519 research outputs found

    Towards the Design of a Natural User Interface for Performing and Learning Musical Gestures

    Get PDF
    AbstractA large variety of musical instruments, either acoustical or digital, are based on a keyboard scheme. Keyboard instruments can produce sounds through acoustic means but they are increasingly used to control digital sound synthesis processes with nowadays music. Interestingly, with all the different possibilities of sonic outcomes, the input remains a musical gesture. In this paper we present the conceptualization of a Natural User Interface (NUI), named the Intangible Musical Instrument (IMI), aiming to support both learning of expert musical gestures and performing music as a unified user experience. The IMI is designed to recognize metaphors of pianistic gestures, focusing on subtle uses of fingers and upper-body. Based on a typology of musical gestures, a gesture vocabulary has been created, hierarchized from basic to complex. These piano-like gestures are finally recognized and transformed into sounds

    Sensor-fusion for smartphone location tracking using hybrid multimodal deep neural networks

    Get PDF
    Many engineered approaches have been proposed over the years for solving the hard problem of performing indoor localization using smartphone sensors. However, specialising these solutions for difficult edge cases remains challenging. Here we propose an end-to-end hybrid multimodal deep neural network localization system, MM-Loc, relying on zero hand-engineered features, but learning automatically from data instead. This is achieved by using modality-specific neural networks to extract preliminary features from each sensing modality, which are then combined by cross-modality neural structures. We show that our choice of modality-specific neural architectures can estimate the location independently. But for better accuracy, a multimodal neural network that fuses the features of early modality-specific representations is a better proposition. Our proposed MM-Loc system is tested on cross-modality samples characterised by different sampling rate and data representation (inertial sensors, magnetic and WiFi signals), outperforming traditional approaches for location estimation. MM-Loc elegantly trains directly from data unlike conventional indoor positioning systems, which rely on human intuition

    Toward Understanding Human Expression in Human-Robot Interaction

    Get PDF
    Intelligent devices are quickly becoming necessities to support our activities during both work and play. We are already bound in a symbiotic relationship with these devices. An unfortunate effect of the pervasiveness of intelligent devices is the substantial investment of our time and effort to communicate intent. Even though our increasing reliance on these intelligent devices is inevitable, the limits of conventional methods for devices to perceive human expression hinders communication efficiency. These constraints restrict the usefulness of intelligent devices to support our activities. Our communication time and effort must be minimized to leverage the benefits of intelligent devices and seamlessly integrate them into society. Minimizing the time and effort needed to communicate our intent will allow us to concentrate on tasks in which we excel, including creative thought and problem solving. An intuitive method to minimize human communication effort with intelligent devices is to take advantage of our existing interpersonal communication experience. Recent advances in speech, hand gesture, and facial expression recognition provide alternate viable modes of communication that are more natural than conventional tactile interfaces. Use of natural human communication eliminates the need to adapt and invest time and effort using less intuitive techniques required for traditional keyboard and mouse based interfaces. Although the state of the art in natural but isolated modes of communication achieves impressive results, significant hurdles must be conquered before communication with devices in our daily lives will feel natural and effortless. Research has shown that combining information between multiple noise-prone modalities improves accuracy. Leveraging this complementary and redundant content will improve communication robustness and relax current unimodal limitations. This research presents and evaluates a novel multimodal framework to help reduce the total human effort and time required to communicate with intelligent devices. This reduction is realized by determining human intent using a knowledge-based architecture that combines and leverages conflicting information available across multiple natural communication modes and modalities. The effectiveness of this approach is demonstrated using dynamic hand gestures and simple facial expressions characterizing basic emotions. It is important to note that the framework is not restricted to these two forms of communication. The framework presented in this research provides the flexibility necessary to include additional or alternate modalities and channels of information in future research, including improving the robustness of speech understanding. The primary contributions of this research include the leveraging of conflicts in a closed-loop multimodal framework, explicit use of uncertainty in knowledge representation and reasoning across multiple modalities, and a flexible approach for leveraging domain specific knowledge to help understand multimodal human expression. Experiments using a manually defined knowledge base demonstrate an improved average accuracy of individual concepts and an improved average accuracy of overall intents when leveraging conflicts as compared to an open-loop approach

    A framework for continuous, transparent authentication on mobile devices

    Get PDF
    Mobile devices have consistently advanced in terms of processing power, amount of memory and functionality. With these advances, the ability to store potentially private or sensitive information on them has increased. Traditional methods for securing mobile devices, passwords and PINs, are inadequate given their weaknesses and the bursty use patterns that characterize mobile devices. Passwords and PINs are often shared or weak secrets to ameliorate the memory load on device owners. Furthermore, they represent point-of-entry security, which provides access control but not authentication. Alternatives to these traditional meth- ods have been suggested. Examples include graphical passwords, biometrics and sketched passwords, among others. These alternatives all have their place in an authentication toolbox, as do passwords and PINs, but do not respect the unique needs of the mobile device environment. This dissertation presents a continuous, transparent authentication method for mobile devices called the Transparent Authentication Framework. The Framework uses behavioral biometrics, which are patterns in how people perform actions, to verify the identity of the mobile device owner. It is transparent in that the biometrics are gathered in the background while the device is used normally, and is continuous in that verification takes place regularly. The Framework requires little effort from the device owner, goes beyond access control to provide authentication, and is acceptable and trustworthy to device owners, all while respecting the memory and processor limitations of the mobile device environment

    Design of a 3D-printed soft robotic hand with distributed tactile sensing for multi-grasp object identification

    Get PDF
    Tactile object identification is essential in environments where vision is occluded or when intrinsic object properties such as weight or stiffness need to be discriminated between. The robotic approach to this task has traditionally been to use rigid-bodied robots equipped with complex control schemes to explore different objects. However, whilst varying degrees of success have been demonstrated, these approaches are limited in their generalisability due to the complexity of the control schemes required to facilitate safe interactions with diverse objects. In this regard, Soft Robotics has garnered increased attention in the past decade due to the ability to exploit Morphological Computation through the agent's body to simplify the task by conforming naturally to the geometry of objects being explored. This exists as a paradigm shift in the design of robots since Soft Robotics seeks to take inspiration from biological solutions and embody adaptability in order to interact with the environment rather than relying on centralised computation. In this thesis, we formulate, simplify, and solve an object identification task using Soft Robotic principles. We design an anthropomorphic hand that has human-like range of motion and compliance in the actuation and sensing. The range of motion is validated through the Feix GRASP taxonomy and the Kapandji Thumb Opposition test. The hand is monolithically fabricated using multi-material 3D printing to enable the exploitation of different material properties within the same body and limit variability between samples. The hand's compliance facilitates adaptable grasping of a wide range of objects and features integrated distributed tactile sensing. We emulate the human approach of integrating information from multiple contacts and grasps of objects to discriminate between them. Two bespoke neural networks are designed to extract patterns from both the tactile data and the relationships between grasps to facilitate high classification accuracy

    Brave New GES World:A Systematic Literature Review of Gestures and Referents in Gesture Elicitation Studies

    Get PDF
    How to determine highly effective and intuitive gesture sets for interactive systems tailored to end users’ preferences? A substantial body of knowledge is available on this topic, among which gesture elicitation studies stand out distinctively. In these studies, end users are invited to propose gestures for specific referents, which are the functions to control for an interactive system. The vast majority of gesture elicitation studies conclude with a consensus gesture set identified following a process of consensus or agreement analysis. However, the information about specific gesture sets determined for specific applications is scattered across a wide landscape of disconnected scientific publications, which poses challenges to researchers and practitioners to effectively harness this body of knowledge. To address this challenge, we conducted a systematic literature review and examined a corpus of N=267 studies encompassing a total of 187, 265 gestures elicited from 6, 659 participants for 4, 106 referents. To understand similarities in users’ gesture preferences within this extensive dataset, we analyzed a sample of 2, 304 gestures extracted from the studies identified in our literature review. Our approach consisted of (i) identifying the context of use represented by end users, devices, platforms, and gesture sensing technology, (ii) categorizing the referents, (iii) classifying the gestures elicited for those referents, and (iv) cataloging the gestures based on their representation and implementation modalities. Drawing from the findings of this review, we propose guidelines for conducting future end-user gesture elicitation studies
    • …
    corecore