compared to the tabu list contents and replication of almost 
identical samples is prevented by discarding candidates when necessary. Comparison of 
real valued θ requires some kind of a similarity measure or neighborhood function to be 
defined for θ. For example, Mahalanobis distance describes the similarity of two random 
samples, θ(i) and θ(j), taken from the same distribution having the covariance structure 
R, 

 ( ) ( )( ) ( ) ( )( ) ( ) ( )( )1,
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In some cases, it is sufficient to compare the angle ω between two samples (if, e.g., the 
samples are drawn exactly from the boundary of a spherical ℜS), 
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Avoiding the heuristic memory-based implementation of tabu search is challenging since 
constructing a new a posteriori sampling distribution after each sample is extremely hard 
to implement, especially for large n. Similar problems as with the PAS algorithm (see 
Section 2.3) inevitably arise. 

Sample size 

Since each function evaluation in IRT involves a computationally expensive time series 
signal generation with a simulator, it is important to constrain the number of data points 
to the minimum. It is possible to compute the statistically sufficient sample size for the 
estimation of LS regression coefficients with a certain confidence. However, such 
calculations tend to result in impractically large sample sets. In addition, the result may 
vary a lot depending on the values of the required parameters (like the confidence level, 
effect size of the regression coefficients, noise variance, etc.) used in calculation. And 
finally, the result is not directly applicable to PLS regression models. 

Since the theoretical approaches to the problem are not altogether free from heuristics, in 
practice, completely heuristic rules of thumb, for instance, proposing k ≈ 10·n, are widely 
used to “ensure” the statistical reliability of estimates. In both cases, impractically large 
sample sets are usually proposed from the parameter optimization (of large-scale 
systems) point of view. The above considerations relate to the estimation of standard LS 
models (3.6) where (assuming m = 1), 

 { } ( )( )12E , T
aF N F σ

−
Θ Θ∼ , (3.14) 

where 2
aσ  is the variance of the noise corrupting the output observations. From (3.14) it 

can be seen that the variances of the regression coefficients F are reduced either by 
decreasing 2

aσ , or increasing k or 2
iθσ  [65] and vice versa. The LS (or MLR) estimator is 

unbiased as long as the Gaussianity of 2
aσ  holds. In practice, this means longer time 

series signals or larger (and possibly more risky) ℜS. 

Often much fewer samples are needed if latent variable based multivariate regression 
(MVR) methods are applied (see Section 3.2.3). Then, it is not the number of decision 
variables, n, but the number of latent variables, N, that effectively determines adequate k. 
In some cases, even extremely small sample sizes with k < n can still result in useful 
regression models. The number of underlying latent variables, being typically only a 
numerical concept without any clear physical interpretation, however becomes evident 
only after the model has been estimated. It is an intrinsic quality of the modeling problem 
and, therefore, selection of k needs in practice to be considered separately in each case. 
Based on practical experience (see Chapter 5), using sample sizes of k ≥ 2·n is 
recommended. If the function evaluations (see below) are excessively expensive but 
data-based optimization is still pursued, relatively small sample sizes just have to be 
accepted. The number of required samples can be reduced effectively by reusing the old 
data samples, for example, with exponential smoothing (recursive modeling is discussed 
in more details in Section 3.2.4).  

The affordable sample size also affects the selection of regression method since the best 
results on an “easy” situation (large k, small 2

aσ  and uncorrelated θ) are obtained with 
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MLR regression, whereas MVR techniques are superior in the case of insufficient sample 
size, noisy observations and collinear variables. 

3.2.3 Local linear modeling 

In the following, estimation of the model (3.5) from a data set is studied. Firstly, the 
detection of outliers from data sets and reasons for their occurrence are briefly presented. 
Secondly, the best way to scale and weight variables before modeling is discussed. 
Thirdly, different regression methods are compared and, finally, recursive modeling 
approaches are presented to reduce the number of data samples required. 

Outliers 

Before modeling, the erroneous data points, or outliers, should be removed. Modeling is 
based on Θ and Q, and because Θ is user specified (although composed by random 
sampling), it can be assumed that it contains no erroneous values and θi ∈ ℜS, ∀ i. 
Instead, Q may contain samples that differ significantly from the joint distribution of qi. 
In simulation assisted controller tuning and in model parameter tuning, numerical 
problems with the simulator, or other practical problems, may generate abnormal signal 
values resulting in deviating q values that show up as outliers from the joint distribution. 
In practice, the occurrence of outliers can be avoided rather effectively by designing the 
tuning procedure carefully (i.e., by selecting initial values and determining the local 
sampling domain boundaries sensibly).  

If IRT is applied for controller tuning in the adaptive framework (see Section 4.2.2), the 
observations of q become in general (much) more widely spread due to the rich and 
varying excitation that a realistic process, with changing operating conditions, possesses 
and, therefore, the rate of observed “outliers” rises rapidly. In practice, the amount of 
outliers becomes smaller and the distribution of q values narrower if the length of the 
time series signals, applied in quality measure evaluation, is long enough and if the 
optimization procedure is halted during known plant shutdown periods and other 
exceptional situations. 

If it can be assumed that the local linear dependency between q and θ is known and that 
the random variation in q is Gaussian and independent from θ, the effect of parameter 
variation can be removed from the observations, 
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after which one can concentrate on the distribution of residuals ε, Ε = (ε(1) … ε(k))T, that 
should form a zero-mean multivariate normal distribution with covariance Rε, 

 ( ),mN Rεε 0∼ . (3.16) 

Deviating samples ε(i) that are improbable representatives of the same normal 
distribution (with respect to chosen confidence level) as the rest ε(j), i, j ∈ [1, 2, …, k] ∧ 
i ≠ j, can be denoted as outliers and discarded from the data set. The main drawback of 
the presented procedure is that the local model F is needed before it has been estimated 
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from the data. This discrepancy can be avoided if each sample is left aside at a time and 
the local model is re-estimated based on the remaining k − 1 samples. Outlier detection 
becomes thus an iterative process. This approach is not completely trouble free since in 
the case of multiple outliers the local model estimate becomes distorted. 

There exist several techniques for assessing multivariate normality of a distribution and 
for detecting multivariate outliers. Both are naturally more complicated than the 
corresponding univariate problems. In general, non-normality is a much wider concept 
than normality (compare this to linearity vs. non-linearity) and a distribution can depart 
from normality in many different ways. Different detection methods emphasize different 
types of departures and are, therefore, best suited for different purposes. 

A simple way to examine the multivariate normality is to assess the normality of 
marginal distributions of εi using any procedure for univariate distributions. Marginal 
normality assures the necessary (but not sufficient) conditions for multivariate normality. 
A slightly more sophisticated approach is to study the marginal distributions of the 
principal components z of the residuals, 

 Tz ZεΕ Ε= Φ ⇔ = ΕΦ . (3.17) 

The column vectors of ΦΕ = [φ1 … φm] are obtained by computing the eigenvectors of the 
residual covariance matrix, 

 1 T
i i ik

φ λφΕ Ε⋅ = . (3.18) 

Extensive review of methods for normality testing is beyond the scope of this thesis. For 
the interested reader, a thorough review by Thode [76] is recommended. It needs to be 
noted, however, that one should avoid too eager outlier removal since the strongly 
deviating samples may contain also relevant information, not only disinformation caused 
by an error. And the reasons behind outliers should be always clarified so that the 
corresponding errors could be prevented in future. 

Data preprocessing 

For multiple reasons, it is recommended to apply certain preprocessing of data before the 
local linear model (3.5) is estimated. First, variables are centered, ( ) ( )i iθ θ θ∆ = −  and 

( ) ( )q i q i q∆ = − . Deterministic decision variables can be centered either with respect to 
the arithmetic mean of the sample set or to the current nominal point, i.e., the initial 
values of θ or the results of the previous optimization iteration. q  is always the 
arithmetic mean of observations since the observation corresponding to θ  is only a 
single realization of the random variable q. Throughout the thesis, the difference of a 
sample mean and a given mean value is not taken into account when, for example, 
(co)variances are computed. It is assumed that k is big enough so that k ≈ k − 1. 

After centering, the variables should be scaled somehow. First of all, the variables should 
vary (at least approximately) in the same scale around the mean value to avoid numerical 
problems. This can be handled by scaling the variances of individual variables to unity, 
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 (3.19) 

where the scaling matrix, SΘ, contains the standard deviations of individual variables on 
its diagonal. The scaling of ∆Q is performed respectively, ∆QS = ∆QSQ

−1.  

In many cases, it is beneficial to use PLS regression, that tries to detect the directions of 
input space that correlate maximally with the outputs, in order to reach the most efficient 
dimension reduction for the input-output model [34]. Now, if either the inputs or the 
outputs carry an internal correlation structure in themselves (i.e., variables are not 
linearly independent) and the underlying correlation structure is competing with the 
input-output cross-correlation, it will distract finding the optimal PLS model. Therefore, 
whitening both ∆Θ and ∆Q separately before modeling often results in better PLS 
regression models than using scaling. The whitening of data matrices also scales 
variables to unit variance. For whitened data, ∆ΘW and ∆QW, the covariance matrix 
becomes an identity matrix, 

 ( )1 1

1  

1

1 .
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T
W W

T T

T T

R I
k
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k

R W W
k

Θ

− −
Θ Θ

Θ Θ Θ
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= ∆Θ ∆Θ =

 (3.20) 

From (3.20) can be seen that the whitening matrix, WΘ, is obtained by the Cholesky 
decomposition of the data covariance matrix, RΘ, after which whitening is performed 
similarly as scaling, 

 1
W WW W −

Θ Θ∆Θ = ∆Θ ⇔ ∆Θ = ∆Θ . (3.21) 

Whitening of the quality measure data, Q, is performed correspondingly. Since WΘ is not 
diagonal, the matrix (W is an upper triangular matrix) inverse is not obtained as easily as 
with SΘ. For a symmetric positive definite matrix (R is necessarily both symmetric and 
positive definite), W is always real valued.  

It needs to be noticed that also the computation of Cholesky decomposition fails 
similarly as the direct computation of the MLR model from centered data if the smallest 
eigenvalues of RΘ are close to zero, i.e., the variables are mutually strongly correlated. 
However, practical results have shown that when computation of Cholesky 
decomposition succeeds, whitening has the tendency to improve the numerical properties 
of the estimated model.  
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After whitening, ∆ΘW = ∆ΘWΘ
−1 and ∆QW = ∆QWQ

−1, the MLR model between 
whitened data spaces, FW, can be estimated from ∆ΘW and ∆QW and equation (3.6) 
becomes simpler, 
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The model based representations of the output observations become, 
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where the circumflex denotes estimated values. From (3.23) can be seen that F actually 
equals to, 

 1
W QF W F W−

Θ= , (3.24) 

and equation (3.5) can be written finally as, 
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About MVR methods 

High dimensional data, noise, and collinearities among the variables make the estimation 
of (3.6) complicated and the standard least squares approach often fails totally since the 
input covariance becomes singular and, therefore, noninvertible. Statistical multivariate 
regression methods like Partial Least Squares (PLS) regression have been developed to 
overcome these difficulties and to estimate robust regression models, even from scarce 
sets of data.  

The PLS regression model can be computed using different algorithms, for example, 
NIPALS (Nonlinear Iterative Partial Least Squares) or Kernel algorithms (see, e.g., [8, 
79]). For example, in (one version of) the Kernel algorithm, the unscaled input 
covariance and the data cross-covariance matrices, MΘΘ,1 and MΘQ,1, and the so-called 
Kernel matrix, MKernel,1, are computed in the first step such that (assuming that the data is 
appropriately mean-centered and scaled), 
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Thereafter, the ith, i = 1…N, PLS latent variable basis vector called the PLS weight 
vector, φi, dim{φi} = n×1, can be computed as the eigenvector corresponding to the 
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largest eigenvalue of MKernel,i. The ith PLS loading vectors, pi and ci, dim{pi} = n×1 and 
dim{ci} = m×1, corresponding to variables Θ and Q, respectively, are computed such 
that, 
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 (3.27) 

Finally, the matrices MΘΘ,i, MΘQ,i and MKernel,i are updated according to equations, 
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where zi are the PLS score values (related to input variables Θ, dim{zi} = k×1), 

 i i iz φ= ∆Θ , (3.29) 

and the matrix ∆Θi is computed such that, 
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1 1 .T
i i i iI pφ− −

∆Θ = ∆Θ

∆Θ = ∆Θ −

#  (3.30) 

When enough PLS weight vectors are computed recursively, the PLS regression 
coefficients are given by the equation, 

 ( ) 1

PLS ,T TF P Cφ φ
−

=  (3.31) 

where φ = (φ1 … φN), P = (p1 … pN) and C = (c1 … cN).  

Another approach for determining the PLS regression is the eigenproblem oriented PLS 
algorithm presented by Hyötyniemi [34]. He sets the maximization of correlation 
between input and output oriented latent variables as the goal for the PLS model, 
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1max ,  
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 (3.32) 

where φi and ϕi are ith basis vectors of input and output oriented PLS latent variables. 
Solving the constrained optimization problem (3.32) results in a pair of eigenproblems, 
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where λi is the ith PLS eigenvalue. The underlying idea is that φi and ϕi span the input and 
output oriented subspaces such that the correlation between Θ and Q is maximally 
represented by the lower dimensional latent variables. In practice, the PLS regression 
model is constructed by combining the projection of Θ onto input oriented latent basis 
with the following MLR regression model from the latent variables onto output space 
into a single linear matrix operation. It turns out that the input and output oriented 
eigenvectors, φi and ϕi, coincide with the left and right singular vectors obtained from the 
singular value decomposition (SVD) of the data cross-covariance matrix, 

 1 T T
Q QR Q

kΘ Θ= ∆Θ ∆ = Φ ΣΦ , (3.34) 

where ΦΘ = (φ1 … φn) and ΦQ = (ϕ1 … ϕm) are the complete sets of left and right singular 
vectors, and Σ is a n×m diagonal matrix containing the singular values σi. The 
significance of a singular vector, φi, is revealed by the magnitude of σi. There exists only 
min(n,m) nonzero singular values (at the maximum). The singular values are related to 
the PLS eigenvalues such that i iσ λ= . 

The dimension reduction can be performed with the PLS regression model by 
incorporating only the N < min(n,m) most significant eigenvectors in the latent variable 
basis, φ = (φ1 … φN). The final PLS model then becomes (see [34] for details), 
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or when computed from whitened data, 
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In this thesis, the eigenproblem oriented PLS algorithm is mainly used. Different PLS 
algorithms (eigenproblem oriented PLS, Kernel PLS and NIPALS) are compared in one 
of the case studies presented in Section 5.4. 

PLS regression works especially well when it can be assumed that the number of 
underlying latent variables carrying the majority of the relevant input-output information 
in the system is fewer than the original input and output data dimensions imply. In such a 
situation, collinearities among input or output variables are accepted or, in fact, expected 
since N ≤ min(n,m). In practice, N is often interpreted more abstractly as a measure of 
dimension reduction and its optimal value is inferred based on data. Optimization of N 
searches for a compromise between overfitting (i.e., N is too large causing poor 
generalization) and underfitting (i.e., too radical dimension reduction). 
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In the targets of IRT applications there usually exists a lower dimensional latent variable 
space that can be exploited in the modeling. For example, if a system is modeled more 
and more accurately, usually its model also involves an increasing number of numerical 
parameters. At the same time, however, the parameters start becoming collinear. This can 
be seen, for example, in the numerical approximations of partial differential equation 
systems if the density of the mesh in finite element (or volume or difference) methods is 
increased. In such systems, it can be assumed that N typically grows substantially slower 
than n. The benefits from MVR methods compared to MLR were experienced in practice 
within the case studies that are presented in Chapter 5. Some results from a comparison 
between different PLS algorithms and MLR are given in Section 5.4.2. 

If k is small (k ≈ n or even k < n) and the outputs are corrupted by noise, the estimation of 
the MLR model is prevented. If an abundant data set is available it, however, represents 
the optimal linear model. Between these two extremes, the (suboptimal) PLS model often 
defeats MLR since the dimension reduction decreases the amount of estimated model 
parameters and the model, therefore, becomes more robust against noisy data.  

There exist several methods for finding a practical value for N, but giving any general 
guidelines for the selection process is more difficult. For example, visual examination of 
the eigenvalues (see [34]) can be applied if the human intervention during the modeling 
process is possible. Within IRT this would be slightly problematic since MVR models 
are estimated repeatedly during the optimization procedure, which is supposed to run as 
autonomously as possible.  

An automatic selection of N can be based on cross-validation (CV) that is a widely used 
method for model validation and model structure optimization. In κ-fold CV, data sets 
are divided into κ subsets and one subset is omitted from the modeling process at a time 
and used for estimation of the chosen error criterion for the prediction or generalization 
error of the candidate model. In the case of extremely scarce data, leave-one-out CV can 
be used. It means that modeling is repeated k times and the error criterion is computed 
based on one sample. It has been discovered that leave-one-out CV is badly suited for 
validation if k is small [79] (i.e., k ≈ N, in the authors own experience) which creates a 
problem – in order to determine N reliably one should know N so that a large enough k 
value could be used. However, this problem can be avoided if k > min(n,m) samples can 
be applied. Then leave-one-out CV gives a practical and easy-to-implement solution for 
optimization of N.  

Jackknifing is another method that can be applied for evaluation and comparison of 
candidate models. Wold et al. propose it (along with CV) for model validation. It can be 
used for estimating the standard errors and confidence intervals for the model 
parameters, Fij, of the estimated PLS model [79]. The theory concerning the exact 
calculation of the confidence intervals for PLS model coefficients is still immature and 
beyond the scope this thesis. 

Recursive modeling using exponential smoothing  

If a smooth and continuous J can be assumed, the underlying dependencies between θ 
and q in certain ℜS(K) are likely to resemble those observed in ℜS(K−1), at least to some 
extent. Therefore, the number of time consuming function evaluations during the 
optimization procedure can be decreased by utilizing recursive modeling techniques.  
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In [8] different formulations for PLS are given including a recursive Kernel PLS 
algorithm that utilizes exponential smoothing to update recursively the data covariance 
matrices. The eigenproblem oriented PLS can be computed with the same principle in 
which case the SVD in equation (3.34) is computed upon the recursively updated data 
cross-covariance matrix, 

 ( ) ( ) ( )1 1 T
Q QR K R K Qµ µΘ Θ+ = + − ∆Θ ∆ , (3.37) 

where µ is the forgetting factor, 0 < µ < 1. The practical value for µ (e.g., 0.7 < µ < 0.9) 
depends largely on the sample size k. Since the gradual updating of the nominal point, 

,θ is not taken into account in (3.37), large values of µ, µ > 0.95, should be avoided 
unless the number of fresh data samples is significantly low. After updating (3.37), FPLS 
can be computed similarly according to (3.34) and (3.35). Recursive modeling reduces 
the number of required function evaluations during the optimization without deteriorating 
its statistical reliability, since each local estimate can be computed from a smaller data 
set. It can be seen as an alternative to the moment method – now, it is not only the 
gradient vector, but the whole cross-covariance matrix instead that is inherited from the 
previous iterations. 

Equation (3.37) still retains some features of the original IRT algorithm since the 
covariance structure is updated in a batchwise manner. Therefore, it will be called semi-
recursive IRT in the following. The completely recursive formulation of the IRT 
algorithm starts to resemble somewhat the sequential stochastic search methods 
presented in Section 2.3. In the following, this version of the algorithm will be referred to 
as the RIRT method. In this algorithm, the updating of covariance structures is enhanced 
by taking into account the update of the nominal point such that, 

 ( ) ( )( ) ( ) ( ) ( )( )1 1 1 1 TT
Q QR K R K q K q Kµ θ µ θΘ Θ+ = + ∆ ∆ + − ∆ + ∆ +  (3.38) 

where the new data point is centered with respect to the new nominal point, ( )1Kθ +  

and ( )1q K + , and the old cross-covariance matrix is corrected with the term, 

 ( ) ( )( ) ( ) ( )( )1 1
TTq K K q K q Kθ θ θ∆ ∆ = + − + − . (3.39) 

The new nominal point is computed after each sample, 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1

1 1 1 ,

K K K

q K q K q K

θ µθ µ θ
µ µ

+ = + − +

+ = + − +
 (3.40) 

where θ(K+1) is sampled from the half-space pointed by the negative cost function 
gradient. This guarantees that the nominal point is gradually shifted towards the (local) 
optimum. In RIRT, the update step length is, therefore, inseparably connected to the 
forgetting factor (reducing the number of method parameters that need to be specified 
somehow). The input and output data covariance matrices, RΘ and RQ, are needed in 
estimation of the local linear model and in the scaling of data, and they are updated 
similarly as the cross-covariance matrix in equation (3.38).  

The effective sample size, keff, helps to determine an appropriate value for µ, 



64 

 eff
1

1
k

µ
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−
, (3.41) 

giving, for example, keff = 100 for µ = 0.99, and keff = 5 for µ = 0.8. If the equation (3.37) 
is applied, the sample size, k, influences the effective sample size such that, 

 eff
1

1
k k

µ
= ⋅

−
. (3.42) 

3.2.4 Update principle 

In the following, the use of the local linear model in calculation of the update step is 
presented. First, the managing of multiple targets of optimization is considered, and 
thereafter, some guidelines for selecting appropriate length for the update step are given. 

Decision making 

Managing multiple targets in multiobjective optimization is called decision making. 
Targets may be mutually conflicting, and a satisfactory compromise is searched for in 
such cases. Often the compromise that is found is not the unique optimum in the 
mathematical sense, but rather belongs to the set of Pareto optimal solutions that are 
equally desirable. The solution θ* ∈ ℜ is said to be Pareto optimal if there does not exist 
another θ ∈ ℜ such that qi(θ ) ≤ qi(θ*) ∀ i = 1, …, m and qj(θ ) < qj(θ*) for at least some 
values of j [58].  

In order to find a unique solution among the Pareto optimal solutions, human decision 
making is needed. Decision making strategies can be divided roughly into three 
categories [59]: a priori, a posteriori and interactive methods. In a priori methods, the 
target functions are made somehow commensurable, and using a scalarization function g, 
the problem is transformed into a single target optimization problem. In a posteriori 
methods, the decision making process is used after the Pareto optimal set (or part of it) 
has been determined. Thirdly, in interactive methods the decision making is performed 
concurrently with the optimization. The classification is not strict and, for example, the 
scalarization applied in equation (3.7) can be considered as either an a priori or an 
interactive approach, depending on whether the weights are constant or modified during 
the optimization. It has also the advantage that it enables interactive decision making 
without necessitating it.  

In control parameter tuning, the decision making is, more naturally, an interactive 
process since finding in advance such weight values that lead to the most desirable 
solution is practically impossible. In model parameter tuning the commensurability is 
somewhat easier to determine beforehand. One way is to use the inverse variances of the 
measured reference signals as weights. In this way, the decision maker places bigger 
accuracy expectations to those simulated signals that can be measured reliably also from 
the existing process and, vice versa, quality measures having noisy and unreliable 
reference signals are not weighted heavily in the scalarization. For example, 
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presents a scalarization of m MSE quality measures (see Section 2.1.2), where the 
reference, ri, and the model output, yi, are T×1 (time series signal) vectors.  

If the reliability of measurements is unknown, another possibility is to determine 
commensurable target units, si, for each model output, that standardize the accuracy 
targets of signals in different units. A stopping criterion for the optimization can be based 
also on the commensurable target units. For example, determining that an error of 
si = 2 bar in the variable yi is considered as good estimation accuracy, as an error of 
sj = 1°C in the variable yj, in which case scalarization can be accomplished as, 
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In addition to the initial weighting of targets, the weights can be adjusted also during 
optimization, for example, based on their distance from the (theoretical) optimum. The 
role of interactive decision making becomes more important in the vicinity of the 
optimum (or the set of Pareto optimal solutions) when the optimization starts to slow 
down due to the contradiction of quality measures. Changing the weight values changes 
the location of the optimum in the decision space of the scalarized single target 
optimization problem. The contradictory quality measures can be analyzed, for example, 
by computing the following cosine matrix, 
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where fi is the ith column of F ′which is the local linear mapping matrix whose column 
vectors are scaled to unit length. Elements close to one in (3.45) represent parallel 
targets, zeros indicate orthogonality and negative values reveal conflicting quality 
measures. 

Length of the update step 

In practice, the length of the computed gradient vector ||∇J(K)|| needs to be taken into 
account when the d(K) is computed in equation (3.9). In general, ||∇J(K)|| is zero in the 
extremum points of J(θ) and it grows as the slope of J(θ) gets steeper. Since it cannot be 
assumed that the ||∇J(K)|| decreases monotonically towards the optimum and that 
calculations are based on its data-based approximation, it is practical to determine the 
step length coefficient, γ, in equation (3.9) such that, 
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where α is an arbitrary scalar coefficient, D(∇J, 0) is the Mahalanobis length of the 
update step (see equation (3.12)) and D is the average Mahalanobis distance of Θ from 
the current nominal point θ , 
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The Mahalanobis distance is a distance measure that weights the vector lengths in 
different directions according to the covariance structure of the distribution. Using (3.46) 
prevents the new nominal point, ( )1Kθ + , from escaping beyond ℜS.  

Another possibility is to connect γ with the limits of ℜS, ρ, such that, 
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which scales d(K) to reach exactly the surface of a spherical (or elliptical) ℜS when 
α = 1. Notice that now γ is a n×n diagonal matrix. The drawback of both presented 
methods is that the successive domains become partially overlapping (with moderate 
values of α, i.e., α < 2) which makes the optimization procedure unnecessarily slow. To 
speed up the tuning procedure, ℜS can be widened by increasing ρ or α.  

In the classical nonlinear LO methods, for example, in Newton’s method, optimal step 
length is usually computed using the Hessian of the cost function, or it is determined 
based on a rigorous line search [61]. Reliable utilization of the Hessian information 
requires in practice that analytical gradient information is available and that the 
hyperparabola shape for J can be assumed. Therefore, this approach is questionable in 
this context. However, since in the neighborhood of an optimum any nonlinear 
continuous function can be approximated by a hyperparabola [61], the Hessian approach 
could be applied to improve the converge of the optimization on its final iteration steps. 
Line search methods are not applied here since extrapolation far beyond ℜS is neither 
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safe nor practical. The linear cost function estimate is valid only locally and the 
observations of q are not deterministic which complicates, or prevents, the use of line 
search, especially when IRT is run in adaptive mode (see Chapter 3.2.3). From the 
practical point of view, line search is inconvenient to apply with simulation models that 
cannot tolerate large abrupt parameter changes. Furthermore, recursive modeling, and 
especially the completely recursive formulation of IRT, make this problem less crucial 
since the nominal point is gradually shifted towards the optimum.  

3.2.5 Summary of IRT and RIRT algorithms 

Applying IRT or RIRT for control or model parameter tuning begins with the 
formulation of tuning targets into the form of m quality measures, q, and giving the 
appropriate weightings, wi, for qi. Secondly, the decision variables θ, their initial values 
and the absolute maximum and minimum values are determined. Thirdly, an appropriate 
sampling method is defined including local limits of variation and other distribution 
parameters. For the batch-wise formulation of IRT also the sample size k is specified. 
Finally, the maximum number of optimization steps is given after which the tuning can 
be started. In the following, the summaries of running IRT and RIRT algorithms are 
given. 

Initialization and iteration procedure of the IRT (and semi-recursive IRT) 
algorithm(s) 

1. Define qi and wi  

2. Specify θ, and determine θ (K=0) and ℜ 
3. Determine Kmax 
4. Select sampling distribution for θ 

Define initial distribution parameters 
 Determine ℜs and k 
5. Start iteration, K = 0: 
 
while (K ≤ Kmax and J(K) > Jtarget) { 
 Sampling: 

Create k decision variable combinations, Θ 
 Function evaluations: 

Simulate system performance using each Θ(i,:) 
Compute performance evaluation, Q(i,:) 

 Modelling: 
Preprocess Θ and Q 

  Compute F, select N using cross validation  
  Gaussianity testing of residuals 
  if (Residuals are non-Gaussian) 
   Decrease ℜs 
 Update step: 

  Compute θ (K+1) 
  if (Semi-recursive IRT is used) 
   Update RΘQ 
   Update distribution parameters 
  K = K + 1 
} 
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Initialization and iteration procedure of the RIRT algorithm 

1. Define qi and wi  

2. Specify θ, and determine θ (K=0) and ℜ 
3. Determine kmax and γ 
4. Select sampling distribution for θ 
 Define initial distribution parameters 
 Determine ℜs 
5. Start iteration, K = 0: 
 
while (K ≤ Kmax and J(K) > Jtarget) { 
 Sampling: 

Pick θ(K+1) from the sampling distribution 
 Function evaluation: 

Simulate system performance using θ(K+1) 
Compute evaluation based on results, q(K+1) 

 Modelling and update step: 
  Preprocess θ(K+1) and q(K+1) 
  Update RΘQ(K+1), RΘ(K+1) and RQ(K+1) 

  Update θ (K+1) and q (K+1) 
  Compute F, select N using cross validation  
  Gaussianity testing of residuals 
  if (Residuals are non-Gaussian) 
   Decrease ℜs 
  K = K + 1 
} 

3.3 Constraints vs. degrees of freedom 

The applicability of the IRT method presented in Sections 3.1 and 3.2 to parameter 
optimization of large-scale technical systems can be justified if the most practical way to 
model the dependency between system parameters and quality measures is considered 
[21, 35, 36]. 

Neocybernetics is a novel framework for studying large interconnected multivariate 
systems of biology, ecology and economy proposed by Hyötyniemi [36]. Even though 
advanced technical systems, like industrial processes under modern process control or 
large-scale dynamic process models, are more like constructivistic than neocybernetic 
systems, they still possess enough internal feedback couplings and other cohesive 
constraints so that they follow certain principles of neocybernetics. The essence of the 
system is captured in the emergent quality measures, and studying the degrees of 
freedom in the system presents the most practical way for improvement of system 
performance. 

In mathematics (in linear algebra) it is said that a system of m equations involving n 
variables possesses n − m degrees of freedom. The equations determine the internal 
structure of the system, i.e., after some variables have been fixed they start to constrain 
the values of the remaining variables. The remaining degrees of freedom appear as 
variation potential in the values of the constrained variables. 
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Respectively, the traditional view of modeling dynamic industrial processes means 
estimation of the constraint equations among the system variables v, 

 ( ) ( ) ( ) ( ) ( )( )1
TT T T Tv k y k y k u k r k= − " " " . (3.49) 

All dynamic model structures that are linear in parameters can be presented as a set of 
linear equations, 

 T vΓ = 0 . (3.50) 

For example, an elementary control algorithm can be presented as, 

 ( ) ( ) ( )( )1 1i i iu k r k y kα= ⋅ − − − , (3.51) 

and a large set of dynamical processes can be approximated with time series models, 

 ( ) ( ) ( ) { }, : 0jy k y k u kι κ
ι κ

α ι β κ ι κ ι= − + − ∀ ∈ ≠∑ ∑ ` . (3.52) 

Each control algorithm increases the amount of constraints among the system variables 
and, at the same time, decreases the number of degrees of freedom by reducing the 
uncontrolled variation which is manifested by the quality measures. In a way, a modern 
industrial plant with developed control structures can be seen as an outcome of artificial 
evolution that finally starts to resemble a neocybernetic system (see [36] for a more 
detailed description). In such systems, uncontrolled variation remains only in a few 
directions of the parameter space. This can be seen as a motivation for concentrating only 
on the modeling of degrees of freedom instead of the constraints determining the system 
structure and keeping the system stable. 

The quality measure variation that is obtained by varying system parameters reveals the 
potential for performance improvement via parameter tuning, whereas the detailed 
constraint based system model determines only the nondescript mean value of the 
variation. Achieving the maximal variation of quality measures is not the target. Instead, 
one searches for the direction of maximum covariation between the system parameters 
and the quality measures. If the system is interconnected and constrained enough, low 
dimensional models concentrating on the degrees of freedom can be obtained which are 
capable of describing these relevant underlying dependencies. This information can be 
applied to push parameters into directions that improve the system performance. This 
type of parameter optimization can be interpreted as a higher level optimizing controller 
of the overall system. 

3.4 Comparison to other controller tuning and parameter optimization 
methods 

Most of the traditional controller tuning techniques presented in Section 2.2.2 can be 
applied only in a reductionist setting concentrating on one controller at a time. Also, the 
numerical controller tuning techniques in Section 2.2.3 take insufficiently into account 
the high dimensionality of the problem. When controller tuning is seen as general data-
based optimization problem, several possible methods are available. Now the 
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characteristics of the optimization problem suggest which method can be successfully 
applied. Quantitative comparisons of efficiency of different optimization methods are 
difficult to perform in practice. Comparisons should be repeated several times with 
different problems in order to get reliable results. 

First of all, use of the more sophisticated nonlinear LO methods presented in Section 2.3 
is prevented in this context by the fact that gradients are data based approximations. 
Reliable use of Hessian information requires, in practice, that at least the gradient 
information should be available in analytical form [61]. The advanced nonlinear LO 
methods also necessitate accurate line search which in this case is problematic. 

Secondly, exact GO methods are difficult to apply here since the parameter space 
sampling is in practice restricted to a local domain (see Section 3.2.2). In control 
parameter tuning, it is not acceptable that the system is disturbed by large abrupt 
parameter changes because of the risk of running the process into instability. Also the 
plant wide dynamic simulation models are often sensitive to large parameter variations 
and it is, therefore, more practical to use only local perturbation to prevent divergence of 
the solver algorithm. 

Thirdly, heuristic GO methods like SA resemble the IRT method in many ways. Their 
basic formulations, however, do not typically consider the problems related to the high 
dimensional data or dimension reduction in any way. In the IRT method, MVR methods 
are applied to overcome these problems and the filtering of noise as well. The completely 
recursive formulation of IRT approaches the sequential stochastic search methods 
incorporating also the advantages of using MVR methods. In addition to the mere 
parameter update direction, the local linear model ∆q = FT∆θ makes it possible to 
analyze the underlying interdependencies of multiple targets, i.e., their parallelism, 
independence, and so on.  
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4 IMPLEMENTATION AND 
APPLICATION OF IRT 

 

In the following, description of the IRT method’s implementation in a simulation assisted 
automation testing environment is first given in Section 4.1 along with a clarification of 
the research focus of the related research projects. Secondly, the application of IRT in 
different contexts is discussed. 

4.1 Implementation of IRT method 

Application of the IRT method involves many practical arrangements concerning the 
configuration and execution of simulation sequences, the storing and viewing of 
simulation results, connecting separate models into a synchronous simulation cluster, etc. 
Therefore, using IRT becomes much more comfortable and less error prone if the 
algorithm is implemented into a suitable platform designed for simulation assisted 
engineering. The research projects Testing Manager and Simbiot, which have set up the 
framework for this thesis, in many respects have both concentrated on this topic. In the 
following, the emphasis is mainly on the IRT algorithm and the Tuning Tool developed 
during these projects, even though other profound research interests were also present 
within the projects. 

In the Testing Manager project the research focused on simulation assisted automation 
testing including, for example, identification of new simulation assisted working 
practices and their benefits in different phases of the automation life cycle, the study of 
requirements for synchronous communication of different software components and 
managing the simulation sequences of simulation clusters, consisting of several separate 
model components. During the project, control parameter tuning using the IRT method 
was tested on large scale industrial simulators and the algorithm was developed further. 
A requirement specification for the Tuning Tool (see below) operating in the Testing 
Station environment was made. The Testing Station is a simulation assisted automation 
testing platform that combines dynamic process simulation models and virtual 
automation systems into a synchronous simulation cluster and provides the user with 
other supplementary tools like connection to historian data base and visualization tools 
for viewing simulation result, among others [43, 75]. The implementation of Testing 
Station is based on the results of many earlier and concurrent research projects of VTT 
with several research and industrial partners, for instance, within the PI, ÄLY and MASI 
technology programs of TEKES. 
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The Simbiot project (as a part of the Semserv project consortium) focused on studying 
the prerequisites, methods and advantages of plant model oriented (PMO) process design 
in which all design and maintenance information is incorporated into a plant model 
during the design, implementation and operation phases of the process plant life cycle. 
During the project model parameter tuning, use of the IRT method was tested and a tool 
for model and control parameter optimization called the Tuning Tool including the IRT 
method was implemented and connected to the Testing Station.  

4.1.1 Simulation assisted process and control engineering 

Information management during the entire process plant life cycle has become an active 
research topic due to the increasing demands for flexible data exchange and intelligent 
design and maintenance information processing. PMO engineering is an approach 
promoting this goal. Combining the design information into a plant model improves the 
communication between the design engineers of different fields, reduces the amount of 
manual work and the number of errors during the design process and opens up new 
model-based working practices for process and control design and maintenance. Several 
attempts have been made to find general standards for the presentation of plant model 
information but none of them has yet reached a dominating position [43]. The plant 
model can be defined in several ways, but in principle it is a model that describes the 
structure, operation and relations of the process and automation components of a plant. 
Technically speaking, the model consists of different process objects having certain 
properties and relations between these objects. Details concerning the plant model 
definition and implementation are beyond the scope of this thesis but the new simulation 
assisted working practices for process and control engineering increase the demand for 
parameter tuning methods like IRT.  

In PMO engineering, the simulation assisted working practices become an inseparable 
part of the overall design process. Traditionally, process simulation has been a separate 
task along (or after) the actual design process carried out on specific modeling software 
without concrete connections to the design environment. However, many design phases 
could benefit considerably from simulation and computational design principles. Several 
potential uses of simulation during an automation delivery project have been reported in 
[44, 49]. For example, the rationality of system requirements can be verified, different 
process and control designs compared and later on the combination of chosen solutions 
evaluated before implementation using simulation. Also, the operation and maintenance 
phases benefit from the overall system model since simulations can substitute for 
expensive and possibly hazardous process experiments, different operation strategies or 
process changes can be tested with the simulator before introduction into the existing 
system.  

To reach the above mentioned potential benefits, new design tools are required and 
conventional working practices need to be revised. First of all, the design environment, 
i.e., the plant modeling software, should support effortless model parameter estimation. 
In order to compare objectively different process structures, control solutions or 
operation schemes, their performance should be first optimized according to the chosen 
performance criterion. As the complexity of the compared systems and the number of 
candidates increases, an efficient parameter tuning tool becomes indispensable.  

Secondly, the plant model produced during the design phase is still only a rough 
generalization of the existing system. Even though this preliminary model is useful in 
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many dynamic studies preceding the system implementation, it is highly beneficial to 
improve the estimation accuracy of the plant model using parameter estimation as soon 
as measurement signals from the existing system are available. 

Thirdly, the plant model requires maintenance during the plant life cycle in the same way 
as the plant itself. If updating the model is neglected it quickly becomes obsolete and the 
modeling efforts are lost. Slow changes like fouling or wear of process equipment and, 
for example, addition of completely new process equipment or control structures, need to 
be taken into account in the plant model.  

All three above presented aspects advocate the inclusion of a parameter tuning tool 
(along with other assisting design instruments) in the PMO design environment. On the 
one hand, the idea of PMO design looses most of its attraction if the model can be 
applied only as storage for design information (due to inadequate estimation accuracy). 
On the other hand, the need to connect the plant model to external optimization software 
for parameter tuning easily ruins the usability of the plant model environment (and 
probably also its popularity among the design engineers), which corresponds to the 
current situation on the field quite well. Successful PMO design practice would end the 
discussion about the costs of dynamical process modeling as the plant model would be an 
inseparable part of the process plant, similar to the automation and information 
management systems found today. 

4.1.2 Tuning Tool 

During the Simbiot and Kelo-VTT research projects the Tuning Tool (including the IRT 
algorithm) was implemented in the Testing Station environment. The underlying 
application service framework architecture is specified in detail in [48] and its use for 
simulation assisted automation testing is presented in [75]. The Testing Station enables 
the configuration and controlling (running, stopping, loading, saving, etc.) of test 
sequences that consist of different process events, operator interactions and data 
collection phases with the chosen simulation model (or simulation cluster consisting of 
several separate interconnected models). Models are connected to the Testing Station 
with the OPC XML Data Access (DA) and Data Exchange (DX) specifications. The 
Testing Station environment also facilitates visualization and archiving of the simulation 
results.  

The Matlab code of the IRT algorithm was turned into a C shared library file using the 
Matlab Compiler product. A simple driver code in C was created for calling these library 
functions and returning the computed results. Since the Tuning Tool and Testing Station 
are implemented using Java, the necessary Java Native Interface (JNI) classes and the C 
wrapper code (enabling the communication between C and Java) were created using the 
SWIG (Simplified Wrapper and Interface Generator). Finally, the whole thing was 
compiled into a dynamically linked library file (dll) using the mbuild command in 
Matlab. The resulting library file can be called directly from the Java code of the Tuning 
Tool. 

Figure 2 presents the starting view of the Testing Station. The upper part is the tuning 
control bar of the Tuning tool. It is used for managing (i.e., starting, stopping, etc.) the 
tuning procedure and launching visualizations (see Figure 3). The tree structured 
workspace on the left contains most of the functionalities needed for the initialization of 
the tuning case. For example, details concerning decision variables, quality measures and 
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parameterization of the IRT method can be modified by editing the properties pages of 
the tree nodes. 

 

 

Figure 2. Testing Station and the tuning control bar of Tuning Tool. 

 

 
Figure 3. Visualizations of simulated time series signals (left) and quality measure 
values (right). 

The Testing Station involves also views of the components of the connected simulation 
models (see Figure 4) and contents of the historian data bases using OPC. The Error log 
of the Testing Station shows reports on the status of the tuning procedure (lower right 
corner in Figure 2) and the sequence editor makes it possible to create suitable simulation 
sequences for the tuning (Figure 5). 
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Figure 4. View on the components and component properties of the connected Apros 
Paper model. 

 

 

Figure 5. A simulation sequence containing essentially two wait blocks and a marker 
block denoting the beginning of the data logging period. 

The Testing Station is under continuous development work and the above figures are 
examples showing the appearance of the UI in the spring of 2008. To get the full benefit 
from the tuning environment, for example, more visualization tools should be 
implemented to support visual data analysis and error detection during the tuning. For 
example, histograms of quality measures are a practical way to detect problems resulting 
in outliers. 

4.2 Application of IRT 

There are several possible arrangements in which the IRT method can be applied. Targets 
of tuning can be either control and other numerical operational parameters of the existing 
system or the parameters of a model. In the following, three different scenarios are 
presented. Two of them consider the simulation assisted use case and the third one 
presents a direct application of IRT in an existing system. The application of IRT in 
different situations has been discussed also in [22]. 

4.2.1 Model accuracy improvement 

Dynamical process modeling may have many different goals. No matter what the purpose 
of the model is, improving its accuracy makes the following analysis more valuable in 
any case. The IRT method pulls together suitable tools for tuning model parameters of 
large dynamical process models. Application to other models, if considered practical, is 
also possible. In practice, if measurement data from the system is available model 
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parameters can be optimized by comparing the simulated output estimates to the 
measured outputs when the model is run with the measured inputs (see Figure 6). The 
improved accuracy of the plant model opens new possibilities for its usage and, 
eventually, model based engineering can be seen as an iterative process incorporating 
alternating phases of model and system parameter tuning steps (see Figure 7). 
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Figure 6. Model parameter tuning using measurent data as reference. 
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Figure 7. Using IRT to parameter tuning in different phases of model based 
engineering. 

4.2.2 Controller and process design 

Finding efficient techniques for designing control systems for large-scale continuous 
plants with a large number of manipulated and controlled variables is one of the 
challenges industry is facing today [9]. Therefore, modern controller design concentrates 
on developing large control concepts for different process entities, for example, headbox 
or profile control structures for paper machines, large MPC controllers applied on oil 
refinerys, steam network controls, and so on, because it is not practical nor economical to 
start the controller design from scratch for every delivery. Dynamic simulation is 
nowadays an established instrument in controller design and product development since 
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it is inevitably the easiest way to test, demonstrate and evaluate the performance of large 
dynamic systems.  

In order to compare objectively several alternative control solution candidates, their 
performance needs to be optimized first. Therefore, an efficient and effortless tuning 
method is needed that can be applied for tuning the parameters of the competing control 
structures. Since IRT can be applied without considering the type of the control concepts 
(MIMO controller, network of SISO controllers, MPC, etc.), it fits well for prototype 
tuning in a simulation assisted scenario that is presented in Figure 8.  

Also, the tuning of existing controllers can be accomplished in the same way if only a 
model of the controlled process exists. Tuning controllers on a simulator has several 
advantages, for example, the production of the existing system is not disturbed with 
experiments and controllers can be tested against different severe disturbances without a 
risk of damaging the process machinery. Introducing the simulated results into practice 
needs to be done carefully since the simulation model is naturally only an approximation 
of the true system. Simulated results, however, give an insight into which direction the 
parameter values in use should be changed in order to improve the performance. 

Respectively, IRT can be applied within simulation assisted process design. Alternative 
new process solutions can be tuned to their maximal utility from the overall performance 
point of view before making any comparisons. 
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Evaluation and 
adoption of results

Model

System

Evaluation

Parameter
tuning

θ

q

u ŷ
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Figure 8. Simulation assisted controlled tuning. 

4.2.3 Online optimization of process operation 

The IRT method can be applied as an adaptive control structure as well (see Figure 9). If 
small perturbation of variables is tolerated, IRT can be applied to analyze the statistical 
dependencies between different parameter value combinations and observed 
performance. Since the input signals of the system cannot be fully controlled, much 
longer observation periods and larger data sets are required as compared to the simulation 
based scenario presented in Section 4.2.2. For the same reason online optimization of 
repetitive control tasks or changes of operation point, for instance, works out best. 
Adaptation is not only restricted to the control parameters, as any operational parameters 
can be used as decision variables. 
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Figure 9. Adaptive application of IRT method. 

Another online application possibility relates to the process models applied within MPC. 
During the normal operation of the MPC controlled system, the model parameters can be 
tuned iteratively by computing several parallel model responses to the computed control 
action with different model parameter value combinations. When the actual system 
response is recorded from the system, it can be compared to the modeled responses and 
the differences between different parameterizations can be expressed using different 
quality measure definitions. In this way, IRT can be applied online without disturbing the 
operation of the true system.  
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5 CASE STUDIES 

 

This chapter presents several case studies about using the IRT method for control and 
model parameter tuning. Each section presents briefly the target application, shows the 
formulation of the tuning case, introduces the obtained results and ends with some 
discussion. In Section 5.1 the advantages of using the IRT method are demonstrated with 
an elementary example. Section 5.2 gives an example of using IRT on controller tuning 
of a continuous pulp digester. The results from a corresponding case study considering 
controller tuning on a power plant simulation model have been reported in [17, 18]. 
Sections 5.3 and 5.4 concentrate on the model parameter tuning using IRT. 

5.1 Introductory example of interacting SISO controllers 

In the following, an example using a simple Matlab model is given to introduce the 
research problem concerning control parameter tuning in practice. A similar simple 
Matlab case study about using the IRT method for model parameter tuning is presented 
in [20]. It must be noted that with simple examples like these two, the most essential 
advantages of the IRT method cannot be demonstrated and many other optimization 
algorithms could be used here successfully as well. 

Systems with multiple inputs and multiple outputs (MIMO) tend to have more or less 
severe interactions between the process variables. If the controller design is conducted to 
individual input output pairs, the resulting system will not reach the best achievable 
overall performance. This is demonstrated here with a simple example. 

Let us study the following system G(s) with two inputs and two outputs. 

 11 12

21 22

2 3
( ) ( ) 1 2( )
( ) ( ) 1 1

1 1

G s G s s sG s
G s G s

s s

⎡ ⎤
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 (5.1) 

G(s) has two input (control) signals, u1 and u2, and two output (controlled) signals, y1 and 
y2. Suppose that y1 is controlled by manipulating u1, and y2 is paired with u2, and the non-
diagonal terms of G(s) are assumed to be zeros. The IMC control design method leads to 
PI type of SISO control laws, 
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Above, α1 and α2 correspond to the closed loop time constants of the two controlled 
systems 
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and 
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If similar dynamics are desired for GCL,1 and GCL,2, (i.e., α1 = α2 = α), both closed loop 
time constants, α1 and α2, can be chosen, for example, such that the cost function 

 ( )2

0
( ) ( )

T

i i
i t

J y t r t
=

= −∑∑  (5.6) 

is minimized. Above, T is the length of the time series data and ri(t) is the reference 
signal of GC,i. The Sum of Squared Error (which equals to ISE in a continuous time case) 
is applied to avoid large deviations from the reference signal. Here the reference signal 
contained a unit step and a subsequent impulse disturbance which means that the 
objective was to find a good compromise between step response performance and 
impulse disturbance attenuation. The above formulation of the controller design task 
turns out to be a convex optimization problem with a unique minimum with respect to α. 
Figure 10 presents the cost function values with α = [0…5]. 
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Figure 10. Cost function J reaches minimum with α = 1.4. 
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The minimum is reached with α = 1.4 which leads to following PI control parameters. 
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The performance of the system G(s), controlled with two separate controllers, GC,1(s) and 
GC,2(s), is illustrated in Figure 11. The performance was evaluated with a simulation 
sequence with two setpoint changes: r1(t) = 1, t ≥ 0, and r2(t) = 1, t ≥ 60. Now the 
interaction terms in G(s) cause interference between the controlled variables. As can be 
seen, the performance is satisfactory although somewhat sluggish. 
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Figure 11. Performance of the system G(s) with two IMC tuned PI controllers, 
controlled variables (solid blue) and reference signals (dotted black). 

The result of the controller design can be improved if the interaction terms in G(s) are 
taken into account. In a simple case like this, designing a multivariable controller is not 
difficult. However, as the size of the MIMO system rises, identification of G(s) from the 
existing system quickly becomes too laborious. Therefore, more advanced controller 
tuning methods are needed. Further, in practice the process model G(s) is not known 
exactly but an approximation is used in the controller design resulting inevitably in a 
non-optimal solution. 

The IMC tuning can be improved with the IRT method. Using the same cost function as 
above but letting the interactions take their effect, a significant enhancement of 
performance is achieved (Figure 12). Both step responses have become faster and the 
disturbance in y1 is attenuated more efficiently. Only a minor compromise has to be 
accepted in the disturbance attenuation in y2. 
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Figure 12. Performance comparison of IMC (black) and IRT tuned (blue) PI 
controllers. 

The improvement was achieved by running a simple version of IRT K = 30 global 
iterations, each consisting k = 20 local iterations. The steepest gradient method was 
applied with a constant update step size, γ = 1 (see Section 3.2.4 for other possibilities). 
Local linear models were calculated with standard MLR. The PI control parameters 
obtained the following values after the tuning. 
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The above example illustrates how the overall performance of MIMO systems has an 
important role in the controller design and controller tuning tasks. In a realistic industrial 
case, identification of numerous open loop models for G(s) is impossible in practice, and, 
therefore, an explicit multivariable controller design is not a tempting option in many 
cases.  

5.2 Veitsiluoto pulp digester 

Simulation assisted plant wide control performance optimization was tested on a large 
scale with a simulation model of Veitsiluoto pulp mill [19]. The process model was 
constructed with the APROS software. Figure 13 gives an overview of the process 
model. In the following, the necessary terminology related to pulp production is first 
briefly explained in Section 5.2.1. More details on chemical pulping can be found, for 
example, from [12]. Then, the pulping process and model of the pulp mill is introduced 
in Section 5.2.2, after which the tuning targets of the case study are formulated in Section 
5.2.3. The results are presented and discussed in Sections 5.2.4 and 5.2.5. 

The most important goals of the case study were to test IRT method with a realistic 
problem, study how the larger data dimensions affect solving the parameter tuning 
problem and (hopefully) show that also a large complex system can be managed with 
IRT. The word realistic refers here to the complexity of the process and its model, to the 
number of the parameters and quality measures to be optimized, and to their 
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interconnectedness. The continuous pulp digester is a very challenging process from the 
control engineering point of view – it has a large dead time (of several hours), raw 
material properties introduce unmeasured disturbances to the system, and the number of 
chemical reactions taking place in the cooking phase make it difficult to understand all 
the relevant interactions of the components in the chip-liquor mixture. It is extremely 
difficult even for a domain area expert to get a clear picture of the process and the 
underlying causalities because of the large number circulation streams between process 
components (see Figure 13). 

 
Figure 13. A view of Apros pulp mill model using the Grades user interface: The chip 
feed screw conveyor (left), the impregnation vessel (in the middle), and the pulp 
digester (right). 

5.2.1 Terminology 

The kappa number is a measure of lignin content in the cooked pulp. Traditionally the 
kappa number has been defined based on the potassium permanganate consumption in an 
acid pulp dilution. In practice, the kappa number is nowadays measured with online 
kappa analysers which handle the sampling and analysing in a couple of minutes. The 
lignin content of the pulp determines the brightness of the produced fibres affecting thus 
the subsequent bleaching stages. Furthermore, it affects the strength properties of pulp, 
which makes it in practice the most important controlled variable in pulp production. 

The kappa number is controlled by adjusting the H factor, which is an experimental 
combination of the cooking time tT and the temperature T. One H factor unit denotes the 
effect of one hour of cooking in 100 °C. The H factor is defined as follows. 

 ( )43,2 16115

0

Tt
TH e dt−= ∫  (5.8) 
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The equation (5.8) cannot be applied for H factor prediction since the exact temperature 
profile during the cooking is required. H factor prediction is essential for the kappa 
number control. Therefore, the H factor can be calculated, for example, by using a 
simplification 
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in which the digester is divided into n parts that are assumed to have constant 
temperature. Above, Hi is the ith partial H factor, Ti is the temperature in ith cooking part, 
and ∆ti is the time the ith cooking phase takes. In absence of temperature measurements, 
the temperatures Ti can be approximated roughly according to  

 0i iT Tα= , (5.10) 

in which T0 is the digester top temperature and αi is an adjustable parameter. 

After the cooking process, the pulp is washed in several successive washing stages before 
bleaching. The cooking chemicals are recycled, and, therefore, minimization of the 
washing losses is pursued. They also affect the required chemical dosages in the 
subsequent bleaching stages. The first washing is performed at the bottom of the digester 
with a counter current washing. The efficiency of the washing is measured with the 
washing coefficient that is defined as a ratio of used washing liquor to the amount of 
washed pulp. To ensure uniform pulp properties, a constant washing coefficient is 
desirable. 

During past decades, many theoretical and empirical cooking models for the kraft 
pulping process have been proposed. One of the simplest models was proposed by Hatton 
in 1973 (see, e.g., [13]), which predicts the kappa number κ of the produced pulp based 
on the measurements of the H factor and effective alkali concentration cEA, 

 log EAH cχκ α β= − ⋅ ⋅ , (5.11) 

in which α, β and χ are adjustable parameters. 

5.2.2 Continuous pulp digester and control problem 

A general overview of the model is presented in Figure 13. First, the woodchips and the 
impregnation liquor are mixed, after which the mixture is fed into the impregnation 
vessel. From the bottom of the impregnation vessel, the flow continues to the top of the 
digester, where the mixture is heated with steam to the desired cooking temperature. The 
wooden substance was modeled to consist of several cellulose, carbohydrate and lignin 
components, and the liquor was assumed to contain sodium hydroxide and sodium 
sulphide in addition to the organic compounds dissolved from the woodchips. The 
chemical reactions during the cooking phase, and mass and energy balances were 
modeled according to the Purdue model presented in [71]. The chip compression profile 
during the cooking was calculated as described in [13]. Also several black liquor 
circulation streams corresponding to the existing process structure of the Veitsiluoto pulp 
mill were modeled. The washing and bleaching operations subsequent to cooking, 
however, were excluded from the model.  
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Here it must be reminded that the simulation model does not correspond to reality in 
every detail. The most significant simplifications relate to material properties. The model 
neglects the effects of the chip geometry when calculating the chemical reactions of the 
cooking phase. In practice, the chip size distributions are important variables that 
determine the properties of the produced pulp. Therefore, constant (and appropriate) chip 
size distributions are assumed in this case study, and the largest disturbances to the 
process are assumed to result from the varying chemical composition of the raw material 
and from the changes of the heating steam properties. Despite the simplifications, the 
simulation model describes the most relevant properties and functionalities of the 
Veitsiluoto pulp mill with an acceptable accuracy making the case study realistic enough 
to be convincing. What is more, the model itself is a good example of a complex system 
whose behavior is extremely hard to grasp without advanced tools. The manual tuning of 
all badly behaving control loops would be an extremely demanding task to carry out in a 
reasonable time. 

In the case study, the production of pulp in a steady state operation was considered, i.e., 
changes of production rate or quality targets of the pulp were not simulated. This 
naturally fixes the results of the controller tuning to the chosen situation. However, in 
order to save time, a simple and short simulation sequence was applied. In the initial state 
of the test case, several control loops were behaving poorly. The level controllers in the 
impregnation and the digester vessels were oscillating heavily due to their inappropriate 
tuning. Due to an unsatisfactory level control, also the washing coefficient control failed 
to meet its targets. The two models applied in the process control were behaving even 
more detrimentally. The first one was used for predicting the total H factor value based 
on the digester top temperature measurement according to equations (5.9) and (5.10). 
There is a five hour time delay in the cooking process which makes this prediction 
essential for the process control. The other model was used for calculating the setpoint 
value for the H factor control based on the amount of applied alkali and the desired kappa 
number of the produced pulp. The calculation was based on the kappa model (5.11). Both 
models were giving strongly biased predictions, naturally causing serious problems to the 
process control. Due to the improper controller tuning, the process was continuously 
producing out of specification pulp. 

5.2.3 Objectives of the case study 

The cost function of the optimization was formulated according to equation (3.7) with m 
= 6 and wi = 1, ∀ i = 1…6. All quality measures qi were defined with the same 
mathematical expression, 

 
  1

1 ( ) - ( )
T

i i i
t

q r t y t
T =

= ∑ , (5.12) 

in which i = 1…6, t is the time series sample index, T is the length of the simulated time 
series, yi is the measured process variable and ri is the setpoint value for yi (except for i = 
6, for which yi is the predicted H factor and ri is the true H factor calculated from the 
digester temperature profiles). The six variables considered in the quality measure 
calculation were: 

y1: kappa number of the cooked pulp, 
y2: washing coefficient, 
y3: liquor level in the digester, 
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y4: chip level in the digester, 
y5: chip level in the impregnation vessel, and 
y6: H factor prediction. 

The tuning involved seven PI controllers and the two models described above. Altogether 
n = 20 parameters were assigned to decision variables. The PI controllers were 
responsible for regulation of the chip and liquor levels, washing coefficient, production 
rate, H factor, and the digester steam chamber temperature.  

The number of data points in each step of the global iteration varied between 40 and 100, 
the average amount being k = 77. About one fifth of data was always reserved to model 
validation and selecting the best latent dimension N for the model. Later it was 
discovered that typically around k = 40 samples were enough to obtain usable models 
(i.e., models that predicted the gradient direction correctly). The local models were 
calculated with Canonical Correlation based regression (CCR, see [34]) which gave 
slightly better results than the PLS models. The parameters were sampled from a 
multivariate Gaussian distribution with a fixed standard deviation, σθ = 3 % of the 
numerical (absolute) values of the parameters. 

A simple IRT version with gradient descent update method and a constant step size γ was 
used in the optimization according to equation (3.9). Altogether, K = 45 global iteration 
steps were taken in the case study. A rather large number of global optimization steps 
were needed since the initial performance was extremely poor. Moreover, a somewhat 
crude version of the IRT method was applied in this case study. The main emphasis, 
however, was on studying how the large and complex system like the considered pulping 
process could be managed as a whole in the performance optimization.  

The simulation sequences used in the quality measure calculations were T = 8h long and 
they were run about 25 times faster than real time (with a 1.67 GHz processor and 512 
MB RAM). For example, it took about 12 hours to simulate the data required for one 
global step with k = 40. 

5.2.4 Results 

The IRT method succeeded in improving the process performance regarding all six 
quality measures (see Figure 14). For example, the deviation of kappa number from its 
target value, q1, diminished from about 6 to 3 units, and the absolute value of the H factor 
prediction error, q6, was reduced from the initial value q6 = 1000 to less than 200 units. 
For softwood pulp, the kappa number of the produced pulp remains acceptable if it stays 
within ±2-3 units range from the target value. In that sense, the control is not yet 
excellent although the tuning succeeded in improving the performance notably. Based on 
the results it seems that the performance of the system could be improved further by 
continuing the IRT tuning. The tuning was left unfinished simply due to lack of time. 
The quality measure values include some stochastic variation and, therefore, the trends 
are not monotonically descending. Occasional “outliers” can be perceived in the values 
of the quality measures during the global iteration steps 15-20. The causes of these 
abnormal observations are discussed below. Furthermore, it can be seen from Figure 14 
that the values of q3 start to grow, meaning that targets start to become gradually 
contradictory to each other. 
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Figure 14. The quality measure values, qi, i = 1…6, in the global optimization steps, 
K = 1…45. 
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Figure 15. The values of the cost function, J, during the iterative optimization, K = 45. 

The success of the optimization can be followed also from the values of J (see Figure 
15). It can be seen how the conflicting targets finally start to slow down the tuning 
procedure. If the objectives are not met at the end, the weighting of qi has to be 
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reconsidered. This reflects how the IRT method transforms the tuning of the individual 
lower level control parameters into adjustment of quality measure weights on the higher 
level. Examples of the improved performance are presented in Figure 16. The fluctuation 
of the kappa number has stopped and its deviation from the setpoint has become smaller, 
variance of the digester liquor level has decreased and the H factor prediction has 
improved tremendously (although the variance of the prediction has increased a little). 

Any outlier detection method was not applied in the case study, which would have been 
beneficial. Most probably it would have alarmed about the heavily nonlinear cost 
function. The distributions of the quality measure data projected on the plane spanned by 
two most significant principal components in global steps K = 18 and K = 30 are shown 
in Figure 17. Obviously, the distribution in the left figure does not fulfil the Gaussianity 
assumption. The same can be seen also from Figure 18 in which the empirical cumulative 
distribution functions (ECDF) of the distributions are compared to the theoretical CDF of 
the (0,1) Gaussian distribution. This comparison is known as the Kolmogorov-Smirnov 
test [76]. It is evident that at some points in the parameter space the cost function may be 
strongly nonlinear which shows as peculiar spikes in Figure 14. Therefore, Gaussianity 
testing is recommended to determine the appropriate standard deviation σθ for the local 
variation. 
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Figure 16. Control performance of kappa number κ (κsp = 33 marked with dashed line), 
digester liquor level deviation ∆h and H factor prediction error, initial performance 
K = 1 (dotted) and K = 45 (solid). 
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Figure 17. Distributions of q values projected to the plane spanned by the two major 
principal components, K = 18 (left) and K = 30 (right). 
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Figure 18. ECDF of q1 vs. theoretical CDF of the (0,1) Gaussian distribution, K = 18 
(left) and K = 30 (right). 

The actual parameter values are not important here, but some examples of the update 
trends are given in Figure 19. All parameter values did not necessarily evolve 
consistently from K = 1 to K = 45 but some of them might, for instance, change their 
direction at some point of the optimization procedure. For example, the value of θ5 
changed more or less consistently to the new value and finally settled there. The 
parameters θ8 and θ10 instead evolved in spurts, and no sign of settling down can be 
perceived in the values of θ13. These results strengthen the assumption that the global 
cost function is nonlinear, but smooth enough to be approximated with locally linear 
models. 
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Figure 19. Four examples of parameter evolution trends during K = 1…45. 
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In conclusion, grasping the general view of a large and complex system, like an industrial 
process and its control system, is a demanding task. The underlying interdependencies 
are difficult to comprehend as the size of a system increases. Advanced multivariate 
statistical methods are required to capture the emerging higher abstraction level concepts. 

Obviously, the IRT method makes it possible to optimize the performance of large 
systems, and helps the domain area experts to refine their intuition concerning the 
process and the goals of its performance. As long as the distribution of the quality 
measures stays close to Gaussian, the IRT method proceeds convincingly. Therefore, 
defining q should be done carefully. Departures from Gaussianity can be due to the 
nonlinear behavior of the quality measure or too large local variation of the parameters, 
or both. Despite the severe nonlinearities of qi the values of J, the weighted sum of qi, in 
Figure 15 show that overall performance of the control system is improved consistently. 

Since running a tuning procedure using IRT is a random process in itself it would have 
been interesting to see how the obtained results change if the same procedure was 
repeated. And further, how the results change if, for example, different initial values were 
applied. 

5.2.5 Global nonlinearity vs. local linearity 

With the Veitsiluoto simulation model some tests were run concerning the local linearity 
assumption and extrapolation beyond ℜS in the case of a nonlinear cost function. Two 
sets of data from global steps K = 21 and K = 40 were used in the study. The later 
represents a situation in which the local linearity was well justified and the first one 
demonstrates a situation of heavily nonlinear target functions.  

Bera-Jarque and Kolmogorov-Smirnov tests were used for studying the marginal 
Gaussianity of the data distributions (see [76] for more sophisticated methods). 
According to the assumption, the data set from step K = 40 passed both normality tests. 
The other data set seemed to be heavily non-Gaussian, as expected, which is illustrated in 
Figure 20. Only q5 and q6 passed both Gaussianity tests with a significance level 
α = 0.05. 
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Figure 20. Histograms of qi distributions, i = 1...6, of the K = 21 global iteration step 
(from top left to bottom right). 
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The extrapolation capability of the estimated models based on these two data sets were 
tested with different values of step length coefficient, γ ∈ {0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4, 5, 
10}, see Figure 21 and Figure 22. The corresponding observed cost function values are 
presented in Figure 23 and Figure 24. Obviously, extrapolation far beyond ℜS may result 
in problems even when ℜS is small enough and the model works well locally. From 
Figure 22 it can be easily seen that ℜS is too large related to the shape of the cost 
function. Nonlinearity appears already inside ℜS. 

In conclusion, studying the distribution of the observed quality measure values seems to 
be beneficial. It can effectively help in discovering the situations in which human 
decision making is needed most acutely with respect to the size of ℜS and weighting of 
qi. 
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Figure 21. Extrapolated values of qi (blue dashed line) beyond ℜS (blue solid line) from 
the data set K = 40 compared to observed values (black circles) as a function of the step 
length coefficient γ. 
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Figure 22. Extrapolated values of qi (blue dashed line) beyond ℜS (blue solid line) from 
the data set K = 21 compared to observed values (black circles) as a function of the step 
length coefficient γ. 



92 

0 2 4 6 8 10
2.95

3

3.05

3.1

3.15

3.2

3.25

γ

J

 

Figure 23. Observed cost function values J corresponding to the extrapolated 
parameter updates as a function of the step length coefficient γ after the global step 
K = 40. 
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Figure 24. Observed cost function values J corresponding to the extrapolated 
parameter updates as a function of the step length coefficient γ after the global step 
K = 21. 

5.3 Heat exchanger case study 

The aim of this case study was to test the tuning of simulation model parameters in 
practice with a model that has some real industrial relevance. The results were originally 
published in [23].  

5.3.1 Process and model description 

The model (presented in Figure 25) comprises two intermediate counter-current 
multitubular heat exchangers, and it is a part of the overall model of the Olkiluoto 2 
nuclear power plant. The considered part of the process has been replaced with another 
solution on the existing plant but the model works well in research use. In the heat 
exchanger system, the high pressure heating steam (around 50 bar) flows inside 
horizontal tubes and the heated steam flows on the shell side (in the following also 
referred as the outside). The heating steam is split into two parallel flows whereas the 
heated steam flows through both heat exchangers one after another. In the following, the 
lower heat exchanger in Figure 25 will be referred to as the first exchanger, the upper 
being called then the second heat exchanger. The goal of the tuning was to improve the 
accuracy of the simulation results by tuning the model parameters related to the heat 
transfer from the steam flow on the tube side to the shell side. 
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Since no measurement data was available from the actual power plant the simulations 
were compared to “simulated measurements”, i.e., a new version of the same model with 
improved steam condensation and gas convective heat transfer calculation principles 
were used to produce the measurement data. This improved version had been validated 
with process measurements and it was proven to give more accurate simulation results 
than the old one. Obviously, this kind of a case study is an artificial example of using 
process measurement data for model parameter tuning since two relatively small 
simulation models are easily run with equivalent input signals and discrepancies between 
the results are only due to the differing model structures and insufficient tuning of model 
parameters. In reality, comparing simulation results to measurements is far more 
complicated as the size of the system and the number of the signals grows. Missing and 
erroneous measurements are also fairly common inconveniences when playing with real 
data. However, this case study still enables one to test the basic idea of applying the IRT 
method to model parameter tuning. 

 
Figure 25. Olkiluoto intermediate heat exchangers modeled with Apros simulation 
software. The boundary points of model are circulated with red and the nodes from 
which the quality measures are evaluated are circulated with blue. 

Both of the heat exchanger modules in the simulation model are divided into eight 
calculation volumes (nodes) along the tube flow. Based on the surrounding temperature, 
properties of the fluid and process equipment, as well as flow characteristics Apros 
calculates values for the heat transfer coefficients in each node both for the tube and shell 
side surfaces. Apros also takes into account the material and the geometry of the heat 
exchangers to calculate the heat conduction from one side to another. The overall heat 
conductance in one node, Pi, from the heating flow to the heated flow can be expressed 
as, 
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where αin and αout are the inner and outer surface heat transfer coefficients, h is the wall 
thickness and β is the heat conduction through the tube wall. In addition, both of the 
interfacial heat transfer coefficients are equipped with multiplicative efficiency 
coefficients η in the simulation model, which can be used to fine-tune the accuracy of the 
model. 

5.3.2 Objectives of the case study 

In the applied simulation sequence the power production level of the power plant was 
lowered from 100% production to 90%. This was done by ramping the pressure and 
enthalpy values of the boundary points of the simulation model (see Figure 25) according 
to the process data obtained from the power plant. Some noise was also added on the 
boundary points of the model. The length of the resulting simulation sequence was 6 
minutes and it took about 10 seconds in real time to run one simulation on an ordinary 
office computer.  

Root Mean Squared Error (RMSE) criteria of the output enthalpy and the output mass 
flow were used as quality measures. They were defined both for the tube side and the 
shell side flows resulting in four quality measures altogether. The quality measure values 
were evaluated from the nodes marked with blue in Figure 25.  

The efficiency parameters η of the interfacial heat transfer coefficients in the eight 
calculation nodes of both heat exchangers were chosen as decision variables resulting in 
32 decision variables altogether. Initial values θi = ηi = 1, ∀i, were used meaning that the 
heat transfer coefficients calculated by Apros were not corrected with the efficiency 
parameters. 

The tuning was repeated several times with different versions of IRT (for example 
normal vs. recursive PLS, different sample sizes, sampling distributions). Tremendous 
differences were not perceived between sensible candidates and results are presented 
only from the following setting. Each global optimization step consisted of k = 60 data 
points and since one simulation run took about ten seconds, completing the whole tuning 
procedure lasted about three and a half hours. A local model was computed using the 
semi-recursive PLS modeling presented in Section 0 with µ = 0.9 and N = 3. The update 
step was computed using wi = 1, ∀i. Gaussian sampling distribution with σi = 0.01 for 
each θi was applied. The step length coefficient γ was chosen such that, 

 
( )( )max ,1 .

d J

k
κ

γ

θ κ κ

= − ⋅∇

= ∆ ≤ ≤
 (5.14) 

Equation (5.14) suggests that the update steps were truncated to the same length with the 
largest parameter perturbation in the current local iteration. 
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5.3.3 Results 

The progress of the optimization can be examined either from the cost function (Figure 
26) or the quality measure values (Figure 27). Both figures reveal that the optimization 
reaches the local optimum with about K = 10 global steps after which it is unable to find 
a direction in the decision space that would yield an improvement.  

The accuracy of the local linear model can be evaluated by comparing the obtained 
quality measure values to the estimates calculated with the local model. In Figure 28 
scatter plots on qi against the estimates of qi are presented from the data of global 
optimization step K = 1. The accuracy of the linear model remains approximately the 
same in every optimization step, K = 1 - 20. The correlation of q3 with its estimate 
appears to be stronger than that of q1, q2 and q4. Obviously, the reason for this is the 
lower noise level on the heated steam output enthalpy signal based on which q3 is 
calculated.  

0 5 10 15 20
0

1000

2000

3000

4000

5000

6000

J

K  
0 5 10 15 20

3

4

5

6

7

8

9

log(J)

K  
Figure 26. The cost function values during K = 20 global optimization steps. 

 

Figure 27. Quality measure values q1 - q4 during K = 20 global optimization steps. 
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Figure 28. Comparison of the observed and the estimated values of the quality 
measures in K = 1 global optimization step. 

Figure 29 presents the parameter trends during 20 global iteration steps. The initial 
values of the parameters were θi = 1, ∀i. As can be seen, the tuning had a stronger effect 
on the shell side coefficients and especially on the shell side coefficients of the first heat 
exchanger. This kind of a result was expected already beforehand since the effect of the 
outer surface heat transfer coefficients on the total heat conductance is known to be an 
order of magnitude greater (at this particular setting) than that of the inner surface 
coefficients. Also, the first heat exchanger is responsible for the most of the energy 
transfer between the two steam flows, since the temperature difference over its tube walls 
is larger than in the second heat exchanger, which improves the heat conduction through 
the tube walls. 
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Figure 29. Parameter values θ1 - θ32 during 20 optimization steps. Parameters θ1 - θ16 
are efficiency coefficients of the first heat exchanger and θ17 - θ32 are efficiency 
coefficients of the second heat exchanger, inner and outer surface coefficients are 
marked with blue and red, respectively, and the final values are denoted with black 
asterisks. 
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The improvement of the cost function and the quality measure values stop after the 
global step K = 10 since the quality measures start to compete with each others at that 
point. This can be shown, for example, by studying the angles between the columns of 
the matrix F (see Figure 30) which can be interpreted as gradients with respect to each 
individual quality measure. The conflict between q1 and q3 is especially eye-catching – 
the improvement of one of them necessarily results in the deterioration of the other. 
Initially, it is possible to find such directions from the n-dimensional parameter space 
that yield improvements with respect to all quality measures (in other words, directions 
that yield in Pareto improvements). When K > 10 the individual gradients become 
orthogonal to each others on average, meaning that the optimization can be continued 
only as a decision making problem using the weightings of the quality measures as 
decision variables. 

In Figure 31 - Figure 34 simulation results of the four considered output signals of the 
model are compared to the measured signals during the optimization procedure. The bias 
from the simulation results has vanished after K = 5 - 10 optimization steps, except for 
the heated steam enthalpy which differs from the measurement signal still after K = 20 
steps. Its estimation accuracy competes with heating steam enthalpy. The bias originates 
from the differences between the model structures and, therefore, cannot be completely 
overcome by parameter tuning. 
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Figure 30. The angles between columns of mapping matrix F during K = 1…20 global 
optimization steps. The average angle between columns of F is drawn with the thick 
black line. 

The accuracy of the eigenproblem oriented PLS regression and MLR models were 
compared with the data of this case study. Comparison was based on the mean RMSE 
criterion of the four output signals and it was calculated using Leave-one-out cross-
validation. It turned out that the PLS outperformed MLR substantially. Due to the 
heavily collinear decision variables, the MLR model becomes unreliable. (See also the 
next case study where different conventional PLS algorithms are compared to the 
eigenproblem oriented PLS regression and MLR models). 
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Figure 31. Enthalpy of the heating steam flowing out of the heat exchanger system 
during a decrease of power production from 100% to 90% level. 
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Figure 32. Mass flow of the heating steam flowing out of the heat exchanger system 
during a decrease of power production from 100% to 90% level. 
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Figure 33. Enthalpy of the heated steam flowing out of the heat exchanger system 
during a decrease of power production from 100% to 90% level. 
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Figure 34. Mass flow of the heated steam flowing out of the heat exchanger system 
during a decrease of power production from 100% to 90% level. 
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5.3.4 Discussion 

The results converge without any interruptions to the optimum in this case study which 
suggests that the problem was formulated successfully – the quality measures were 
sensibly formulated and the local parameter sampling area was practical. The linear 
model predicts the dependency between θ and q relatively well if estimated using PLS. In 
case of a nonlinear target functions, the scatter plots similar to those presented in Figure 
28 would reveal the nonlinearity if only the noise level is moderate enough. In the local 
optimum the conflicting targets make the angles between the columns of F matrix 
orthogonal or even contradictory which ends the optimization. 

The different accuracies of variable estimates (or the strength of the correlation between 
observed and estimated outputs) are explained by the different signal-to-noise ratios in 
the data. In practice, it is difficult to influence the observed noise in the time series 
signals. By increasing the input variation the ratio can be improved as long as the local 
linearity assumption holds.  

The IRT method succeeds to tune the set of parameters in a sensible way such that the 
simulation results become more accurate as compared to the measurement data. This can 
be seen either from the quality measure trends or from the simulation results. Only the 
enthalpy values of the heated steam flow (corresponding to q3) remain slightly biased at 
the end of the optimization as compared to the measurements. In addition to the bias in 
the signals, there is also a small difference in the slopes in Figure 33. This highlights the 
differences of the two model structures (the reference model and the one whose 
parameters were tuned) that are used in this case study. By merely tuning the model 
parameters one cannot obtain equal simulation results.  

The IRT method also seems to be able to distinguish the significant decision variables 
from those of having only a negligible effect on the outputs. The tuning mainly 
concentrates on the significant ones (the outer surface heat transfer coefficients) changing 
mainly their values during the optimization. The strongest dependencies among the 
variables become visible only with a rather small number of data samples, whereas the 
weaker correlations need much more data before they can be detected. Since the tuning 
was repeated several times, it could be noticed that the end results vary with respect to 
individual values of the decision variables on different tuning runs. The performance of 
the system and the “structure” on the final values of decision variables, however, 
remained essentially the same. 

5.4 Screening department of CTMP plant 

Another case study about model parameter tuning using the IRT method was conducted 
with an Apros model of the screening department of Kaukopää CTMP (chemi-
thermomechanical pulp) plant. The target of this study was to test the scalability of the 
IRT method with an extremely large model comprising dozens of tuning parameters and 
important output signals. 

5.4.1 Process and model description 

In CTMP pulping the goal is to combine the advantages of chemical and mechanical 
pulping – the higher fiber length and strength of chemical pulp and the better optical 



101 

properties and higher yield of mechanical pulping. CTMP pulp is used, for example, in 
production of tissue and liquid packaging board products. The process consists of 
steaming, chemical impregnation, heating and refining stages. The chemical treatment of 
wood chips reduces the energy demand of the refining process. In the refining process, 
chips are broken down and screening is needed to separate impurities and larger wooden 
particles that require more refining from the fibrous material. Centrifugal cleaners 
separate wooden material from impurities like sand based on the density difference of 
particles after which refining of wooden particles is repeated.  

The model of the screening department includes three screens and a reject handling 
section. The feed stock flow is split between the two primary screens (Figure 35) and the 
reject flows from both of them are collected into a reject vessel and fed to a reject screen 
(Figure 36). The reject flow from the reject screen is first led through a section of 
centrifugal cleaners where the impurities from the pulp are removed. After that, the reject 
is refined in order to break up the coarse fraction that contains shives and large fiber 
bundles. The reject handling part of the model was implemented using a lower accuracy 
level (referring to the different modeling paradigms of Apros) and, therefore, pressure 
measurements were available only from the screening and centrifugal cleaner section. 
The control system was reconstructed in the simulation model using the blueprints of the 
existing implementation and the correct control parameter values were adopted from the 
plant data.  

 

 
Figure 35. Screening department of a CTMP plant (components from left to right): 
feedstock tank, screen 1, reject vessel, screen 2, and tank for screened pulp. 
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Figure 36. Reject handling department of a CTMP plant (components from left to 
right): reject vessel, reject screen, tank for screened pulp, feeding tank of the 
centrifugal cleaner section, cleaner section, intermediate storage tank, and reject 
refiner. 

Three separate operating points were distinguished based on plant personnel interviews – 
high production rate with two screens in operation and low production rate with either 
one or two screens in operation. The target of this tuning case was to reconstruct the first 
of them as precisely as possible. A period of data describing the situation without 
external disturbances or unusual operator interventions was carefully chosen from the 
historical data recorded at the process plant. Constant input and reference signals 
corresponding to the mean values of the time series signals from the chosen data period 
were used in order to get the estimated outputs to the correct average level.  

Tuning focused on 86 model parameters including the nominal degree of opening, 
nominal pressure difference and nominal mass flow of the control and shut-off valves, 
the flow resistances of pipe components and accept ratios of screens for different fiber 
length fractions. The accept ratios of each screen were lumped together in order to 
maintain their relative proportions (that were based on an expert opinion) and, therefore, 
77 parameters were finally addressed to the IRT method. The parameter values that were 
obtained from a reliable source, for instance, the characteristic curves of pumps and 
valves given by the manufacturers, were not considered in tuning. Additionally, 
parameters having no effect on the dynamic balance, such as the driving time of valves, 
were excluded from tuning. 

The tuning targets were expressed using 61 quality measures. Each of them measured the 
(absolute) difference between the measured and simulated expectation value of a process 
variable. The signals consisted of flow, consistency, level, pressure or pressure difference 
measurements and controller output signals. For example, freeness, temperature, pH and 
other measurements describing the chemical content of the fiber-water suspension were 
excluded from the model and, therefore, also from the tuning. The target accuracy was 
determined for each signal (one for each SI unit, to be exact). The inverse of the target 
accuracies for each unit were used as multiplicative weights in the cost function in order 
to make the measurements in different SI units commensurable. The target accuracies for 
flow, consistency, level, pressure and control signals were chosen as 1 kg/s, 0,2 % (units 
of consistency), 1 % (per cents of the measurement range), 2 kPa and 1 %, respectively, 
resulting in weight values 1, 5, 1, 0.5 and 1. 
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5.4.2 Results 

The first local iteration was carried out as an initial analysis consisting of k = 500 ≈ 6,5·n 
samples. In the later steps of global iteration the number of local iterations was k = 150 ≈ 
2·n. The shapes of the residual distributions were checked in order to detect departures 
from unimodality (and Gaussianity). Parameter variation was set initially to 3 per cents 
of the absolute values of the parameters. Based on the initial analysis also different PLS 
algorithms (see [8, 34]) were compared (see Figure 37). The eigenproblem oriented PLS 
formulation slightly outperforms the other PLS versions (modified Kernel algorithm 
being in practice as good) and the MLR regression model, achieving its best performance 
with N = 34 latent variables. The comparison was repeated with several smaller data sets 
after few global iteration steps. It turned out that the differences between the different 
PLS algorithms were relatively small (NIPALS algorithm typically giving the smallest 
error) as compared to the MLR regression that fell substantially behind when a scarce 
data set was used in modeling.  
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Figure 37. Cross validation MSE between observations and model predictions as a 
function of latent dimension N. The first global iteration step with k = 500 (above) vs. 
the global iteration step K = 10 with k = 150 (below). Abbreviation PLS refers to the 
eigenproblem oriented PLS formulation. 
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The progress of tuning was followed using trends of cost function and quality measure 
values. As can be seen from Figure 38, the tuning has not yet reached its target (J/m = 1, 
i.e., the error of each output estimate is one commensurable unit on the average) or any 
local optimum (not to speak of the theoretical optimum, J/m = 0) after K = 27 iterations. 
The optimization process was not finished since the main emphasis here was on the 
development of the Tuning Tool. 

When the tuning results were analyzed afterwards, it was discovered that about half of 
the cost function reading comes from the pressure measurements of centrifugal cleaner 
section that have different interpretations in the model and in the data (absolute pressure 
values vs. pressure differences from a reference level). Hence the cost function values 
give an overly pessimistic view on the model accuracy. The values of Figure 38 would 
run approximately from 13 to 9 if the effect of the faulty pressure measurements was 
cleared. Further, it needs to be noticed that even though the target value is not necessarily 
achievable with the existing model structure, the trend in Figure 38 suggests that some 
improvement could still take place. Since the batch version of the IRT algorithm was 
applied some zigzag pattern can be seen in the cost function values. 
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Figure 38. Mean deviation of qi from the theoretical optimum (qi = 0), i.e., J/m, as a 
function of global iteration index K. 

From the 61 quality measures  

• 12 were already initially in the optimum, 
• 4 were close to the target values, 
• 9 were successfully optimized during the 27 first iterations close to their 

target values and 
• 19 were improved but the target values were not yet reached. 

In other words, the values of 44 quality measures out of 61 were successfully optimized 
during the tuning procedure. Examples of these are given in Figure 39. 
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Figure 39. From top left: Quality measure value in the optimum, value is varying close 
to the target, value is successfully optimized to the target, value is decreasing but not 
yet in the target. Theoretical optimal value of quality measures is zero. Commensurable 
target value is marked with blue dashed line. 

However, 17 quality measures presented some problems during the 27 iterations (see 
Figure 40): 

• the values of 11 quality measures could not be affected significantly and 
• the values of 6 quality measures deteriorated during tuning. 
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Figure 40. Bad examples: Tuning has had no effect on the quality measure values (left), 
the values have deteriorated during tuning (right). 



106 

5.4.3 Discussion 

It is quite problematic to evaluate the success of an unfinished case study. Also when the 
number of targets rises this high capturing the big picture is non-trivial. What can be said 
based on the obtained results is that they speak strongly for a successful beginning. The 
trend of the cost function suggests that continuing the tuning would still improve the 
performance. Probably also the quality measures that initially showed no improvement 
would later respond to the tuning as the other quality measures arrive in the vicinity of 
the optimum. An example of this size also clearly points out the benefits from the latent 
variable based regression. As the number of variables grows and one needs to keep the 
sample sizes moderate at the same time, notably better models can be obtained using (any 
of) the PLS algorithms instead of MLR. Nothing general about the mutual order of 
superiority between different PLS algorithms can be concluded based on couple of 
examples, but obviously the differences are small in any case. 

The case study showed that the numerical stability of the simulator plays an important 
role in successful application of the IRT method or any other data based parameter tuning 
technique. It also needs to be kept in mind that manual tuning of model parameters 
requires certain robustness from the system. And as the size of the model and the number 
of the parameters grows, computerized numerical tuning methods become indispensable.  

Although the same tuning algorithm can be applied to model and control parameter 
tuning there exists some differences. If model parameters are being tuned, the reference 
signals for simulated outputs come straight from the chosen data period. Erroneous 
measurements and noise may cause some problems here. In control parameter tuning the 
desirable trajectories for controlled variables (if the actual reference signal is considered 
a too strict objective) are specified by the user which offers a greater degree of freedom. 

Perfect reconstruction of a certain situation (i.e., repeating the correct events from a 
particular initial state in correct order with correct timing and nothing else) with a 
simulator is a challenging task in general. Therefore, the approximated input signals need 
to be considered as another source of error and uncertainty in the simulation results 
(along with the plant-model mismatch) which has to be kept in mind as the results are 
evaluated. This problem is not restricted to model parameter tuning only but is present as 
well within the simulation assisted controller tuning framework. 

An age old (and still widely used) saying goes that computers are getting much faster in 
the future but the status quo still seems to be that the simulations are always run 
overnight. This probably results from the fact that the applied models become more and 
more complex requiring more computational capacity. Techniques like parallel 
processing will probably decrease notably the computation times in future. In the 
meantime, however, the computational efficiency and applicability of algorithms to 
different problems still needs to be considered. In this example case, one simulation run 
involved a settling period of 95 minutes after each parameter change and after that a 
simulation of 15 minutes for the quality measure evaluation. (Note that over 85 per cent 
of the time was spent on settling simulations due to the slow dynamics of the process.) 
The model was run about 40 times faster than real time which means it took about 7 days 
to complete the about 4000 simulations of the 27 global iteration steps with an ordinary 
office computer. Clearly, practical application of IRT to systems with this slow dynamics 
starts to become questionable. On the other hand, if an automated tuning environment is 
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available, it is not a huge sacrifice to spend half an hour to configure the tuning targets 
and see how the tuning is progressing after a day or two. 

Using a well designed tuning environment would facilitate the modeling task in general 
in many ways. It would shorten the time spent on setting up the tuning case and reduce 
the number of mistakes. Automatic coordination of the simulation runs would reduce the 
unwanted variation on the quality measure values and speed up the overall tuning process 
since the length of the settling simulations could be determined more practically. A 
version management system of old model versions and automatic storing of tuning 
results would make it possible to continue tuning after unexpected problems without 
huge manual efforts. The tuning environment could also offer different tools for 
visualizing the data which helps the monitoring of results. 
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6 CONCLUSIONS 

 

In the traditional CPA framework detecting the badly performing controllers is the first 
step in the performance improvement process. After that further analysis is required to 
discover the underlying reason for the bad performance – is it caused by process 
equipment malfunction, external disturbance or bad controller tuning? Only after that 
incorrect control parameter values are corrected by redesigning the controller. When the 
IRT method is applied, the amount of required diagnosis is diminished since the potential 
for performance improvement by controller tuning is automatically revealed and 
exploited by the local model between quality measures and parameters and the following 
parameter update step. If performance targets of a controller cannot be met it is an 
indication of a fault in the system that cannot be fixed by parameter tuning but needs 
more attention. 

Earlier domain area expertise was a necessity for determining the key controllers from a 
large industrial process whose operation had the greatest effect on the overall system 
performance. When IRT is applied it is enough to determine a set of controllers that 
contain these key controllers along with other controllers of smaller importance and the 
experts can concentrate on how the overall targets of performance are expressed. As the 
decision space is now augmented with the control parameters of secondary importance, 
better solutions in general can be obtained since the interdependencies between 
individual controllers are taken into account.  

A similar effect appears on model parameter tuning as well. Since efficient MVR 
methods are applied there is no more need to manually reduce the number of decision 
variables in order to make the estimation easier or numerically more reliable. If only the 
completely unknown parameters are estimated from data and parameters with some 
physical interpretation are fixed based on practical experience, an optimal solution 
cannot be achieved. Without underrating engineering knowhow, it is, however, more 
beneficial to use such estimated parameter values as initial values and include these 
parameters in optimization in order to correct possible approximation errors.  

As mentioned above, the role of expertise changes when IRT is applied instead of 
traditional working practices. New challenges arise when the overall system performance 
needs to be determined explicitly in mathematical terms. This can be seen also as a 
possibility for the experts to improve their intuitive understanding of the system. If the 
results of parameter optimization are not satisfactory in some sense one has to revalue 
ones mental model of the system based on which the targets were set and consider 
changing the formulation of targets. By this way the iteration concerning targets of a 
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single low-level SISO control loop has been replaced by the iteration on a higher 
abstraction level where the performance of the overall system is defined. 

Despite the current tendency to design large control concepts for larger and more 
complex process units, the basic design process still relies on the traditional reductionist 
engineering paradigm in which the analysis of large systems begins with a partition into 
smaller subsystems. If one wants to study and improve plant level performance, emergent 
higher-level quality measures are needed to describe the performance targets and 
efficient statistical multivariate methods are needed to capture the dependencies between 
the targets and the system parameters. Bars et al. conclude that the design of very large 
control systems still presents a challenge to control theory and new theories are needed to 
handle complex systems involving a large number of control loops [4]. The IRT method 
can be seen as an attempt to clear the road for the large scale design methods being a 
manifestation of a paradigm change in engineering. It can be applied in many different 
settings for control, process and model parameter tuning as described in Chapter 4. 

In Chapter 3 the underlying optimization problem was characterized and the selection of 
appropriate mathematical methods for solving it was discussed. It turns out that fairly 
simple methods can be applied if only the correct level of analysis is selected. Simplicity 
of analysis becomes a necessity since rigorous bottom-up analyzing methods apparently 
are not scalable to high dimensional problems. Complex dynamic underlying phenomena 
can be examined successfully on the higher abstraction level using static linear models. 
MVR methods like PLS handle effectively noise and collinearities in data and capture 
relevant phenomena even from relatively scarce sets of high dimensional data. The 
model-based approach of IRT has also other advantages than the reduction of noise 
effects. Since the local linear model compresses the underlying dependencies of system 
parameters and quality measures, it can be applied in a more profound analysis to detect, 
for instance, conflicting or parallel targets.  

Application of IRT often benefits from guidance given by the domain area expert even 
though it does not in general necessitate interactive participation from the user during the 
tuning procedure. The role of human decision maker is emphasized at the end of the 
tuning procedure. In practice the decision makers need different visualization tools for 
assistance in order to get a grip of the situation. Watching solely the cost function and 
quality measure trends does not reveal the underlying causalities and can be in some 
cases even misleading since the values of the quality measures tend to approach the 
optimum with non-uniform rates.  

IRT has been designed primarily for optimizing the numerical parameters of large scale 
control structures and dynamic process models. Its components have become chosen 
because of their good applicability to the problem. However, some weaknesses naturally 
still remain with the IRT method and when it is applied inappropriately these minor flaws 
may turn into major problems and hinder one from achieving satisfactory results.  

First of all, being basically a heuristic LO approach any theoretical guarantees of 
convergence to global optimum cannot be given for IRT since the shape of the overall 
cost function is unknown and observations are noise corrupted. However, if the problem 
can be formulated decently and good initial values are available, some improvement on 
system performance can be achieved if that is only possible via parameter tuning. The 
final solution is searched for using decision making among conflicting targets which 
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affects the location of the global optimum making it furthermore a less meaningful 
concept.  

Another challenging issue is comprehensive excitation of the system with respect to both 
parameter variation and input signal generation. If the variation of some parameters is of 
totally wrong magnitude either numerical problems in simulation or no effect on the 
simulation results are obtained, corresponding to too large and too small parameter 
variation. Finding a suitable level for parameter variation requires domain area expertise. 
Determining input signals for tuning simulations belongs to the task of target 
determination and is even more challenging. The applied simulation sequence should 
encompass a sufficiently representative set of events (production in different operating 
points and under different disturbances, etc.) that describes the operation of the system 
well. Naturally, one has to find a compromise between the representativeness and 
practicality of the tuning procedure. 

By far the most time-consuming part of the tuning procedure is the time signal series 
generation, no matter whether they are computed on a simulation model or recorded from 
the actual process. In that sense minimization of the function evaluations during the 
tuning procedure is a worthwhile goal for further development of the IRT method. In 
practice this would mean a more reliable and consistent update direction and step length 
computation. For example, the use of second order derivative information in the vicinity 
of the optimum could improve the convergence speed. 



112 

 



113 

7 REFERENCES 

1. Anon. (2008), APROS - The Advanced Process Simulation Environment, VTT 
(Technical Research Centre of Finland), (referred 14.2.2009), http://apros.vtt.fi/. 

2. Åström, K.J., Hägglund, T. (2001), The future of PID control, Control Engineering 
Practice, 9(11), pp. 1163-1175. 

3. Åström, K.J., Wittenmark, B. (1995), Adaptive control, 2. edition, Addison-Wesley, 
Reading MA, USA, 574 p. 

4. Bars, R., Colaneri, P., de Souza, C.E., Allgöwer, F., Kleimenov, A., Scherer, C. 
(2006), Theory, Algorithms and Technology in the Design of Control Systems, 
Annual Reviews in Control, 30(1), pp. 19-30. 

5. Bristow, D.A. Tharayil, M. Alleyne, A.G. (2006), A survey of iterative learning 
control, IEEE Control Systems Magazine, 26(3), pp. 96-114. 

6. Campi, M.C., Lecchini, A., Savaresi, S.M. (2000), Virtual Reference Feedback 
Tuning (VRFT): a new direct approach to the design of feedback controllers, 
Proceedings of the 39th IEEE Conference on Decision and Control. Sydney, 
Australia, pp. 623-629. 

7. Cox, R.K., Smith, J.F., Dimitratos, Y. (2006), Can simulation technology enable a 
paradigm shift in process control? Modeling for rest of us, Computers and Chemical 
Engineering, 30(10-12), pp. 1542-1552. 

8. Dayal, B.S., MacGregor, J.F. (1997), Improved PLS Algorithms, Journal of 
Chemometrics, 11(1), pp. 73-85. 

9. Dochain, D., Marquardt, W., Won, S.C., Malik, O., Kinnaert, M. (2006), Monitoring 
and Control of Process and Power Systems: Towards New Paradigms, Annual 
Reviews in Control, 30(1), pp. 69-79. 

10. Gill, P.E., Murray, W., Saunders, M.A. (2002), SNOPT: An SQP Algorithm for 
Large-Scale Constrained Optimization, SIAM Journal on Optimization, 12(4), pp. 
979-1006. 

11. Glad, T., Ljung, L. (2000), Control Theory – Multivariable and Nonlinear Methods, 
Taylor & Francis, Bodmin, Great Britain, 467 p. 

12. Gullichsen, J., Fogelholm, C.-J. (2000), Papermaking Science and Technology 6, 
Chemical pulping, Fapet Oy, Helsinki, Finland, 1190p. 

13. Gustafson, R.R., Sleicher, C.A., McKean, W.T., Finlayson, B.A. (1983), Theoretical 
Model of the Kraft Pulping Process, Ind. Eng. Chem. Process Des. Dev., 22, pp. 87-
96. 



114 

14. Grimble, M.J., Uduehi, D. (2001), Process Control Loop Benchmarking and Revenue 
Optimization, Proceedings of the 2001 American Control Conference, June 25-27, 
Arlington, VA, USA, pp. 4313-4327. 

15. Hägglund, T. (1995), A control-loop performance monitor, Control Engineering 
Practice, 3(11), pp. 1543-1551. 

16. Hägglund, T. (1999), Automatic detection of sluggish control loops, Control 
Engineering Practice, 7(12), pp. 1505-1511. 

17. Halmevaara, K., Hyötyniemi, H. (2004), Process Performance Optimization Using 
Iterative Regression Tuning, Report 139, Control Engineering Laboratory, Helsinki 
University of Technology, Helsinki, Finland, 79 p. 

18. Halmevaara, H. Hyötyniemi, H. (2004), Iterative Simulation Based Multivariate 
Control Parameter Tuning Method, Proceedings of the 5th EUROSIM Congress, 
September 6-10, Paris, France. 

19. Halmevaara, K., Hyötyniemi, H. (2005), Performance Optimization of Large Control 
Systems – Case Study on a Continuous Pulp Digester, Proceedings of the 16th IFAC 
World Congress, July 3-8, Prague, Czech Republic. 

20. Halmevaara, K., Hyötyniemi, H. (2006), Data-based Parameter Optimization of 
Dynamic Simulation Models, Proceedings of the 47th Conference on Simulation and 
Modelling (SIMS 2006), September 27-29, Helsinki, Finland, pp. 69-73. 

21. Halmevaara, K., Hyötyniemi, H. (2006), Application of Elastic Intuitions to Process 
Engineering, Proceedings of the 9th Scandinavian Conference on Artificial 
Intelligence (SCAI 2006), October 25-27, Espoo, Finland. 

22. Halmevaara, K., Hyötyniemi, H. (2007), Dynaamisten simulointimallien parametrien 
virittäminen datapohjaisilla tilastollisilla menetelmillä, Proceedings of 
Automaatio07, March 27-28, Helsinki, Finland. 

23. Halmevaara, K., Hyötyniemi, H. (2007), Tuning of multi-parameter systems using 
multivariate regression and numerical optimization methods, Proceedings of the 6th 
International Conference on Intelligent Processing and Manufacturing of Materials 
(IPMM 2007), June 25-29, Salerno, Italy. 

24. Hang, C.C., Åström, K.J., Wang, Q.C. (2002), Relay feedback auto-tuning of process 
controllers  a tutorial review, Journal of Process Control, 12(1), pp. 143-162. 

25. Hang, C.C., Sin, K.K. (1991), On-Line Auto Tuning of PID Controllers Based on the 
Cross-Correlation Technique, IEEE Transactions on Industrial Electronics, 38(6), pp. 
428-437. 

26. Harris, T.J. (1989), Assessment of control loop performance, Canadian Journal of 
Chemical Engineering, 67(5), pp. 856-861. 

27. Harris, T.J., Boudreau, F., MacGregor, J.F. (1996), Performance Assessment of 
Multivariable Feedback Controllers, Automatica, 32(11), pp. 1505-1518. 

28. Harris, T.J., Seppala, C.T., Desborough, L.D. (1999), A review of performance 
monitoring and assessment techniques for univariate and multivariate control 
systems, Journal of Process Control, 9(1), pp. 1-17. 

29. Harris, T.J., Seppala, C.T., Jofriet, P.J., Surgenor, B.W. (1996), Plant-wide feedback 
control performance assessment using an expert-system framework, Control 
Engineering Practice, 4(9), pp. 1297-1303. 



115 

30. He, K., Dong, S., Zheng, L. (2006), Service-Oriented Grid Computation for Large-
Scale Parameter Estimation in Complex Environmental Modeling, Proceedings of the 
ACM symposium on Applied computing, Dijon, France, pp. 741-745. 

31. Hjalmarsson, H., Gunnarsson, S., Gevers, M. (1994), A Convergent Iterative 
Restricted Complexity Control Design Scheme, Proceedings of the 33rd IEEE 
Conference on Decision and Control, Orlando, FL, p. 1735-1740. 

32. Huang, B., Shah, S.L. (1999), Performance assessment of control loops, Springer 
Verlag, London, 255 p. 

33. Huang, B., Shah, S.L., Miller, R. (2000), Feedforward Plus Feedback Controller 
Performance Assessment of MIMO Systems, IEEE Transactions on Control Systems 
Technology, 8(3), pp. 580-587. 

34. Hyötyniemi, H. (2001), Multivariate Regression – Techniques and Tools, Report 125, 
Control Engineering Laboratory, Helsinki University of Technology, Helsinki, 
Finland, 207 p. 

35. Hyötyniemi, H. (2003), Emergence and Complex Systems − Towards New Practices 
for Industrial Automation?, In: Meech, J.A., Kawazoe, Y., Kumar V., Maguire, J.F. 
(2005), Intelligence in a Small Materials World: Selected Papers from IPMM-2003, 
the Fourth International Conference on Intelligent Processing and Manufacturing of 
Materials, DEStech Publications, PA, USA, pp. 28-60. 

36. Hyötyniemi, H. (2006), Neocybernetics in Biological Systems, Report 151, Control 
Engineering Laboratory, Helsinki University of Technology, Helsinki, Finland,  
273 p. 

37. Jämsä-Jounela, S-L., Poikonen, R., Halmevaara, K. (2002), Evaluation of Level 
Control Performance, Proceedings of the 15th IFAC World Congress, July 21-26, 
Barcelona, Spain. 

38. Jämsä-Jounela, S-L., Poikonen, R., Vatanski, N., Rantala, A. (2003), Evaluation of 
control performance: methods, monitoring tool and applications in a flotation plant, 
Minerals Engineering, 16(11), pp. 1069-1074. 

39. Jelali, M. (2006), An Overview of Control Performance Assessment Technology and 
Industrial Applications, Control Engineering Practice, 14(5), pp. 441-466. 

40. Jun, M., Safonov, M.G. (1999), Automatic PID Tuning: An Application of Unfalsified 
Control, Proceedings of the IEEE International Symposium on Computer Aided 
Control System Design (CACSD), August 22-27, Hawai, USA, pp. 328-333. 

41. Juslin, K. (2005), A Companion Model Approach to Modelling and Simulation of 
Industrial Processes, Doctoral Thesis, Helsinki University of Technology, 155 p. 

42. Karhela, T. (2002), A Software Architecture for Configuration and Usage of Process 
Simulation Models – Software Component Technology and XML-based Approach, 
Technical Research Centre of Finland, VTT Publications 479, Espoo, Finland, 129 p. 

43. Karhela, T. (2005), Prosessilaitoksen elinkaarenaikaisen tiedonhallinnan 
palvelukehys, Proceedings of Automaatio05, September 6-9, Helsinki, Finland. 

44. Kettunen, A., Paljakka, M. (2006), Process Simulation in Power Plant Design, 
Proceedings of the 47th Conference on Simulation and Modelling (SIMS 2006), 
September 27-29, Helsinki, Finland, pp. 176-181. 



116 

45. Killingsworth, N.J., Krstić, M. (2006), PID Tuning Using Extremum Seeking, IEEE 
Control Systems Magazine, 26(1), pp. 70-79. 

46. Klose, T., Kunze, D., Sandner, T., Schenk, H., Lakner, H., Schneider, A., Schneider, 
P. (2005), Stress Optimization of a Micromechanical Torsional Spring, Proceedings 
of the NSTI Nanotechnology Conference and Trade Show (Nanotech 2005),  
May 8-12, Anaheim, USA. 

47. Konda, N.V.S.N.M., Rangaiah, G.P. (2007), Performance Assessment of Plantwide 
Control Systems of Industrial Processes, Industrial & engineering chemistry research, 
46(4), pp. 1220-1231. 

48. Kondelin, K., Karhela, T., Laakso. P. (2004), Service Framework Specification for 
Process Plant Lifecycle, VTT Research Notes, 2277, Espoo, Finland, 123 p. 

49. Laakso, P., Paljakka, M., Kangas, P., Helminen, A., Peltoniemi, J., Ollikainen, T. 
(2005), Methods of simulation-assisted automation testing, VTT Research Notes, 
2289, Espoo, Finland, 59 p. 

50. Lequin, O., Gevers, M., Mossberg, M., Bosmans, E., Triest, L. (2003), Iterative 
feedback tuning of PID parameters: comparison with classical tuning rules, Control 
Engineering Practice, 11(9), pp. 1023-1033. 

51. Lewis, P.H., Yang, C. (1997), Basic Control Systems Engineering, Prentice-Hall, 
New Jersey, USA, 450 p. 

52. Liu, Y.B., Batelaan, O., De Smedt, F., Poórová, J., Velcická, L. (2005), Automated 
calibration applied to a GIS-based flood simulation model using PEST, In: van 
Alphen, J., van Beek, E., Taal, M. (2005), Floods, from defense to management, 
Taylor-Francis, London, UK, pp. 317–326. 

53. Ljung, L. (1999), System Identification: Theory for the User, Prentice-Hall, New 
Jersey, USA, 672 p. 

54. Longman, R.W. (2000), Iterative learning control and repetitive control for 
engineering practice, International Journal of Control, 73(10), pp. 930-954. 

55. Lopes, J.A., Costa, P.F., Alves, T.P., Menezes, J.C. (2004), Chemometrics in 
Bioprocess Engineering: Process Analytical Technology (PAT) Applications, 
Chemometrics and Intelligent Laboratory Systems, 74(2), pp. 269-275. 

56. Luyben, W.L. (1990), Process Modeling, Simulation, and Control for Chemical 
Engineers, McGraw-Hill Publishing, Singapore, 725 p. 

57. Miller, R.E. (2000), Optimization – Foundations and Applications, John Wiley & 
Sons, New York, NY, USA, 653 p. 

58. Miettinen, K. (1999), Nonlinear Multiobjective Optimization, Kluwer Academic 
Publishers, Norwell MA, 298 p. 

59. Miettinen, K., (2001), Some Methods for Nonlinear Multi-objective Optimization, 
Proceedings of the 1st International Conference on Evolutionary Multi-Criterion 
Optimization (EMO 2001), March 7-9, Zurich, Switzerland, pp. 1-20. 

60. Miettinen K., Mäkelä M.M. (2006), Synchronous Approach in Interactive 
Multiobjective Optimization, European Journal of Operational Research, 170(3), 
pp. 909-922. 

61. Nelles, O. (2001), Nonlinear System Identification, Springer-Verlag, Germany, 785 p. 



117 

62. O’Dwyer, A. (2003), Handbook of PI and PID Controller Tuning Rules, Imperial 
College Press, Singapore, 375 p. 

63. Paulonis, M.A., Cox, J.W. (2003), A practical approach for large-scale controller 
performance assessment, diagnosis, and improvement, Journal of Process Control, 
13(2), pp. 155-168. 

64. Pesonen, L.T.T., Salminen, S.J., Ylén, J-P., Riihimäki, P. (2008), Dynamic 
Simulation of Product Process, Simulation Modelling Practice and Theory, 16(8), pp. 
1091-1102. 

65. Pindyck, R.S., Rubinfeld, D.L. (1991), Econometric Models and Economic 
Forecasts, Third Edition, McGraw & Hill, New York, USA, 596 p. 

66. Pintér, J.D. (2007), Global Optimization – Models, Algorithms, Software, and 
Algorithms, Course material of Global Optimization seminar at Helsinki School of 
Economics, 19.-20.3.2007. 

67. Poeter, E.P., Hill, M.C. (1999), UCODE, a computer code for universal inverse 
modeling, Computers & Geosciences, 25(4), pp. 457-462. 

68. Robbins, H., Munro, S. (1951), A Stochastic Approximation Method, The Annals of 
Mathematical Statistics, 22(3), pp. 400-407. 

69. Saeki, M. (2003), Unfalsified Control Approach to Parameter Space Design of PID 
controllers, Proceedings of the 42nd IEEE Conference on Decision and Control 
(CDC2003), December 9-12, Maui, HI, USA, pp. 786-791. 

70. Safonov, M.G., Tsao, T-C. (1994), The Unfalsified Control Concept and Learning, 
Proceedings of the 33rd IEEE Conference on Decision and Control, Lake Buena 
Vista, FL, USA, pp. 2819-2824. 

71. Smith, C.C., Williams, T.J. (1974), Mathematical Modeling, Simulation and Control 
of the Operation of Kamyr Continuous Digester for Kraft Process, In: Wisnewski, 
P.A., Doyle, F.J. III, Kayihan, F. (1997), Fundamental Continuous-Pulp-Digester 
Model for Simulation and Control, AIChE Journal, 43(12), pp. 3175-3192. 

72. Schneider, P., Schneider, A., Schwarz, P. (2002), A modular approach for 
simulation-based optimization of MEMS, Microelectronics Journal, 33(1-2),  
pp. 29-38. 

73. Spall, J.C. (2003), Introduction to Stochastic Search and Optimization: Estimation, 
Simulation and Control, John Wiley & Sons, New York, USA, 618p. 

74. Stanfelj, N., Marlin, T.E., MacGregor, J.F. (1993), Monitoring and diagnosing 
process control performance: The single-loop case, Industrial & Engineering 
Chemistry Research, 32(2), pp. 301-314. 

75. Tahvonen, T. (2006), Methods and Tools for Simulation Assisted Process Automation 
Testing, Master’s thesis, Helsinki University of Technology, 73 p. 

76. Thode, H.C.Jr. (2002), Testing for normality, Marcel Dekker, New York, USA, 
479 p. 

77. Thornhill, N.F., Hägglund, T. (1997), Detection and diagnosis of oscillation in 
control loops, Control Engineering Practice, 5(10), pp. 1343-1354. 

78. Vanderplaats, G.N. (1984), Numerical Optimization Techniques for Engineering 
Design, McGraw-Hill, NY, USA, 333 p. 



118 

79. Wold, S., Sjöström, M., Eriksson, L. (2001), PLS-regression: a basic tool for 
chemometrics, Chemometrics and Intelligent Laboratory Systems, 58(2), pp. 109-
130. 

80. Xu J.-X., D. Huang, S. Pindi (2008), Optimal Tuning of PID Parameters Using 
Iterative Learning Approach, SICE Journal of Control, Measurement, and System 
Integration 1(2), pp. 143-154. 

81. Ylén, J-P., Paljakka, M., Karhela, T., Savolainen, J., Juslin, K. (2005), Experinences 
on Utilising Plant Scale Dynamic Simulation in Process Industry, Proceedings of the 
19th European Conference on Modelling and Simulation ECMS 2005, pp. 685-690. 

82. Yu, L.X., Lionberger, R.A., Raw, A.S., D’Costa, R., Wu, H., Hussain, A.S. (2004), 
Applications of Process Analytical Technology to Crystallization Processes, 
Advanced Drug Delivery Reviews, 56(3), pp. 349-369. 

83. Zabinsky, Z.B. (2003), Stochastic Adaptive Search for Global Optimization, Kluwer 
Academic Publishers, 224 p. 

 



119 

APPENDIX I: APROS 

The following short introduction of Apros (Advanced Process Simulation) software is 
based on the material presented on the official Apros web pages [1]. Apros is a 
dynamical modeling and simulation environment designed for professional usage on the 
different fields of process industry. Originally Apros, developed by the Technical 
Research Centre of Finland (VTT) and Fortum Plc (former Imatran Voima) in the 1980s, 
was intended for modeling nuclear and conventional power plants. Nowadays, there exist 
several different releases for different applications, for example, Apros Combustion, 
Apros Nuclear, and Apros Paper. Application examples are presented in [81]. 

Apros provides the user with extensive model component libraries that enable efficient 
construction of large plant-wide process models in reasonable time. Libraries contain 
numbers of different component prototypes for basic process elements, such as pipes and 
tanks, and for more complex devices like heat exchangers, valves, pumps, etc. Also 
automation and electrical components have their own libraries. The library prototypes 
can be adjusted to correspond to the actual hardware in use by changing their 
parameterizations. Model components can be connected into large networks using 
different connection types for fluid flows and information signals. When the components 
are attached to the model, the underlying mathematical model equations are created 
automatically making the modeling process effortless.  

The user can select between several accuracy levels, i.e., thermo hydraulic modeling 
principles, in Apros. In the simplest models, the same temperatures and velocities are 
assumed for gaseous and liquid flows and the model is based on the mass, momentum 
and energy conservation equations only. In the more rigorous models, however, mass, 
momentum and energy equations are solved separately for liquid and gaseous phases. 
These models involve also calculation of friction and heat conduction and transfer. Apros 
applies different solvers for different model accuracy levels. During simulation model 
variables are solved using a grid discretization approach in which the values of state 
variables (e.g., pressure and enthalpy) are solved in the nodes of the mesh, and flow 
related variables are computed in the branches between the nodes. Water and steam 
properties in nodes are obtained from accurate look-up tables. Alongside the thermal 
hydraulic network, Apros involves a composition network for material properties and 
concentrations of different components of fluids. It is possible to model chemical 
reactions between different substances as well.  

Different methods of numerical integration can be applied to solve the set of partial 
differential equations (PDE) constituting the process model, for example, the implicit 
Euler method and Trapezoid method. Apros selects an appropriate method automatically 
without user intervention. Implicit time integration results in a set of algebraic equations 
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that need to be (linearized and) solved numerically on each time step. Juslin [41] presents 
a detailed introduction to the solution principles applied in Apros models. 

Apros utilizes a graphical user interface called Grades (Figure 41), or it can be used with 
a lower lever command line tool. Apros commands can be assembled into command 
queue files that determine the events during a simulation run. Apros simulation engine 
can read and write time series data from/to text files. Like this the measurement data 
from the actual process plant can be used as a time-dependent boundary condition in 
simulation or the simulation results can be stored for later analysis. Apros models are 
relatively easy to connect with external model components, for example, separate models 
of the automation system, using the OPC interface. 

 

 
Figure 41. An example view of the Apros modeling environment using the Grades 
graphical user interface [1]. Process components are shown on the drawing canvas and 
simulation results on the trend windows. Model components, like different heat 
exchangers, can be browsed on the library toolbar. 



HELSINKI UNIVERSITY OF TECHNOLOGY  CONTROL ENGINEERING 
 
Editor: H. Koivo 
 
 
Report 149 Kantola, K. 
  Modelling, Estimation and Control of Electroless Nickel Plating Process of Printed Circuit Board 

Manufacturing. March 2006. 
 
Report 150 Virtanen, T. 
  Fault Diagnostics and Vibration Control of Paper Winders. June 2006. 
 
Report 151 Hyötyniemi, H. 
  Neocybernetics in Biological Systems. August 2006. 
 
Report 152 Hasu, V. 
  Radio Resource Management in Wireless Communication: Beamforming, Transmission Power Control, and 

Rate Allocation. June 2007. 
 
Report 153 Hrbček, J. 
  Active Control of Rotor Vibration by Model Predictive Control - A simulation study. May 2007. 
 
Report 154 Mohamed, F. A. 
  Microgrid Modelling and Online Management. January 2008. 
 
Report 155 Eriksson, L., Elmusrati, M., Pohjola, M. (eds.) 
  Introduction to Wireless Automation - Collected papers of the spring 2007 postgraduate seminar. April 2008. 
 
Report 156 Korkiakoski, V. 
  Improving the Performance of Adaptive Optics Systems with Optimized Control Methods. April 2008. 
 
Report 157 Al.Towati, A. 
  Dynamic Analysis and QFT-Based Robust Control Design of Switched-Mode Power Converters. September 

2008. 
 
Report 158 Eriksson, L. 
  PID Controller Design and Tuning in Networked Control Systems. October 2008. 
 
Report 159 Pohjoranta, A. 
  Modelling Surfactant Mass Balance with the ALE Method on Deforming 2D Surfaces. May 2009. 
 
Report 160 Kaartinen, J. 
  Machine Vision in Measurement and Control of Mineral Concentration Process. June 2009. 
 
Report 161 Hölttä, V. 
  Plant Performance Evaluation in Complex Industrial Applications. September 2009. 
 
Report 162 Halmevaara, K. 
  Simulation Assisted Performance Optimization of Large-Scale Multiparameter Technical Systems. September 

2009. 
 
 
ISBN 978-952-248-098-9 

ISSN 0356-0872 

Yliopistopaino, Helsinki 2009 


